
Math 2E
Final Solutions: by Jim

1) Find and sketch the gradient vector field for f(x, y) = x2 + y2 , make sure the directions and
magnitudes of the vectors are correct.

Solution The gradient is given by ∇(f) = 〈2x, 2y〉. Which is 2 times the position vector 〈x, y〉.
So the magnitude increases as the distance from (0, 0) increases, which can be seen below.

2) Show that the vector field F (x, y) = 〈e−y,−xe−y〉 is conservative and find a scalar potential function

f for F (x, y). Then Evaluate the line integral
∫
C

F · dr, where C is the part of the parabola y = x2

connecting (0, 0) to (1, 1).

Solution First notice that the domain of F (x, y) = 〈P (x, y), Q(x, y)〉 is all of R2 which is an open
simply-connected region. So F (x, y) is conservative if ∇× F = (Qy − Px)k = 0.

Qx = −e−y = Py

Hence F is conservative. For its potential function

fx = e−y ⇒ f = xe−y + g(y)

differentiating with respect to y we have

fy = −xe−y + g′(y) ⇒ g′(y) = 0 ⇒ f = xe−y +K

For the line integral, a parameterzation for the curve is r(x) = 〈x, x2〉 for 0 ≤ x ≤ 1. Now r(0) = (0, 0),
r(1) = (1, 1). Now since F is a conservative vector field the fundemental theorem for line integrals
applies and the line integral becomes:∫

C

F · dr =
∫
C

∇(f) · dr = f(r(b))− f(r(a)) = f(1, 1)− f(0, 0) = e−1

3) Show that the vector field F (x, y, z) = 〈 y
1+x2 + tan−1(z), tan−1(x), x

1+z2 〉 is conservative, and then

evaluate the line integral
∫
C

F · dr, where C is the intersection of the hemisphere x2 + y2 + z2 = 4,

z ≥ 0 and the cylinder x2 + y2 = 1, in counter-clockwise direction.

Solution First notice that the domain for F = 〈P,Q,R〉 is all of R3, which is an open simply connected
region. So F is conservative if ∇× F = 0.

∇× F =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
y

1 + x2
+ tan−1(z) tan−1(x)

x

1 + z2

∣∣∣∣∣∣∣∣∣
= 〈0, 1

1 + z2
− 1

1 + z2
,

1
1 + x2

− 1
1 + x2

〉 = 〈0, 0, 0〉
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So F is conservative. For a parameterzation for the curve of intersection notice that when you subtract
the two surfaces you get z2 = 3, which implies that z =

√
3, since z ≥ 0. So r(t) = 〈cos(t), sin(t),

√
3〉.

Now for any starting point a and ending point b on the curve C we have r(a) = r(b). Hence our line
integral is ∫

C

F · dr =
∫
C

∇(f) · dr = f(r(b))− f(r(a)) = 0

4) The vector field F (x, y) is given in the figure, determine if
∫
C

F · dr is positive, negative or zero,

where C is the upper half circle connecting (−1, 0) to (1,0). Give reasons.

Solution C has positive orientation and flows in the same direction as F .∫
C

F · dr =
∫
C

F · Tds > 0

5) Find the curl and divergence of the vector field F = 〈z2e−x, y3 ln(z), xe−y〉.

Solution

∇× F =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
z2e−x y3 ln(z) xe−y

∣∣∣∣∣∣∣∣ = 〈−xe−y − y3

z
, 2ze−x − e−y, 0〉

∇ · F = −z2e−x + 3y2 ln(z)

6) Find an explicit equation z = f(x, y) and given restrictions when necessary for the surface defined
by the parametric equation r(u, v) = (u, v2, u3).

Solution From the vector equation r(u, v) = (u, v2, u3), we have the paramentric equations

x = u, y = v2, z = u3 ⇒ z = f(x, y) = x3, y ≥ 0

7) The surface S is the portion of the sphere x2 + y2 + z2 = 25 inside the cylinder x2 + y2 = 9, find a
parametric equation for S and find the surface area of S.

Solution Subtracting the two equations we have z2 = 16, which implies that z = ±4. Switching
both equations to spherical coordinates we have

r(φ, θ) = 〈5 sin(φ) cos(θ), 5 sin(φ) sin(θ), 5 cos(φ)〉
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and since z = 5 cos(φ) = ±4, we have φ = cos−1(± 4
5 ). So the parameterzation is given above with

0 ≤ θ ≤ 2π, φ ∈ [0, cos−1(
4
5

)] ∪ [cos−1(−4
5

), π]

Now by symmetry, the surface area is given by∫∫
S

dS =
∫∫

D

‖rφ × rθ‖dA = 2
∫ 2π

0

∫ cos−1( 4
5 )

0

25 sin(φ)dφdθ

Using Fubini’s theorem we have

50
∫ 2π

0

dθ

∫ cos−1( 4
5 )

0

sin(φ)dφ = −100π cos(θ)
∣∣cos−1( 4

5 )

0
= −80π + 100π = 20π

8) Use a change of variables to evaluate the following integrals, given the transformations: x =
f(u, v), y = g(u, v).

a)
∫∫

D

y3(2x − y) cos(2x − y)dA, where D is the region bounded by the parallelogram with ver-

tices (0, 0), (2, 0), (3, 2) and (1, 2). f(u, v) = 1
2 (u+ v), g(u, v) = v.

Solution If x = 1
2 (u + v), y = v, then u = 2x − y, y = v, so the region bounded by the parallel-

ogram can be described in the uv-plane as Duv = {(u, v) : 0 ≤ u ≤ 4, 0 ≤ v ≤ 2}. Now∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ =
∣∣∣∣ 1

2
1
2

0 1

∣∣∣∣ =
1
2

So the integral becomes∫∫
D

y3(2x− y) cos(2x− y)dA =
∫ 2

0

∫ 4

0

v3u cos(u)
1
2
dudv

=
1
2

∫ 2

0

v3dv

∫ 4

0

u cos(u)du = 2 (cos(4) + 4 sin(4)− 1)

b)
∫∫

D

e
x+y
x−y dA, where D is the trapezoidal region with vertices (1, 0), (2, 0), (0,−2) and (0,−1).

f(u, v) = 1
2 (u+ v), g(u, v) = 1

2 (u− v).

Solution If x = 1
2 (u + v), y = 1

2 (u − v), then u = x + y, v = x − y so the trapezoidal region
can be described in the uv-plane as Duv = {(u, v) : 1 ≤ v ≤ 2,−v ≤ u ≤ v}. Now∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =
∣∣∣∣ 1

2
1
2

1
2 − 1

2

∣∣∣∣ =
∣∣∣∣−1

2

∣∣∣∣ =
1
2

So the integral becomes ∫∫
D

e
x+y
x−y dA =

∫ 2

1

∫ v

−v
e
u
v

1
2
dudv

=
1
2

∫ 2

1

(e− e−1)vdv =
3
4
(
e− e−1

)
9) Evaluate

∫
C

x2 + y2ds where C is given by C : x = e−t cos(t), y = e−t sin(t), 0 ≤ t ≤ π

2

Solution Let f(x, y) = x2 + y2, the vector equation for C is r(t) = 〈e−t cos(t), e−t sin(t)〉. So
f(r(t)) = e−2t and r′(t) is given by

r′(t) = 〈−e−t(cos(t) + sin(t)), e−t(cos(t)− sin(t))〉, ‖r′(t)‖ =

((
dx

dt

)2

+
(
dy

dt

)2
)1/2

=
√

2e−t

Now the line integral∫
C

f(x, y)ds =
∫ π/2

0

f(r(t))‖r′(t)‖dt =
√

2
∫ π/2

0

e−2te−tdt =
√

2
3

(
1− e

−3
2 π
)
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10) Let F = 〈y,−x〉 and let C1, C2 be the following two paths joining (0, 0) to (1, 1). C1 : y = x,

C2 : y = x2. Show that
∫
C1

F · dr 6=
∫
C2

F · dr. Explain what this means.

Solution A parameterzation for C1 is r1(x) = 〈x, x〉, and so∫
C1

F · dr =
∫ 1

0

〈x,−x〉 · 〈1, 1〉dx =
∫ 1

0

0dx = 0

A parameterzation for C2 is r2(x) = 〈x, x2〉, and so∫
C2

F · dr =
∫ 1

0

〈x2,−x〉 · 〈1, 2x〉dx = −
∫ 1

0

x2dx = −1
3

First it means that the vector field is not conservative. Second the work done by the field along C1 is
0, while work done by the field along C2 is negative.

11) Use Stokes Theorem to evaluate
∫
F · dr, where F = 〈x− z, y−x, z− y〉 and C is the boundary of

the triangular region with vertices (12, 0, 0), (0, 3, 0) and (0, 0, 12) traversed counterclockwise as viewed
from above the origin.

Solution Curl(F ) = 〈−1,−1,−1〉. Two vectors that span the plane of the triangular region are
〈12,−3, 0〉, and 〈12, 0,−12〉, so the normal of this plane is the cross product of these two vectors which
is n = 〈1, 4, 1〉. Using the point(12, 0, 0), we have the equation of the plane as x+ 4y+ z = 12. Now the
triangular region S is enclosed by D = {(x, y) : 0 ≤ x ≤ 12, 0 ≤ y ≤ 3− x

4}. Let z = g(x, y) = 12−x−4y,
and let Curl(F ) = 〈P,Q,R〉 = 〈−1,−1,−1〉 we have∫

C

F · dr =
∫∫

S

∇× FdS̄ =
∫∫

D

−Pgx −Qgy +RdA

=
∫ 12

0

∫ 3− x4

0

−(−1)(−1)− (−1)(−4) + (−1)dydx

=
∫ 12

0

∫ 3− x4

0

−6dydx

= 3
∫ 12

0

x

2
− 6dx

= 3
(
x2

4
− 6x

)12

0

= −108

12) Use Divergence Theorem to find the flux of the field F = 〈cos(yz), exz, 3z2〉 across the surface S
given by the hemisphere, x2 + y2 + z2 = 4, z ≥ 0 together with the disk x2 + y2 = 4 in the xy-plane.

Solution The flux of the field F across S is given by∫∫
S

F · dS̄ =
∫∫∫

E

∇ · FdV

by the Divergence Theorem. So ∇ · F = 6z. Parameterizing our region E in spherical coodinates we
have E = {(ρ, φ, θ) : 0 ≤ ρ ≤ 2, 0 ≤ φ ≤ π

2 , 0 ≤ θ ≤ 2π} Hence our integrals are∫∫
S

F · dS̄ =
∫∫∫

E

6zdV = 6
∫ 2π

0

∫ π
2

0

∫ 2

0

ρ cos(φ)ρ2 sin(φ)dρdφdθ

= 6
∫ 2π

0

dθ

∫ π
2

0

sin(φ) cos(φ)
∫ 2

0

ρ3dρ

= 6(2π)(
1
2

)(4) = 24π


