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Abstract

From Hypergroups to Anyonic Twines

by

Jesse Liptrap

We study the construction of hypergroups from groups and of fusion rules from

hypergroups. We categorify Yamagami’s linear algebraicization of fusion categories, to

a 2-categorical equivalence. We classify nilpotent (in the sense of Gelaki and Nikshych)

fusion rules of simple current index 2, and characterize the associated fusion categories,

which include Tambara-Yamagami and fermionic Moore-Read. We compute all twines

(pure braidings) of the latter. Entwined fusion categories may describe fractional

quantum Hall quasiparticle motion in the absence of braiding, such as for fermionic

Moore-Read, while the underlying electron wavefunction is determined by a translation

invariant antisymmetric n-variate polynomial. We show that the ring of translation

invariant symmetric n-variate polynomials is isomorphic to the full (n − 1)-variate

polynomial ring, and disprove a conjecture of Haldane regarding their structure.
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Chapter 1

Introduction

Fusion categories can be viewed as quantum analogues of finite groups, or as mild

generalizations of the category of finite-dimensional vector spaces. Braided fusion cat-

egories govern quasiparticle motion in the fractional quantum Hall effect, driving the

main mechanism of topological quantum computation (see Chapter 8 or Wang [29]).

Twines or pure braidings, inventions of Bruguieres [6], may be a useful alternative to

braidings in some fermionic fractional quantum Hall regimes, but have not previously

been studied in this context. Along the way to entwined fusion categories, we ascend

a hierarchy of structures, viewing each as a foundation for the next:

• Absolutely regular hypergroups (Chapter 2)

• Fusion rules (Chapter 3)

• Fusion categories (Chapters 4, 5, 6)

• Entwined fusion categories (Chapter 7)
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Hypergroups generalize groups by allowing multivalued multiplication. Though

studied since the 1930s with various applications, they have not previously interacted

with the other structures in this thesis. In Chapter 2 we introduce absolutely regular

hypergroups (ARHs) as a natural weakening of fusion rules. To each ARH we assign

a simple current index so that groups are precisely ARHs of simple current index 1.

Following Gelaki and Nikshych [13] we assume nilpotence, not to be confused with the

standard notion for groups. We classify, functorially, nilpotent ARHs of simple current

index 2, in terms of group homomorphisms (Corollary 2.2.8), thereby generalizing the

Tambara-Yamagami fusion rules [28] and the fermionic Moore-Read fusion rule [3]

(Definition 2.1.2). Generalizing further, we construct ARHs from sequences of group

homomorphisms (Theorem 2.3.1). Leaping from sequences to lattices, we conjecturally

classify ARHs of nilpotence class two.

Fusion rules provide the combinatorial laws of fusing and splitting of fractional

quantum Hall quasiparticles. They can be viewed as nondeterministic groups, obtained

from ARHs by refining associativity from setwise to multisetwise. Nilpotent fusion

rules of simple current index 2 are mere ARHs. We classify fusion rules with underlying

ARHs given by Theorem 2.3.1, in terms of group 2-cocycles over Z+ (Theorem 3.3.2),

and compute some simple examples.

Fusion categories appear in conformal field theory, operator algebras, representa-

tion theory, and quantum topology. They underly models of fractional quantum Hall

quasiparticles, the proposed raw material for topological quantum computation. The

theory of fusion categories is developed in Etingof, Nikshych, and Ostrik [12]. Every
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fusion category has a fusion rule up to isomorphism. Thus the problem of classifying

fusion categories splits into two difficult subproblems: understand fusion rules, and

given a fusion rule, understand the associated fusion categories, of which there are

only finitely many up to equivalence over an algebraically closed field of characteristic

0 (Ocneanu rigidity [12]).

As a tool for constructing fusion categories from fusion rules, Yamagami [31] in-

troduced linear algebraic gadgets which we call fusion systems, and proved them to

be merely an alternate formulation of fusion categories. Fusion systems are also used

directly in fractional quantum Hall physics (Appendix E of Kitaev [19]). Fusion sys-

tems are obtained from fusion categories by considering only the splitting spaces from

one simple object to the monoidal product of two simple objects, corresponding in the

fractional quantum Hall effect to one quasiparticle splitting into two. (It is equivalent

to use fusion spaces.) We observe that fusion systems are objects in a 2-category,

which we prove equivalent to a suitably defined 2-category of fusion categories (The-

orem 5.1.4).

To compute all fusion systems on a given fusion rule, one picks bases for the

splitting spaces, yielding collections of numbers (6j symbols) which we call 6j fusion

systems. When the fusion rule is a group, it is well-known that 6j fusion systems

correspond to third group cohomology. Theorem 5.1.4 yields interpretations of second

and first group cohomology as well, corresponding to 1- and 2-isomorphisms of fu-

sion categories, respectively (Theorem 6.1.2). Generalizing Tambara and Yamagamis’

classification using nondegenerate symmetric bilinear forms on groups [28], we give

3



an elementary algebraic characterization of 6j fusion systems on nilpotent fusion rules

of simple current index 2, and of H3(G,F×) for G a group of even order and F a

field (Corollaries 6.2.7, 6.2.6). For other generalizations of Tambara-Yamagami fusion

categories, see Siehler [26] and Etingof, Nikshych, and Ostrik [11].

A braiding on a monoidal category yields representations of object-colored braids;

a twine is similar but limited to pure braids. Some fusion categories such as fermionic

Moore-Read are significant in fractional quantum Hall physics but lack braidings (Bon-

derson [3]). Twines may help describe quasiparticle motion in such cases. We observe

that a twine on a monoidal category is merely a monoidal functor whose underlying

functor is the identity and which satisfies a certain dodecagon axiom (Definition 7.2).

Isomorphism of monoidal functors then gives a categorical definition of equivalence

of twines, according to which twines on fusion categories on groups correspond to

second group cohomology (Proposition 7.2.10). We compute all twines on fermionic

Moore-Read fusion categories (Lemma 7.3.7). They are all trivial under our cate-

gorical notion of equivalence, but not all trivial up to homotheties on splitting trees.

So it remains unclear whether twines can capture enough of the topological behav-

ior of fermionic Moore-Read quasiparticles or those of other fractional quantum Hall

theories. Table 7.1 summarizes various structures on fermionic Moore-Read fusion

categories.

Chapter 8 sketches the role of braided or entwined fusion categories in fractional

quantum Hall physics and topological quantum computation. Such categories may

describe the exotic emergent behavior of quasiparticles in the fractional quantum Hall
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effect, while the underlying electron wavefunction is characterized by a translation

invariant (anti)symmetric complex polynomial. In Section 8.1 we describe the totality

of such polynomials. In Section 8.2, we find a counterexample to Haldane’s conjec-

ture [15] that every homogeneous translation invariant symmetric polynomial satisfies

a certain physically convenient property (Proposition 8.2.7). More precisely, each

symmetric polynomial p is associated with a finite poset B(p); Haldane conjectured

that if p is homogeneous and translation invariant, then B(p) has a maximum. We

prove the conjecture for polynomials of at most three variables, construct a minimal

counterexample, and discuss whether a weakened version of the conjecture holds.
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Chapter 2

Hypergroups

Consider modding out a group by a non-normal subgroup. The quotient should

be some sort of algebraic structure with a single operation, but of course it is not a

group because multiplication is not well-defined. For this and other applications, F.

Marty in 1934 introduced the following definition [22].

First a bit of notation. Given a set H and a binary operation ∗ : H × H → 2H ,

and given X, Y ⊆ H , define X ∗ Y =
⋃

x∈X,y∈Y x ∗ y. We identify each element x of

H with the singleton {x}.

Definition 2.0.1. A hypergroup is a set H equipped with a binary operation H ×

H → 2H such that:

• (xy)z = x(yz) for all x, y, z ∈ H .

• For all x, y ∈ H there exist a, b ∈ H such that ax, xb ⊇ y.

6



Example 2.0.2.

1. Every group is a hypergroup. A hypergroup is a group iff it has single-valued

multiplication.

2. Let G be a group and S be an arbitrary subgroup. The set H = G/S of left

cosets is a hypergroup as follows. For C,D,E ∈ H , put E ∈ C ∗ D iff E ∋ cd

for some c ∈ C, d ∈ D.

3. Let G be a group and S, T be arbitrary subgroups. The set H = S\G/T of

double cosets is a hypergroup, defined as in the case of left cosets.

4. Let C be a fusion category (Definition 4.2.4). The set H of isomorphism classes

of simple objects of C is a hypergroup as follows. For simple objects x, y, z of

isomorphism types [x], [y], [z], put [z] ∈ [x] ∗ [y] iff mor(z, x�y) 6= {0}, where �

is the monoidal bifunctor on C.

Hypergroups have been studied for their own sake and for applications to other

areas of mathematics (Corsini and Leoreanu [7]). Our interest in hypergroups lies in

Example 2.0.2(4), for applications to quantum topology and fractional quantum Hall

physics. In these areas, fusion categories are of fundamental importance. To construct

them, one often starts with a fusion rule (Chapter 3), commonly regarded as the lowest

level of structure. We propose that hypergroups form a natural “basement level” below

fusion rules.

Remark. Some authors, especially in harmonic analysis, define a hypergroup to be a

sort of generalized fusion rule whose fusion multiplicities are probabilities.
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A surprising amount of elementary group theory generalizes to hypergroups, in-

cluding the first and second isomorphism theorems and the Jordan-Hölder theorem

(Dresher and Ore [8], Ore and Eaton [10]). But hypergroups and most of the spe-

cial families thereof which appear in the literature are too general for our goal of

studying fusion rules. For instance, we want an absolute unit, an element e satisfying

xe = ex = x for all x. This does not exist in Example 2.0.2(2) unless S is normal. So

we restrict attention to a special class of hypergroups which does not appear to have

been defined in the literature.

2.1 Absolutely regular hypergroups

For the rest of this thesis, if we speak of hypergroups, we mean the following notion,

some of whose basic theory is developed in this section.

Definition 2.1.1. An absolutely regular hypergroup (ARH) is a set H equipped with

a binary operation H ×H → 2H such that

∀x, y, z : (xy)z = x(yz),

∃1∀x : 1x = x1 = x,

∀x∃x̄∀y : 1 ∈ xy ⇐⇒ 1 ∈ yx ⇐⇒ y = x̄.

Example 2.1.2.

• Groups are precisely ARHs with single-valued multiplication. Note ā = a−1 for

any group element a.

8



• Given a group A andm /∈ A, the Tambara-Yamagami ARH has elements A∪{m}

multiplying as follows: for a, b ∈ A,

a ∗ b = ab, a ∗m = m ∗ a = m, m ∗m = A.

• The fermionic Moore-Read ARH has six elements {1, α, ψ, α′, σ, σ′} with the

following commutative multiplication: {1, α, ψ, α′} ∼= {1, i,−1,−i} = Z4, and

ψσ = σ ψσ′ = σ′

ασ = α′σ = σ′ ασ′ = α′σ′ = σ

σσ′ = {1, ψ} σσ = σ′σ′ = {α, α′}

Lemma 2.1.3. Let L be an ARH. Then

• xy 6= ∅ for x, y ∈ L.

• 1 ∈ L is unique.

• If x ∈ L, then x̄ is uniquely determined by x, and ¯̄x = x.

Definition 2.1.4. A hypermagma is a set H equipped with a binary operation H ×

H → 2H .

Definition 2.1.5. Let L and L′ be hypermagmas. A map f : L → L′ is a homomor-

phism if f(xy) ⊆ f(x)f(y) for x, y ∈ L.

Definition 2.1.6. Let G be a group and L an ARH. A G-grading on L is a surjective

homomorphism L→ G.

9



Remark. Many authors do not require gradings to be surjective.

Definition 2.1.7. Let L be an ARH and S ⊆ L.

• S ∋ 1 is a sub-ARH if z ∈ S whenever z̄ ∈ S or z ∈ xy for some x, y ∈ S.

• A left coset of S in L is a subset xS for some x ∈ L. The set L/S of all left

cosets of S in L is a hypermagma with operation ∗S defined as follows: for

X, Y, Z ∈ L/S, put Z ∈ X ∗S Y iff z ∈ xy for some x ∈ X, y ∈ Y, z ∈ Z.

• The index of S is the cardinality of L/S.

Definition 2.1.8. The adjoint sub-ARH Lad of an ARH L is the smallest sub-ARH

containing xx̄ for all x ∈ L. For n ∈ N, we say L is nil-n if L(n) = {1}, where L(0) = L

and L(m+1) = (L(m))ad. The smallest such n is the nilpotence class of L. We say L is

nilpotent if it has a nilpotence class.

Remark. This meaning of “nilpotent” conflicts with its usual meaning for groups:

every group is nilpotent as an ARH. We use “nilpotent” and “adjoint” for consistency

with Gelaki and Nikshych [13].

Theorem 2.1.9 (Dresher and Ore [8], Gelaki and Nikshych [13]). Let L be an ARH.

Then Lad is the intersection of all sub-ARHs A such that L/A is a group. The hy-

permagma L/Lad is a group, called the universal grading group, partitioning L. Every

grading of L factors uniquely through the quotient projection L → L/Lad, called the

universal grading.

Definition 2.1.10. An ARH element a is a simple current if aā = 1. The simple

current index of an ARH is the index of the set of simple currents.

10



Lemma 2.1.11. Let L be an ARH with simple currents S. Then

(i) a ∈ S iff āa = 1 iff az and za are singletons for all z ∈ L.

(ii) S is the largest sub-ARH of L which is a group.

(iii) L/S partitions L.

(iv) L is a group iff its simple current index is 1.

2.2 Feudal hypergroups

Groups are the simplest ARHs. In this section we classify the “most group-like”

non-group ARHs, which we call properly feudal.

Definition 2.2.1. Let Z2 = {±1} be a group of order 2. An ARH is feudal if it is

equipped with a Z2-grading γ such that γ−1(1) is a group. We call elements of γ−1(1)

serfs and elements of γ−1(−1) lords. An ARH is properly feudal if it is nilpotent with

simple current index 2.

Example 2.2.2. We revisit Example 2.1.2, not for the last time.

• A Z2-graded group is improperly feudal. Its adjoint sub-ARH is trivial; it is its

own simple current group and universal grading group.

• A Tambara-Yamagami ARH A ∪ {m} is feudal with serfs A and lord m. It is

properly feudal iff |A| > 1 iff A is the simple current group. The adjoint sub-

ARH is A; the universal grading group is {A,m} ∼= Z2. A properly feudal ARH

with a lone lord is Tambara-Yamagami.

11



• The fermionic Moore-Read ARH is feudal with serfs {1, α, ψ, α′} and lords

{σ, σ′}. It is properly feudal, with simple currents {1, α, ψ, α′}, adjoint sub-

ARH {1, ψ}, and universal grading group {{1, ψ}, σ, {α, α′}, σ′} ∼= Z4.

Lemma 2.2.3. Let L be a feudal ARH with serfs S. Then

(i) S acts on lords by multiplication, transitively on the left and on the right.

(ii) Lad E S is the left stabilizer and right stabilizer of any lord.

(iii) Two lords m, l multiply to a coset of Lad in S, namely

ml = {a ∈ S | m̄a = l} = {a ∈ S | m = al̄}. (2.1)

Proof. Let M be the lords and m, l ∈ M . By Lemma 2.1.11(i), S acts on M on the

left and on the right by multiplication; by feudality, ml is a subset of S. For a ∈ S,

a ∈ ml ⇐⇒ 1 ∈ āml ⇐⇒ m̄a = l

⇐⇒ 1 ∈ mlā ⇐⇒ m = al̄,

proving equation (2.1). Then ml 6= ∅ implies (i). Since {ml′ | l′ ∈M} and {m′l | m′ ∈

M} each partition S,

mb = m ⇐⇒ mbl = ml ⇐⇒ bl = l

for b ∈ S, i.e., the right stabilizer of m and the left stabilizer of l coincide for arbitrary

m, l ∈ M . Let AE S be this common stabilizer. Equation (2.1) implies mm̄ = A for

all m ∈ M . Thus A = Lad, proving (ii). The orbit-stabilizer theorem of elementary

group theory then completes (iii).

12



Proposition 2.2.4. A properly feudal ARH is uniquely feudal. A feudal ARH is

properly feudal or a Z2-graded group.

Proof. Let L be properly feudal with simple currents S. By Lemma 2.1.11, M =

L \ S 6= ∅ and am,ma ∈ M whenever a ∈ S and m ∈ M . Thus L/S = {S,M} with

S ∗S S = S and S ∗S M = M ∗S S = M .

To show M ∗S M = S, we first need Lad ⊆ S. Pick m ∈ M . Since M = mS

and mama = mm̄ for a ∈ S, we see Lad is the smallest sub-ARH of L containing

mm̄. If m ∈ Lad, then mm̄ ⊆ (Lad)ad implies (Lad)ad = Lad, contradicting nilpotence.

Therefore Lad ⊆ S. Now pick any m, l ∈ M . Then l = m̄a for some a ∈ S, whence

ml = mm̄a ⊆ S. Thus M ∗S M = S, and L→ L/S ∼= Z2 is a feudal grading.

Suppose γ : L → Z2 is a different feudal grading. Then S ′ = γ−1(1) ⊂ S. Picking

a ∈ S \ S ′ and m ∈ M , we have am ∈ M ∩ S ′, a contradiction. Thus L is uniquely

feudal. Finally, a non-group feudal ARH is properly feudal by Lemma 2.2.3.

Definition 2.2.5. Let H be the following category. An object of H is a homomorphism

S
u
−→ G of arbitrary groups S,G such that |coker u| = 2, with the innocuous technical

conditions S∩(G\ im u) = ∅ and im u = S/ ker u. A morphism from S
u
−→ G to S̃

ũ
−→ G̃

in H is a pair of homomorphisms (h0, h1) making the square

S
u //

h0

��

G

h1

��

S̃ ũ
// G̃

(2.2)

commute, with h1(G \ im u) ⊆ G̃ \ im ũ.

Let L be the category of feudal ARHs and graded homomorphisms. Let Φ: H → L

be the following functor. For H = (S
u
−→ G) ∈ objH, let ΦH be the feudal ARH with

13



serfs S and lords M = G \ im u multiplying as follows: for a, b ∈ S and m, l ∈M ,

a ∗ b = ab, a ∗m = u(a)m, m ∗ a = mu(a), m ∗ l = u−1(ml).

For H̃ ∈ objH and (h0, h1) ∈ morH(H, H̃), let Φ(h0, h1) agree with h0 on S and with

h1 on M .

Inversely, let Γ: L → H be the following functor. Given L ∈ objL, let ΓL =

(S
u
−→ G) with S the serfs (or the simple currents unless L is a group), G the universal

grading group, and u the restriction to S of the universal grading. For L̃ ∈ objL and

t ∈ morL(L, L̃), let Γt = (h0, h1) where t agrees with h0 and induces h1.

Example 2.2.6.

(i) Let G be a Z2-graded group with serfs S. Then ΓG is inclusion S → G.

(ii) Let L = A ∪ {m} be Tambara-Yamagami. Then ΓL is isomorphic to the trivial

homomorphism A→ Z2.

(iii) Let L be the fermionic Moore-Read ARH. Then ΓL is isomorphic to the nontrivial

nonidentity homomorphism Z4 → Z4.

Theorem 2.2.7. The category of feudal ARHs and graded homomorphisms is isomor-

phic to the category H of Definition 2.2.5, via the functors therein.

Corollary 2.2.8. Up to isomorphism, properly feudal ARHs are in 1-1 correspondence

with noninjective group homomorphisms with cokernels of order 2.

Proof of Theorem 2.2.7. First we check Φ: H → L is a functor. For H = (S
u
−→ G) ∈

objH, we check ΦH ∈ objL. Let A = ker u and M = G \ im u. For a, b, c ∈ S and

14



m, l, r ∈M ,

(a ∗ b) ∗ c = abc = a ∗ (b ∗ c),

(a ∗m) ∗ b = u(a)mu(b) = a ∗ (m ∗ b),

(a ∗ b) ∗m = u(ab)m = a ∗ (b ∗m),

(m ∗ a) ∗ b = m ∗ (a ∗ b),

(m ∗ a) ∗ l = u−1(mu(a)l) = m ∗ (a ∗ l),

(a ∗m) ∗ l = u−1(u(a)ml) = au−1(ml) = a ∗ (m ∗ l),

(m ∗ l) ∗ a = m ∗ (l ∗ a),

(m ∗ l) ∗ r = mlr = m ∗ (l ∗ r).

Thus ∗ is associative. Therefore ΦH ∈ objL. Now let H̃ = (S̃
ũ
−→ G̃) ∈ objH and

h = (h0, h1) ∈ morH(H, H̃). For a, b ∈ S and m, l ∈M ,

Φh(a ∗ b) = h0(ab) = Φh(a) ∗ Φh(b),

Φh(a ∗m) = h1(u(a)m) = ũ(h0(a))h1(m) = Φh(a) ∗ Φh(m),

Φh(m ∗ a) = Φh(m) ∗ Φh(a).

Since |coker u| = 2, there exists b ∈ u−1(ml). Let Ã = ker ũ. Since square (2.2)

commutes, h0(A) ⊆ Ã. Then

Φh(m ∗ l) = h0(bA) ⊆ h0(b)Ã = ũ−1(ũ(h0(b))) = ũ−1(h1(ml)) = Φh(m) ∗ Φh(l)

Thus Φh is a homomorphism. Therefore Φ: H → L is a functor.

Now we check Γ: L → H is a functor. Suppose L, L̃ ∈ objL, with serfs S, S̃,

lords M, M̃ , adjoint sub-ARHs A, Ã, and restrictions u, ũ to serfs of the universal
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gradings, respectively. Then ΓL = (S
u
−→ G) and ΓL̃ = (S̃

ũ
−→ G̃) are in objH. Suppose

t ∈ morL(L, L̃). Since t is graded, it restricts to a homomorphism h0 : S → S̃. By

Lemma 2.2.3(ii), h0(A) ⊆ Ã. Let h0.5 be the induced homomorphism S/A → S̃/Ã.

Recalling G = (S/A) ∪M and G̃ = (S̃/Ã) ∪ M̃ , let h1 : G → G̃ agree with h0.5 on S/A

and with t on M . Then Γt = (h0, h1) is defined and square (2.2) commutes. To check

h1 is a homomorphism, let a, b ∈ S and m, l ∈M and c ∈ m ∗ l. By Lemma 2.2.3,

h1((aA)(bA)) = h0.5((aA)(bA)) = h1(aA)h1(bA),

h1((aA)m) = t(a ∗m) = t(a) ∗ t(m) = h1(aA)h1(m),

h1(m(aA)) = h1(m)h1(aA),

h1(ml) = h0.5(cA) = t(c)Ã = t(m) ∗ t(l) = h1(m)h1(l).

Therefore Γ is a functor. It is easy to see Φ and Γ are mutually inverse.

2.3 Hypergroups from lattices of groups

In this section we seek the most general way of constructing hypergroups from

groups and group homomorphisms, dreaming of classifying nilpotent ARHs (Defini-

tion 2.1.8). The journey starts at Definition 2.2.5, where we constructed an ARH from

a pair of groups connected by a noninjective homomorphism with cokernel of order 2.

It is natural to wonder whether the condition on the cokernel is necessary, and how

the construction might generalize to three or more groups.

Let

G1
f1
−→ G2

f2
−→ · · · (2.3)
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be any sequence of groups connected by homomorphisms. The sequence need not

terminate. Let M1 = G1, and for all i > 1, let Mi = Gi \ im fi−1. Then the disjoint

union H =
⊔

iMi is a hypermagma as follows. For any i ≤ j, let fi,j : Gi → Gj be the

composition of zero or more maps in the sequence. Given x ∈ Mi, y ∈ Mj , z ∈ Mk,

let l = sup{i, j, k}, and put z ∈ x ∗ y iff

fi,l(z) = fj,l(x)fk,l(y). (2.4)

Theorem 2.3.1. Let H be the hypermagma constructed from sequence (2.3) by equa-

tion (2.4). The following are equivalent:

• H is a hypergroup.

• im fi ⊇ ker fi+1 for all i.

• For each x ∈Mi and y ∈Mj, there exists k such that x ∗ y ⊆Mk.

Proof. The second and third conditions are easily seen to be equivalent. For the first,

one checks associativity (x ∗ y) ∗ z = x ∗ (y ∗ z) for arbitrary x ∈Mi, y ∈Mj , z ∈Mk

by cases according to the relative ordering of i, j, k.

Theorem 2.3.1 subsumes the previous section’s construction of feudal hypergroups

(Φ of Definition 2.2.5), but can probably still be generalized. Consider a commutative

diagram D formed by assigning a group Gi to each element i of a poset P and a

homomorphism fi,j : Gi → Gj to each relation i ≤ j in P . More concisely, D is a

functor from P to Grp. If P is a join-semilattice (any two elements have a least upper

bound), the construction of the hypermagma H still makes sense. If P is bounded
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below (has a minimal element), H is absolutely regular. The only potentially missing

ingredient is associativity.

Conjecture 2.3.2. Let H be the hypermagma constructed by equation (2.4) from a

join-semilattice D of groups and group homomorphisms. Then H is a hypergroup iff

D is a lattice bounded below such that im fi,j ⊇ ker fj,k for any chain

Gi
fi,j

−−→ Gj

fj,k

−−→ Gk

in D. Moreover, H determines D if we require the nonidentity homomorphisms in D

to be noninjective and nonsurjective.

The correspondence D 7→ H should be functorial: homomorphisms of the resulting

ARHs should be classified by poset homomorphisms and group homomorphisms in the

natural way.

Recall that a hypergroup is nil-0 iff it is the trivial hypergroup {1}, and nil-1 iff it

is a group. It is easy to see that the hypergroups of Conjecture 2.3.2 are nil-2.

Conjecture 2.3.3. Conjecture 2.3.2 classifies nil-2 ARHs.

From a lattice of nil-2 ARHs and hypergroup homomorphisms satisfying appro-

priate conditions, could we similarly construct a nil-3 ARH? Continuing recursively,

would all nilpotent ARHs be thus classified?
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Chapter 3

Fusion rules

In the hierarchy of structures considered in this thesis, fusion rules are the next

level up from hypergroups. A fusion rule is essentially a hypergroup with a notion of

multiplicity attached to the hyperproduct: for any elements a, b, c, there is a natural

number Nab
c , the multiplicity of c in ab. Fusion rules are the “skeletons” of fusion

categories, whereas fusion systems (Chapter 5) are the “flesh” (Yamagami [31]).

Unlike hypergroups, fusion rules have a fairly restricted range of applications in the

literature. Their principal use, overlapping with their auxiliary role in fusion category

theory, is to describe the combinatorial laws of fusing (and splitting) of particle types

in particular physical theories, especially in the areas of conformal field theory and

fractional quantum Hall physics.

We now motivate the definition of a fusion rule using naive physical ideas. Consider

a physical theory with some set L of particle types. Any two particles can be fused

together, resulting in a quantum superposition of particles, i.e., a single particle whose
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type may be undetermined until measurement. For any particle types a, b, c, there is a

multiplicity Nab
c ∈ N, closely related to the probability of observing a particle of type

c after fusing a particle of type a with one of type b (the precise relationship involves

quantum dimensions). The multiplicities must satisfy an associativity constraint for

fusion of three or more particles to be well-defined. The vacuum is considered a special

particle type; fusing with it has no effect. Finally, each particle type has a dual particle

type: fusion can only result in the vacuum if the fused particles have dual types.

Fusion rules are usually defined as families of multiplicities Nab
c satisfying three

axioms which naturally generalize the three axioms of a group. But hypergroups and

fusion rules are usually not studied in the same context. To emphasize their close

relationship, it is convenient to define a fusion rule using multisets rather than raw

multiplicities.

Remark. Many authors refer to a single equation of the form ab =
∑

c∈LN
ab
c c, rather

than the totality of such equations for a given theory, as a fusion rule.

3.1 Multiset formalism

Definition 3.1.1. A multiset over a set L is a function X ∈ NL, assigning a multi-

plicity NX
x to each x ∈ L. A multiset is finite if it has finite support.

Definition 3.1.2. A multimagma is a set L equipped with an operation ∗ : L× L→

NL. If X, Y ∈ NL are finite, define X ∗ Y ∈ NL as follows: for z ∈ L,

NX∗Y
z =

∑

x,y∈L

NX
x N

Y
y N

x∗y
z
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We say L is locally finite if x ∗ y is finite for x, y ∈ L.

Convention. We identify each subset of a set L with the multiset given by its indicator

function, and each element x ∈ L with the singleton {x} given by the Kronecker delta

y 7→ δx,y. The symbol ∗ is often suppressed.

Definition 3.1.3. A fusion rule is a locally finite multimagma satisfying

∀x, y, z : (xy)z = x(yz)

∃1∀x : 1x = x1 = x

∀x∃x̄∀y : Nxy
1 = Nyx

1 = δy,x̄

Example 3.1.4. The hypergroups of Example 2.1.2 are fusion rules except in the case

of Tambara-Yamagami hypergroups, where the adjoint subrule A must be finite in

order to satisfy local finiteness.

Example 3.1.5. For any finite group A and m /∈ A and k ∈ N, the near-group fusion

rule Neargrp(A, k) has elements A ∪ {m} fusing as follows: for a, b ∈ A,

a ∗ b = ab, a ∗m = m ∗ a = m, m ∗m = A ∪ km,

the last equation meaning Nm∗m
m = k and Nm∗m

a = 1 for a ∈ A. Every fusion rule

all but one of whose elements are simple currents (Definition 2.1.10) has this form.

Fusion categories on such fusion rules were studied by Siehler [26].

Definition 3.1.6. Define the underlying set ⌊X⌋ of a multiset X by x ∈ ⌊X⌋ iff

NX
x > 0. Given a multimagma L, let ⌊L⌋ be the multimagma with the same elements

with operation (x, y) 7→ ⌊xy⌋. We say L is multiplicity-free if L = ⌊L⌋.
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Observation 3.1.7. If L is a fusion rule, then ⌊L⌋ is an ARH. In particular, every

multiplicity-free fusion rule is an ARH.

In light of Observation 3.1.7 we will freely use previously defined notions of hyper-

groups, such as simple currents, when discussing a fusion rule, with the understanding

that they refer to the underlying hypergroup.

Remark. One might naively hope every locally finite ARH is a fusion rule. Scott

Morrison showed me the following counterexample: the second fusion rule of Pe-

ters [24]. Arising from subfactor theory, it has four elements and is not nilpotent

(Definition 2.1.8). Examples 3.3.4 and 3.3.7 are counterexamples of nilpotence class

2.

Lemma 3.1.8. Let L be a fusion rule with simple currents S. Then

(i) a ∈ S iff az and za are singletons for all z ∈ L.

(ii) If a ∈ S, then Nxy
a ≤ 1 for all x, y ∈ L.

3.2 Feudal fusion rules

In this section we observe that the notion of a fusion rule offers nothing new for

feudal hypergroups (Definition 2.2.1).

Proposition 3.2.1. Feudal fusion rules are precisely locally finite feudal hypergroups.

In other words, every feudal fusion rule is multiplicity-free, and a feudal hypergroup is

a fusion rule iff its adjoint subhypergroup is finite.
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Proof. Let L be a feudal fusion rule. Let x, y ∈ L, and let a be any serf. Then

Nax
y , Nxa

y , Nxy
a ≤ 1 by Lemma 3.1.8. Thus L is multiplicity-free. Conversely, let L be

a feudal hypergroup. By Lemma 2.2.3, L, is locally finite iff its adjoint subhypergroup

is finite. The only thing to check is associativity of multiplicities, i.e., that the eight

equations of sets used to check associativity in the proof of Theorem 2.2.7 remain

valid when read as equations of multisets. This holds easily: by Lemma 2.2.3, the first

seven equations remain honest sets, while both sides of the last equation become the

multiset g 7→ |A|δg,mlr.

Corollary 3.2.2. Up to isomorphism, properly feudal ARHs are in 1-1 correspon-

dence with group homomorphisms whose cokernels have order 2 and whose kernels are

nontrivial and finite.

Proof. Immediate from Corollary 2.2.8 and Proposition 3.2.1.

3.3 Fusion rules from lattices of groups

In this section we discuss fusion rules with underlying hypergroups constructed

from lattices of groups as in Section 2.3. We classify fusion rule structures on some

of these hypergroups in terms of group 2-cocycles (Theorem 3.3.2). Computing the

simplest examples of this classification, we encounter hypergroups upgradable to fusion

rules in finitely many different ways (Examples 3.3.4, 3.3.7).

Definition 3.3.1. Let G be a group and M a monoid. A 2-cocycle on G over M is a

map µ : G× G → M such that µ(a, b)µ(ab, c) = µ(a, bc)µ(b, c) for all a, b, c ∈ G. For
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T ⊆ G, we say µ is T -normalized if µ(a, b) = 1 whenever a ∈ T or b ∈ T . Normalized

means {1}-normalized.

Theorem 3.3.2. Let S
f
−→ G be a homomorphism of groups, nonsurjective, with non-

trivial finite kernel. Let H be the associated hypergroup of Definition 2.3.1. Then

fusion rules with underlying hypergroup H are in 1-1 correspondence with im(f)-

normalized 2-cocycles µ on G over Z+ such that µ(m, l) = |ker f | whenever m, l /∈

im f ∋ ml.

Proof. Let M = G \ im f , and recall H = S ⊔M . Given such a µ, promote H to a

fusion rule by introducing multiplicities as follows. By Lemma 3.1.8 all multiplicities

are 0 or 1, and hence determined by H , except Nm,l
ml for m, l,ml ∈ M ; in this case

let Nm,l
ml = µ(m, l). Going in the other direction, given a fusion rule with underlying

hypergroup H , let µ be the im(f)-normalized function G×G→ Z+ such that µ(m, l)

is the multiset cardinality of m ∗ l for m, l ∈ M . A quick check of 23 cases, refining

the associativity check in the proof of Theorem 2.3.1, shows that associativity of

multiplicities is equivalent to the stated conditions on µ.

Example 3.3.3. In Theorem 3.3.2, let G = Z2. Since f is trivial, there is exactly

one choice of µ, producing a multiplicity-free fusion rule H , agreeing with Proposi-

tion 3.2.1.

Example 3.3.4. In Theorem 3.3.2, let G = Z3 = {1, ω, ω̄}. Since f is trivial, the

conditions on µ are precisely that it is normalized and

µ(ω, ω̄) = µ(ω̄, ω) = |S|, µ(ω, ω)µ(ω̄, ω̄) = |S|.
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Thus fusion rule structures on H = S ⊔ {ω, ω̄} are in 1-1 correspondence with fac-

torizations of |S| into ordered pairs of positive integers. Since swapping ω and ω̄ is

a fusion rule automorphism, there are ⌈d/2⌉ isomorphism classes of fusion rules with

underlying hypergroup isomorphic to H , where d is the number of divisors of |S|.

Lemma 3.3.5. Let G be a cyclic group of order n, and let K be an n-divisible abelian

group. Then the cohomology H i(G,K) is trivial for all positive even i.

Proof. Example III.1.2 of Brown [5].

Lemma 3.3.6. Let K be a 4-divisible abelian group, and Z4 = {1,−1, i,−i}. A nor-

malized map µ : Z4 ×Z4 → K is a 2-cocycle iff it is a 1-coboundary (Definition 6.1.1)

iff µ is symmetric and

µ(−1, i)µ(i,−i) = µ(i, i)µ(−1,−1) µ(−1, i)µ(−1,−i) = µ(−1,−1)

µ(−1,−i)µ(i,−i) = µ(−i,−i)µ(−1,−1) µ(i, i)µ(−1,−i) = µ(−1, i)µ(−i,−i)

Proof. By Lemma 3.3.5, µ is a 2-cocycle iff it is a 1-coboundary. It is straightforward

to work out the equations of coboundaryhood.

Example 3.3.7. In Theorem 3.3.2, let G = Z4 = {1,−1, i,−i}. If im f = Z2 = {±1},

as in the fermionic Moore-Read hypergroup (Example 2.1.2), then H = S ⊔ {i,−i} is

a multiplicity-free fusion rule, the only fusion rule with underlying hypergroup H . If

im f = {1}, the only constraints on µ are that it is symmetric, normalized, and

µ(−1, i) = µ(i, i) µ(−1,−i) = µ(−i,−i) µ(i, i)µ(−i,−i) = |S|
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Just as in Example 3.3.4, fusion rule structures on H = S ⊔ {−1, i,−i} are in 1-1

correspondence with factorizations of |S| into ordered pairs of positive integers. This

example follows without difficulty from Lemma 3.3.6.

Now let D be a lattice of groups as in Section 2.3. We wish to understand how

the associated hypergroup H can be promoted to a fusion rule. For simplicity assume

the lattice P underlying D is bounded above, and let G be the group at the top.

Perhaps, as in Theorem 3.3.2, fusion rule structures on H are classified by 2-cocycles

G × G → Z+ satisfying appropriate constraints involving the images in G of the Gi

and the kernel sizes of the fi,j .
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Chapter 4

Fusion categories

In this chapter we define the strict 2-category (Proposition 4.3.3) of fusion cate-

gories (Definition 4.2.4). But we do not pause to study their properties. Rather, in

the next two chapters we turn to the equivalent structures of fusion systems and 6j

fusion systems, which are more amenable to computation. As preparation, we discuss

equivalence of strict 2-categories in Section 4.3, and labeling of fusion categories in

Section 4.4.

4.1 Monoidal categories

Monoidal categories are ubiquitous. We assume familiarity with horizontal and

vertical composition of natural transformations. Leinster [20] and Mac Lane [21]

explain the material in this section in greater detail.
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Definition 4.1.1. For categories C,D, let Fun(C,D) be the functor category, whose

objects are functors C → D and whose morphisms are natural transformations under

vertical composition.

Definition 4.1.2. A bifunctor on a category C is a functor � : C × C → C, usually

written as an infix. We often write � as (�) when it appears in a formula not as an

infix. With C denoting its identity functor, we could then write (�) = C�C.

Definition 4.1.3. A monoidal category is a sextuple C = (C,�, 1, α, λ, ρ), where C

is a category; � is a bifunctor on C; 1 ∈ objC; α is a natural isomorphism (�)�C ⇒

C�(�) of trifunctors on C; and λ and ρ are natural isomorphisms C ⇒ 1�C and

C ⇒ C�1, respectively, of functors on C; satisfying

Pentagon axiom: This diagram in Fun(C4, C) commutes:

(�)�(�)
α◦(C×C×(�))

''OOOOOOOOOOO

((�)�C)�C

α◦((�)×C×C)
77ooooooooooo

α�C
��

C�(C�(�))

(C�(�))�C
α◦(C×(�)×C)

// C�((�)�C)

C�α

OO

Triangle axiom: This diagram in Fun(C2, C) commutes:

(C�1)�C
α◦(C×1×C) // C�(1�C)

(�)

ρ�C

eeJJJJJJJJJJ C�λ

99tttttttttt

The pentagon and triangle axioms were engineered to produce the following coher-

ence theorem, categorifying the fact that a monoid M yields well-behaved multiplica-

tion maps Mn →M for all n ∈ N.
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Theorem 4.1.4 (monoidal coherence). Let C = (C,�, 1, α, λ, ρ) be a monoidal cat-

egory, let n ∈ N, and let T, S be functors Cn → C built from �, 1. Then there is a

unique natural isomorphism T ∼= S built from α, λ, ρ.

Proof. See Mac Lane [21]. This theorem follows from the simple connectivity of the

2-skeleton of the associahedron Kn.

Definition 4.1.5. Let C = (C,�, 1, α, λ, ρ) and C̃ = (C̃, �̃, 1̃, α̃, λ̃, ρ̃) be monoidal

categories. An oplax monoidal functor T : C → C̃ is a triple (T1, T2, T0), where T =

T1 : C → C̃ is an ordinary functor, T2 is a natural transformation T ◦ (�) ⇒ T �̃T

of functors C × C → C̃, and T0 : T1 → 1̃, such that this diagram in Fun(C3, C̃)

commutes:

(T �̃T )�̃T
α̃◦(T�T�T ) // T �̃(T �̃T )

(T ◦ (�))�̃T

T2�̃T

OO

T �̃(T ◦ (�))

T �̃T2

OO

T ◦ ((C�C)�C)

T2◦((�)×C)

OO

T◦α
// T ◦ (C�(C�C))

T2◦(C×(�))

OO

and these two diagrams in Fun(C, C̃) commute:

T
λ̃◦T //

T◦λ
��

1̃�̃T

T ◦ (1�C)
T2◦(1×C)

// T1�̃T

T0�̃T

OO T
ρ̃◦T //

T◦ρ
��

T �̃1̃

T ◦ (C�1)
T2◦(C×1)

// T �̃T1

T �̃T0

OO

A monoidal functor is an oplax monoidal functor (T, T2, T0) such that T2 and T0 are

invertible. A colax monoidal functor is like an oplax monoidal functor, but with the

directions of T2 and T0 reversed.

Remark. In this thesis we use oplax monoidal functors rather than colax monoidal

functors. The choice seems arbitrary, but the former go a bit better with braid actions
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on morphism spaces: oplax monoidal functors relate splitting spaces, on which braids

act covariantly, while colax monoidal functors relate fusion spaces, on which braids

act contravariantly.

Definition 4.1.6. Let C, C̃ be monoidal categories with bifunctors �, �̃ and units

1, 1̃, respectively. Let S = (S, S2, S0) and T = (T, T2, T0) be oplax monoidal functors

C → C̃. A monoidal natural transformation η : S ⇒ T is a natural transformation

η : S ⇒ T such that these diagrams, in Fun(C × C, C̃) and C̃ respectively, commute:

S�̃S
η�̃η // T �̃T

S ◦ �

S2

OO

η◦�
// T ◦ �

T2

OO 1̃

S1

S0

??��������

η1
// T1

T0

__@@@@@@@@

The following definition generalizes the phenomenon of dual vector spaces.

Definition 4.1.7. Let x be an object in a monoidal category C with bifunctor �

and unit 1. A right dual to x is an object x∗ and morphisms b : 1 → x�x∗ and

d : x∗�x → 1, called birth and death respectively, such that

x∗
ρ
→ x∗1

x∗�b
→ x∗(xx∗)

α−1

→ (x∗x)x∗
d�x∗
→ 1x∗

λ−1

→ x∗ = idx∗

x
λ
→ 1x

b�x
→ (xx∗)x

α
→ x(x∗x)

x�d
→ x1

ρ−1

→ x = idx

A left dual to x is an object ∗x and morphisms b : 1 → ∗x�x and d : x�∗x → 1

satisfying similar axioms. A monoidal category is rigid if every object has left and

right duals.

Remark. In graphical calculus, depicting morphisms as upward trajectories, birth and

death are respectively:
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Rigidity says zigzags can be straightened out:

= =

The following nonstandard definition will not be used until later chapters.

Definition 4.1.8. Let C be a monoidal category with bifunctor � and unit 1. A gauge

automorphism is a monoidal functor C → C of the form (idC , τ, id1). Explicitly, this

means τ is a natural automorphism of � such that the diagram

(ab)c
α(a,b,c)// a(bc)

(ab)c

τ(a,b)�c
;;wwwwwwww

a(bc)

a�τ(b,c)
ccGGGGGGGG

(ab)c
τ(ab,c)

ccGGGGGGGG

α(a,b,c)
// a(bc)

τ(a,bc)

;;wwwwwwww

commutes for all a, b, c ∈ C, and for all x ∈ objC,

τ(1, x) = id1�x τ(x, 1) = idx�1

4.2 Fusion categories

Fusion categories are monoidal categories weighted down by axioms which drag

them towards the realm of linear algebra.

Convention. Throughout this thesis, F is a field. For most physical purposes, F = C.

Definition 4.2.1. A category is F-linear if it has finite biproducts and if it is enriched

over the category of vector spaces over F, i.e., if each morphism space forms a vector
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space such that composition of morphisms is F-bilinear. A functor between F-linear

categories is F-linear if it is likewise enriched, i.e., its restriction to each morphism

space is F-linear.

Definition 4.2.2. A tensor category is an F-linear monoidal category, i.e., a monoidal

category whose underlying category is F-linear and whose bifunctor is bilinear on

morphism spaces. An oplax tensor functor between tensor categories is an oplax

monoidal F-linear functor.

Definition 4.2.3. Let C be an F-linear category. An object x of C is simple if

every nonzero monomorphism into x is an isomorphism, and if x is not a zero object

(biproduct of the empty tuple of objects). C is semisimple if every object is a biproduct

of finitely many simple objects. An object of C is strongly simple if its endomorphism

space is 1-dimensional. C is strongly semisimple if it is semisimple and every simple

object is strongly semisimple.

Remark. Every semisimple linear category over an algebraically closed field is strongly

semisimple.

Definition 4.2.4. A fusion category is a rigid strongly semisimple tensor category

with simple monoidal unit.

Remark. According to the standard definition, fusion categories are finite, i.e., have

only finitely many isomorphism classes of simple objects. In this thesis we do not

assume finiteness.
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4.3 Strict 2-categories

We assume familiarity with enriched categories, functors, and natural transforma-

tions (see Kelly [18]). The material in this section is in Leinster [20].

Definition 4.3.1. A strict 2-category is a category enriched over the category of

categories and functors. A strict 2-functor between strict 2-categories is a functor

likewise enriched.

A category consists of objects, and morphisms between objects; a 2-category con-

sists additionally of 2-morphisms between morphisms. Standard examples of strict

2-categories are Cat, consisting of categories, functors, and natural transformations;

and Top, consisting of topological spaces, continuous maps, and homotopy classes of

homotopies. We met other examples in Sections 4.1 and 4.2:

Proposition 4.3.2. Monoidal categories, oplax monoidal functors, and monoidal nat-

ural transformations form a strict 2-category.

Proposition 4.3.3. Fusion categories, oplax tensor functors, and monoidal natural

transformations form a strict 2-category FCat. We will always assume oplax tensor

functors between fusion categories take simple objects to simple objects. Note that

every equivalence of fusion categories has this property.

We will need a notion of equivalence of strict 2-categories. We first recall the

notions of equivalence of categories, monoidal categories, and fusion categories.
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Definition 4.3.4. Let X, Y be objects in a strict 2-category. A morphism f : X → Y

is an equivalence fromX to Y if there exists a morphism g : Y → X such that fg ∼= idY

and gf ∼= idX .

Proposition 4.3.5. Let F be a functor between categories, an oplax monoidal functor

between monoidal categories, or an oplax tensor functor between fusion categories.

Then F is an equivalence iff it is fully faithful (bijective on each morphism space) and

essentially surjective on objects (hits every isomorphism class of objects in the target

category).

Proof. Follows from Propositions 1.1.2 and 1.2.14 of Leinster [20]. The backward

implication requires the axiom of choice.

Just as the collection Fun(C,D) of functors from a category C to a category D is

itself a category, whose morphisms are natural transformations, so too the category

Fun(C,D) of strict 2-functors from a strict 2-category C to a strict 2-category D

is itself a strict 2-category, whose 2-morphisms are so-called modifications (see Le-

inster [20] or Mac Lane [21]). Thus we are led to the following naive analogue of

Definition 4.3.4.

Definition 4.3.6. Let C and D be strict 2-categories. A strict 2-functor F : C → D

is a strict equivalence from C to D if there exists a strict 2-functor G : D → C such

that FG is equivalent to idD and GF is equivalent to idC.
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Interestingly, Definition 4.3.6 is too strict: for F to be an equivalence of strict

2-categories, G should be allowed to be a mere weak 2-functor (Leinster [20]). Fortu-

nately, the naive analogue of Proposition 4.3.5 turns out to be the correct notion:

Proposition 4.3.7. A strict 2-functor between strict 2-categories is an equivalence iff

it is a local equivalence (restricts to an equivalence on each morphism category), and

essentially surjective on objects (hits all equivalence classes of objects).

Proof. Similar to the proof of Proposition 4.3.5; see Leinster [20].

For us, the decategorification of Proposition 4.3.7 will usually suffice:

Proposition 4.3.8. An equivalence of strict 2-categories induces bijections of objects

up to equivalence, of morphisms up to isomorphism, and of 2-morphisms up to equality.

4.4 Labeled fusion categories

The heart of this thesis is the correspondence between fusion rules and fusion

categories, described here with a nonstandard formalism.

Definition 4.4.1. A labeling on a semisimple F-linear category C is a map of sets

h : L→ objC inducing a bijection from L to the set of isomorphism classes of simple

objects in C. Elements of L are called labels, and may be identified with the cor-

responding objects of C. A labeled category is one equipped with a labeling; if the

category is monoidal, its monoidal unit must be a label. A labeled functor between

labeled categories carries labels to labels.
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Proposition 4.4.2. Let C be a fusion category labeled by a set L. Then L has a

canonical fusion rule structure (Definition 3.1.3): for x, y ∈ L, define xy ∈ N
L by

Nxy
z = dimF mor(z, x�y), where � is the monoidal product of C. We call C a fusion

category on L.

Proof. This is a standard fact.

Thus every fusion category determines an isomorphism class of fusion rules. Label-

ing is a technical convenience picking out a representative of this isomorphism class.

The inverse problem, reconstructing fusion categories from fusion rules, is stubbornly

interesting. The following fundamental result is more general than stated here.

Theorem 4.4.3 (Ocneanu rigidity). Assume the ground field is algebraically closed

and has characteristic 0. There are only finitely many equivalence classes of fusion

categories on a given finite fusion rule. Between any two finite fusion categories, there

are only finitely many isomorphism classes of tensor functors.

Proof. See Etingof, Nikshych, and Ostrik [12].

To recover fusion categories from fusion rules, we now start the journey from

fusion categories to polynomial equations—a 3-lane highway paved with indices—to

be continued in the next two chapters.

Lemma 4.4.4. Let C and C̃ be monoidal categories with underlying categories C and

C̃ respectively, and let S : C → C̃ be an oplax monoidal functor with underlying functor

S. Let T̂ : objC → obj C̃, and for each x ∈ objC, let η(x) : S(x)
∼=
→ T̂ (x). Then there
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is a unique oplax monoidal functor T : C → C̃ whose underlying functor agrees with

T̂ , such that η is a monoidal natural isomorphism S ⇒ T .

Proof. Let T = (T, T2, T0), where T agrees with T̂ on objects and is defined on mor-

phisms such that η : S → T is a natural isomorphism,

T2 = (η�̃η) · S2 · (η
−1 ◦ (�)) : T ◦ (�) ⇒ T �̃T,

and T0 = S0η(1)−1 : T1 → 1̃, where · denotes vertical composition of natural transfor-

mations. It is routine to check T is an oplax monoidal functor.

Lemma 4.4.5. Let C and D be labeled fusion categories, and let S : C → D be an oplax

tensor functor which takes simple objects to simple objects. Then S is monoidally

naturally isomorphic to a labeled oplax tensor functor.

Proof. Let C and D be the underlying categories of C and D respectively, and define

T̂ : objC → objD as follows. Let S be the underlying functor of S, and consider

x ∈ objC. If x is a label of C, then x is simple, implying S(x) is simple, implying

S(x) is isomorphic to a unique label T̂ (x) of D. Otherwise let T̂ (x) = S(x). For

each x ∈ objC, let η(x) : S(x)
∼=
→ T̂ (x). Lemma 4.4.4 yields an oplax tensor functor T

whose underlying functor agrees with T̂ , such that η is a monoidal natural isomorphism

S ⇒ T . By construction T is labeled.

Definition 4.4.6. Let FCat be the strict 2-category of fusion categories, oplax tensor

functors which take simple objects to simple objects, and monoidal natural transfor-

mations, and let LFCat be the strict 2-category of labeled fusion categories, labeled

oplax tensor functors, and monoidal natural transformations.
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Proposition 4.4.7. The forgetful strict 2-functor LFCat → FCat is an equiva-

lence of strict 2-categories. In other words, any two equivalent fusion categories with

arbitrary labels are equivalent via labeled tensor functors, and any oplax tensor func-

tor between labeled fusion categories which takes simple objects to simple objects is

monoidally naturally isomorphic to a labeled oplax tensor functor.

Proof. Let Γ : LFCat → FCat be the forgetful strict 2-functor. By Proposition 4.3.7,

it suffices to show Γ is an essentially surjective local equivalence. By definition Γ is

surjective on objects, a fortiori essentially surjective. For local equivalence, let C,D ∈

objLFCat and let ΓD
C be the label-forgetting functor defined on the category of labeled

oplax tensor functors C → D. Then ΓD
C is essentially surjective by Lemma 4.4.5, and

fully faithful by definition, as there is no notion of a labeled natural transformation.

By Proposition 4.3.5, ΓD
C is an equivalence. Thus Γ is an equivalence.

38



Chapter 5

Fusion systems

Fusion categories have so many axioms that they can be reduced to linear algebra.

This process is useful for computations such as finding all equivalence classes of fusion

categories on a given fusion rule, or determining whether a given fusion category has

braidings. The linear algebraic essence of a fusion category is packaged in a fusion sys-

tem, following Yamagami [31], who describes fusion rules as the “skeletons” and fusion

systems as the “flesh”. Yamagami proved that fusion categories and fusion systems

are in 1-1 correspondence modulo equivalence. In this chapter we categorify the cor-

respondence to an equivalence of 2-categories, as independently implicitly suggested

by Kitaev [19]. As in the last chapter, we work over an arbitrary field F.

Definition 5.0.8. A fusion system is a sextuple (L, V, 1, F, λ, ρ), where L is a fusion

rule; V assigns a finite-dimensional vector space V x,y
r , called a splitting space, to each

x, y, r ∈ L; 1 ∈ L; F assigns an isomorphism F x,y,z
r : V x,y;z

r → V x;y,z
r to each x, y, z, r ∈
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L, where

V x,y;z
r =

⊕

u

V x,y
u ⊗ V u,z

r V x;y,z
r =

⊕

v

V y,z
v ⊗ V x,v

r

and λ, ρ assign nonzero vectors λx ∈ V 1,x
x , ρx ∈ V x,1

x to each x ∈ L; satisfying the

following four axioms:

Admissibility: L is a fusion rule with each multiplicity Nxy
r = dimV x,y

r .

Pentagon axiom: This diagram commutes for w, x, y, z, p, q, u, v, r ∈ L:

⊕

p,q V
w,x
p ⊗ V y,z

q ⊗ V p,q
r

canon. //
⊕

q,p V
y,z
q ⊗ V w,x

p ⊗ V p,q
r

L

q id⊗Fw,x,q
r

��
⊕

p,u V
w,x
p ⊗ V p,y

u ⊗ V u,z
r

L

p id⊗F p,y,z
r

OO

L

u F
w,x,y
u ⊗id

��

⊕

q,v V
y,z
q ⊗ V x,q

v ⊗ V w,v
r

⊕

s,u V
x,y
s ⊗ V w,s

u ⊗ V u,z
r L

s id⊗Fw,s,z
r

//
⊕

s,v V
x,y
s ⊗ V s,z

v ⊗ V w,v
r

L

v F
x,y,z
v ⊗id

OO

Triangle axiom: F x,1,y
r (ρx ⊗ µ) = (λy ⊗ µ) for x, y, r ∈ L and µ ∈ V x,y

r .

Rigidity: For each r ∈ L there exist b ∈ V r,r̄
1 and d ∈ (V r̄,r

1 )∗ such that

(d⊗ ρ∗r)(F
r,r̄,r
r (b⊗ λr)) = (d⊗ λ∗r̄)((F

r̄,r,r̄
r̄ )−1(b⊗ ρr̄)) = 1.

Definition 5.0.9. Let M = (L, V, 1, F, λ, ρ) and M̃ = (L̃, Ṽ , 1̃, F̃ , λ̃, ρ̃) be fusion

systems. A morphism from M to M̃ is triple (t, ξ, ξ0), where t : L → L̃ is a map of

sets; ξ assigns a linear map ξx,yr : V x,y
r → Ṽ

t(x),t(y)
t(r) to each triple x, y, r ∈ L; and ξ0 ∈ F;

satisfying the following two axioms:
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Rectangle axiom: For x, y, z, r ∈ L, the following diagram commutes, writing x̃ =

t(x), ỹ = t(y), etc.:

Ṽ x̃,ỹ;z̃
r̃

F̃ x̃,ỹ,z̃

r̃ // Ṽ x̃;ỹ,z̃
r̃

V x,y;z
r

L

u ξ
x,y
u ⊗ξu,z

r

OO

Fx,y,z
r

// V x;y,z
r

L

v ξ
y,z
v ⊗ξx,v

r

OO

Normalization: ξ0ξ
1r
r (λr) = λ̃r̃ and ξ0ξ

r1
r (ρr) = ρ̃r̃ for all r ∈ L.

Remark. Yamagami’s polygonal notation [31] is a vivid way to visualize the pentagon

and rectangle axioms using Pachner moves on triangulated polygons.

Definition 5.0.10. Let S = (s, ν, ν0) and T = (t, ξ, ξ0) be morphisms M → M̃ of

fusion systems, and let L be the label set of M. A 2-morphism ζ : S ⇒ T is a map

ζ : L→ F such that

• For all r ∈ L, we require ζ(r) = 0 unless s(r) = t(r),

• ζ(x)ζ(y)νx,yr = ζ(r)ξx,yr for all x, y, r ∈ L, where if one side is 0 then so must be

the other,

• ν0 = ξ0ζ(1).

Proposition 5.0.11. Fusion systems with their 1- and 2-morphisms form a strict

2-category FSys.

Proof. Routine diagram check.

Lemma 5.0.12. A morphism (t, ξ, ξ0) between fusion systems is an equivalence iff it

is an isomorphism iff t is a bijection, ξx,yr is a vector space isomorphism for all labels

r, x, y, and ξ0 ∈ F×.
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Proof. Follows easily from Definition 5.0.10.

Lemma 5.0.13. Let S : M → M̃ be a morphism of fusion systems, L be the label set

of M, and ζ : L → F×. There is a unique morphism T : M → M̃ such that ζ is a

2-isomorphism from S to T .

Proof. Follows easily from Definitions 5.0.10 and 5.0.9.

Lemma 5.0.14. Every equivalence of fusion systems is isomorphic to one of the form

(t, ξ, 1).

Proof. Let S = (s, ν, ν0) : M → M̃ be an equivalence of fusion systems. Then ν0 ∈ F×

by Lemma 5.0.12. Let L be the label set of M, and define ζ : L → F× by ζ(1) = ν0

and ζ(x) = 1 for x 6= 1. By Lemma 5.0.13, ζ is a 2-isomorphism from S to a morphism

of the required form.

The following definition is useful for testing when two fusion systems are equivalent

(for Chapter 6), and in computing twines (Chapter 7).

Definition 5.0.15. A gauge transformation between two fusion systems on the same

label set L, rendering them gauge equivalent, is a morphism of the form (idL, ξ, 1F),

with ξx,yr a vector space isomorphism for all r, x, y ∈ L.

The following lemma reconciles our categorical notion of equivalence of fusion sys-

tems with Yamagami’s [31].

Lemma 5.0.16. Two fusion systems are equivalent iff they are gauge equivalent up

to a bijection of labels.

42



Proof. Let M = (L, V, 1, F, λ, ρ) be a fusion system, L̃ be a set, and t : L̃ → L be

a bijection. M relabeled by t is the fusion system M̃ = (L̃, Ṽ , 1̃, F̃ , λ̃, ρ̃) defined as

follows. For r, x, y, z ∈ L, write r̃ = t−1(r), x̃ = t−1(x), etc. Let Ṽ x̃,ỹ
r̃ = V x,y

r , and

define F̃ , λ̃, ρ̃ similarly. Thus M̃ is defined. Letting ξx̃,ỹr̃ be the identity on V x,y
r ,

we have an equivalence (t, ξ, 1) : M̃ → M, called relabeling by t. The backward

implication of Lemma 5.0.16 is now clear: a gauge transformation composed with a

relabeling remains an equivalence.

For the forward implication, suppose S = (s, ν, ν0) : M → N is an equivalence of

fusion systems. By Lemma 5.0.14 we may take ν0 = 1. Let R : Ñ → N be relabeling

by s. Then S = R(R−1S) is a gauge transformation followed by a relabeling, as

desired.

5.1 Fusion categories and fusion systems

In this section we state the equivalence between the 2-categories of labeled fusion

categories LFCat and of fusion systems FSys (Theorem 5.1.4). The constructions

here will seldom be needed in later chapters: it will be enough to know that fusion

categories, oplax tensor functors respecting simplicity of objects, and monoidal natural

transformations are somehow faithfully captured by the auxiliary notions of fusion

systems and their 1- and 2-morphisms (Corollary 5.1.5). Proposition 4.4.7 gives us

the luxury of working with LFCat rather that FCat, i.e., of assuming all fusion

categories and oplax tensor functors are labeled.
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Definition 5.1.1. Define a strict 2-functor Ψ : LFCat → FSys as follows. First

let C = (C,�, 1, α, λ, ρ) be a fusion category labeled by a set L. We construct a

fusion system Ψ(C) = (L, V, 1, F, λ′, ρ′). For x, y, r ∈ L, let V x,y
r = morC(r, x�y). For

r, x, y, z ∈ L, via the well-known isomorphisms

V x,y;z
r

∼= morC(r, (x�y)�z) V x;y,z
r

∼= morC(r, x�(y�z))

let F x,y,z
r be postcomposition by α(x, y, z). For x ∈ L, let λ′x = λx and ρ′x = ρx. Thus

Ψ is defined on objects.

Now suppose T = (T, T2, T0) : C → C̃ is a labeled oplax tensor functor between

fusion categories labeled by sets L and L̃ respectively. Let

Ψ(T ) = (t, ξ, ξ0) : (L, V, 1, F, λ′, ρ′) → (L̃, Ṽ , 1̃, F̃ , λ̃′, ρ̃′)

be the following morphism between the corresponding fusion systems. Let t : L → L̃

agree with T . For x, y, r ∈ L, define ξx,yr : V x,y
r → Ṽ

t(x),t(y)
t(r) by µ 7→ T2(x, y)T (µ) for

µ ∈ V x,y
r . Define ξ0 ∈ F by T0 = ξ0id1̃. Thus Ψ is defined on morphisms.

Finally, suppose η is a monoidal natural transformation between labeled oplax

tensor functors defined on a fusion category with label set L. Let Ψ(η) be the 2-

morphism ζ between the corresponding morphisms (s, ν, ν0), (t, ξ, ξ0) such that for

x ∈ L,

η(x) =



















ζ(x)idt(x) if s(x) = t(x),

0 otherwise.

Thus Ψ : LFCat → FSys is defined.
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Definition 5.1.2. Let L be a set. An L-graded vector space is a function X assigning

a vector space Xx to each x ∈ L. The dimension of X is the sum of the dimensions

of the Xx for x ∈ L. A graded linear map µ : X → Y of L-graded vector spaces

assigns a linear map µx : Xx → Yx to each x ∈ L. Let Grd(L) be the category of

finite-dimensional L-graded vector spaces and graded linear maps. Note Grd(L) is

strongly semisimple F-linear (Definition 4.2.3) and canonically labeled: each x ∈ L

may be regarded as an object of Grd(L) via

xy =



















F if y = x,

{0} otherwise.

A map t : L → L̃ of sets induces a functor Grd(t) : Grd(L) → Grd(L̃) as fol-

lows, abbreviated here as T : C → C̃. For X ∈ objC and k ∈ L̃, define T (X) ∈

obj C̃ by T (X)k =
⊕

r∈t−1(k)Xr for k ∈ L̃. For µ ∈ morC(X, Y ), define T (µ) ∈

morC̃(T (X), T (Y )) by T (µ)k =
⊕

r∈t−1(k) µr for k ∈ L̃. Thus Grd is a functor

Set → Cat.

Definition 5.1.3. Define a strict 2-functor Φ : FSys → LFCat as follows. First,

given a fusion system M = (L, V, 1, F, λ′, ρ′), define a labeled fusion category Φ(M) =

C = (C,�, 1, α, λ, ρ) as follows, following Yamagami [31] and Kitaev [19]. Let C =

Grd(L). For X, Y ∈ objC, define X�Y as follows. For r ∈ L, let

(X�Y )r =
⊕

x,y∈L

Xx ⊗ Yy ⊗ V x,y
r
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where ⊗ = ⊗F denotes the ordinary tensor product of vector spaces. For X̃, Ỹ ∈ objC

and µ ∈ morC(X, X̃) and ν ∈ morC(Y, Ỹ ), define µ�ν ∈ morC(X�Y, X̃�Ỹ ) by

(µ�ν)r =
⊕

x,y∈L

µx ⊗ νy ⊗ V x,y
r

for r ∈ L. Let the monoidal unit 1C correspond to the label 1. Via the canonical

isomorphisms

((X�Y )�Z)r ∼=
⊕

x,y,z∈L

Xx ⊗ Yy ⊗ Zz ⊗ V x,y;z
r

(X�(Y�Z))r ∼=
⊕

x,y,z∈L

Xx ⊗ Yy ⊗ Zz ⊗ V x;y,z
r

define α(X, Y, Z) : (X�Y )�Z → X�(Y�Z) by

α(X, Y, Z)r =
⊕

x,y,z∈L

Xx ⊗ Yy ⊗ Zz ⊗ F x,y,z
r

Via the canonical isomorphisms

(1C�X)r ∼= Xr ⊗ V 1,r
r (X�1C)r ∼= Xr ⊗ V r,1

r

define λX : X → 1C�X and ρX : X → X�1C by

(λX)r(v) = v ⊗ λ′r (ρX)r(v) = v ⊗ ρ′r

for v ∈ Xr. Thus Φ is defined on objects.

Now suppose (t, ξ, ξ0) : (L, V, 1, F, λ′, ρ′) → (L̃, Ṽ , 1̃, F̃ , λ̃′, ρ̃′) is a morphism of fu-

sion systems. Let Φ(t, ξ, ξ0) = T = (T, T2, T0) : C → C̃ be the following labeled oplax

tensor functor between the corresponding labeled fusion categories. Let T = Grd(t).

46



For T2, let X, Y ∈ objC and k ∈ L̃. Via

(T (X)�̃T (Y ))k
can.
∼=

⊕

x,y∈L

Xx ⊗Xy ⊗ Ṽ
t(x),t(y)
k

T (X�Y )k =
⊕

r∈t−1(k)

⊕

x,y∈L

Xx ⊗Xy ⊗ V x,y
r

define T2(X, Y ) : T (X�Y ) → T (X)�̃T (Y ) by

T2(X, Y )k =
∑

r∈t−1(k)

⊕

x,y∈L

Xx ⊗Xy ⊗ ξx,yr

Via the canonical isomorphism T (1C) ∼= 1C̃, let T0 be multiplication by ξ0. Thus Φ is

defined on morphisms.

Finally, suppose ζ is a 2-morphism from (s, ν, ν0) to (t, ξ, ξ0). Let η = Φ(ζ) be the

following monoidal natural transformation between the corresponding labeled oplax

tensor functors, with underlying functors S and T respectively. For X ∈ objC, define

η(X) ∈ morC̃(S(X), T (X)) as follows. For k ∈ L̃, to define η(X)k : S(X)k → T (X)k,

since

S(X)k =
⊕

p∈s−1(k)

Xp T (X)k =
⊕

q∈t−1(k)

Xq

it suffices to define a linear map µ : Xp → Xq for each p ∈ s−1(k) and q ∈ t−1(k). Let

µ be multiplication by ζ(p) if p = q, and 0 otherwise. Thus Φ : FSys → LFCat is

defined.

Theorem 5.1.4. The strict 2-functors Ψ and Φ of Definitions 5.1.1 and 5.1.3 form

an equivalence between the strict 2-category LFCat of labeled fusion categories and

the strict 2-category FCat of fusion systems.
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Proof. Routine diagram check. Requires the axiom of choice, to fix biproducts of all

objects of all fusion categories.

Corollary 5.1.5.

1. Up to equivalence, fusion categories are in 1-1 correspondence with fusion sys-

tems.

2. Let C and D be fusion categories, corresponding to fusion systems M and N

respectively. Up to isomorphism, oplax tensor functors C → D taking simple

objects to simple objects are in 1-1 correspondence with morphisms M → N .

3. Let F,G : C → D be such functors, corresponding to morphisms f, g : M → N

respectively. Monoidal natural transformations F ⇒ D are in 1-1 correspon-

dence with 2-morphisms f ⇒ g.

Proof. Theorem 5.1.4, Proposition 4.4.7, and Proposition 4.3.8. Via Lemma 5.0.16,

the first statement alternatively follows from Proposition 1.1 and Lemma 2.2 of Yam-

agami [31].
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Chapter 6

6j fusion systems

Fusion systems are the linear algebraic data of fusion categories, but for compu-

tations we must get our hands dirty in the ground field by picking bases of splitting

spaces. It is convenient to encapsulate the result in a third and most concrete mani-

festation of a fusion category, which we call a 6j fusion system, a point in the affine

variety cut out by the pentagon equation on a given fusion rule.

It would be straightforward to continue in the spirit of the last two chapters by

defining the 2-category of 6j fusion systems, but for notational simplicity we only define

what will be needed for computations. In particular, we only treat the multiplicity-

free case, since most of the fusion rules we consider are multiplicity-free. As always,

F is a field.

Definition 6.0.6. Let L be a multiplicity-free fusion rule. A 6j fusion system on L is

map f : L6 → F, assigning a 6j symbol fxyzurv to each sextuple (x, y, z, u, r, v), such that

for w, x, y, z, p, u, r, v, q ∈ L,
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Admissibility: fxyzurv = 0 unless (x, y, z, u, r, v) is admissible, i.e., u ∈ xy and v ∈ yz

and r ∈ uz ∩ xv.

Invertibility: Each recoupling matrix F xyz
r = (fxyzurv )v,u is invertible, where v, u range

over all elements making (x, y, z, u, r, v) admissible.

Pentagon axiom: Pwxyz
purvq : fwxqprv f

pyz
urq =

∑

s∈L f
xyz
svq f

wsz
urv f

wxy
pus

Triangle axiom: F x1y
r is the identity matrix, 1 × 1 or 0 × 0.

Rigidity: f rr̄r1r1 = ((F r̄rr̄
r̄ )−1)11 6= 0.

Definition 6.0.7. Let f and f̃ be 6j fusion systems on a multiplicity-free fusion rule

L. A gauge transformation from f to f̃ , rendering them gauge equivalent, is a map

ξ : L3 → F, written (x, y, r) 7→ ξxyr , such that for x, y, z, u, r, v ∈ L,

Invertibility: ξxyr 6= 0 iff r ∈ xy.

Rectangle axiom: Gxyz
urv : fxyzurv ξ

yz
v ξ

xv
r = ξxyu ξ

uz
r f̃

xyz
urv

Normalization: ξ1r
r = ξr1r = 1.

We say f and f̃ are equivalent if they are gauge equivalent up to relabeling by an

automorphism of L.

Definition 6.0.8. Let f be a 6j fusion system on a multiplicity-free fusion rule L, and

let ξ, ξ̃ be gauge automorphisms of f , i.e., gauge transformations from f to itself. A

2-isomorphism from ξ to ξ̃ is a function ζ : L → F× such that ζ(x)ζ(y)ξx,yr = ζ(r)ξ̃x,yr

for all x, y, r ∈ L.
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Theorem 6.0.9. Let L be a multiplicity-free fusion rule.

1. Up to equivalence, fusion categories on L are in 1-1 correspondence with 6j fusion

systems on L.

2. Let C be a fusion category on L, and let f be a corresponding 6j fusion system

on L. Up to isomorphism, gauge automorphisms of C (Definition 4.1.8) are in

1-1 correspondence with gauge automorphisms of f .

3. Let T be a gauge automorphism of C, and ξ a corresponding gauge automorphism

of f . Automorphisms of T (Definition 4.1.6) are in 1-1 correspondence with

automorphisms of ξ (Definition 6.0.8).

Proof. It is straightforward to convert between fusion systems and 6j fusion systems

via bases of splitting spaces V x,y
r . Corollary 5.1.5 is a bridge between fusion systems

and fusion categories.

We pause to record two lemmas for later use.

Lemma 6.0.10. F 1xy
r = F xy1

r = Id for F as in Definition 6.0.6 and x, y, r ∈ L.

Proof. P r̄,1,x,y
r̄,ȳ,1,r,r and P x,y,1,r̄

r,r,1,x̄,r̄ and the triangle axiom.

Lemma 6.0.11. If f is a 6j fusion system and ξ satisfies the invertibility and nor-

malization axioms of a gauge transformation, then f̃ defined by the rectangle axiom is

a 6j fusion system, and ξ is a gauge transformation from f to f̃ .

Proof. Routine.
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6.1 Fusion categories and group cohomology

It is well-known that third group cohomology classifies fusion categories on groups.

In this section we see where second and first cohomology fit into the picture: they

classify gauge automorphisms and automorphisms thereof (Theorem 6.1.2).

The next definition’s generality will be needed in Section 6.2.

Definition 6.1.1. Let S be a group, U an S-bimodule, and n ∈ {0, 1, 2, 3}. An

n-cochain is a function Sn → U . We identify 0-cochains with elements of U . The

left and right coboundary operators δ̀, δ́ : USn

→ USn+1

are defined as follows: for an

n-cochain hn, define δ̀hn, δ́hn : Sn+1 → U by

δ̀h0(a) =
ah0

h0

δ́h0(a) =
ha0
h0

δ̀h1(a, b) =
h1(a)

ah1(b)

h1(ab)
δ́h1(a, b) =

hb1(a)h1(b)

h1(ab)

δ̀h2(a, b, c) =
h2(a, bc)

ah2(b, c)

h2(a, b)h2(ab, c)
δ́h2(a, b, c) =

h2(a, bc)h2(b, c)

hc2(a, b)h2(ab, c)

δ̀h3(a, b, c, d) =
h3(a, b, c)h3(a, bc, d)

ah3(b, c, d)

h3(a, b, cd)h3(ab, c, d)
δ́h3(a, b, c, d) = · · ·

Here U is written multiplicatively; left and right exponentiation of cochains denotes

the S-actions on U . If it is known that δ̀hn = δ́hn, we write δhn.

A normalized cochain is 1 whenever any argument is 1. An n-cochain h is an

n-cocycle if δ̀h = 1 and an n-coboundary if h = δ̀k for some k. Hn(S, U) is the abelian

group of normalized n-cochains modulo normalized n-coboundaries.

Remark. Our nonstandard normalization condition is harmless: by Lemma 15.7.1 of

Hall [16] every cocycle is cohomologous to a normalized cocycle, and by Lemma 15.7.2

every normalized coboundary is the coboundary of a normalized cochain.
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Theorem 6.1.2. View F× as a trivial module over a group G. Then

1. H3(G,F×) is in 1-1 correspondence with 6j fusion systems on G up to gauge

equivalence. H3(G,F×)/autG is in 1-1 correspondence with fusion categories

(or systems) on G up to equivalence.

2. H2(G,F×) is in 1-1 correspondence with isomorphism classes of gauge automor-

phisms of any fusion category (or system) on G (Definition 6.0.8).

3. H1(G,F×) is in 1-1 correspondence with automorphisms of any gauge automor-

phism of any fusion category (or system) on G.

Proof. For the first statement, identify maps f : G6 → F satisfying the admissibil-

ity axiom of Definition 6.0.6 with 3-cochains, and maps ξ : G3 → F satisfying the

invertibility axiom of Definition 6.0.7 with 2-cochains, via

fa,b,cu,r,v = δu,abδr,abcδv,bcf(a, b, c), ξa,br = δr,abξ(a, b).

If f is a normalized 3-cocycle, δf(r, r̄, r, r̄) = 1 implies f(r, r̄, r)f(r̄, r, r̄) = 1, i.e., f is

rigid. Therefore every normalized 3-cocycle is a 6j fusion system on G, and conversely

by Lemma 6.0.10. Moreover ξ is a gauge transformation from f to f̃ iff ξ is normalized

and f̃ = fδξ. Our identification of 6j fusion systems on G with normalized 3-cocycles

thus descends to a 1-1 correspondence between 6j fusion systems on G up to gauge

equivalence and H3(G,F×), which descends to the second claimed correspondence via

Theorem 6.0.9.

The second and third statements are similar, but easier.
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6.2 Feudal fusion categories

In this section, using the formalism of 6j fusion systems, we characterize fusion

categories on feudal fusion rules (Section 3.2). A string of technical definitions precedes

the characterization (Theorem 6.2.5), which describes third cohomology of groups of

even order as a special case (Corollary 6.2.7). For Z4 and the Tambara-Yamagami and

fermionic Moore-Read fusion rules (Example 2.2.2), we check Theorem 6.2.5 agrees

with common wisdom and Tambara-Yamagami [28] and Bonderson [3], respectively.

Unfortunately Theorem 6.2.5 does not readily indicate which feudal fusion rules have

fusion categories; without extra work the most we can say is that the adjoint subrule

must be abelian (Corollary 6.2.11).

Definition 6.2.1. A symmetric bicharacter on a finite group A over a ring B is a

map χ : A×A→ B× such that

χ(b, a) = χ(a, b), χ(ab, c) = χ(a, c)χ(b, c).

We say χ is nondegenerate if
∑

b χ(a, b) = 0 for a 6= 1.

Definition 6.2.2. An involutory ambidextrous algebra over a group S is a ring B with

two operations

B → B : µ 7→ µ̄

S × B × S → B : (a, µ, b) 7→ aµb
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such that µ 7→ µ̄ is an involution (ring antiautomorphism of order two), µ 7→ aµb is a

ring endomorphism for a, b ∈ S, and

a(bµc)d = abµcd, aµb = b̄µ̄ā

for a, b, c, d ∈ S and µ ∈ B.

Convention. Let B be an involutory ambidextrous algebra over a group S, and let X

be a set. Then BX inherits the involutory ambidextrous S-algebra structure of B: for

ǫ ∈ BX and a, b ∈ S, define aǫb, ǭ ∈ BX by aǫb(x) = aǫ(x)b and ǭ(x) = ǫ(x) for x ∈ X.

For µ, ν ∈ B and a ∈ S, we write µaν for µ(aν), not (µa)ν.

Definition 6.2.3. Let B be an involutory ambidextrous algebra over a group S. Let

χ, υ : S × S → B× and τ ∈ B×.

• χ is a τ -quasisymmetric υ-biderivation if υ is normalized and for a, b, c ∈ S,

χ̄(b, a) = āχb̄(a, b)
āτ b̄ · τ
āττ b̄

υ

υc
(a, b)χ(ab, c) = χ(a, c)aχ(b, c).

• Suppose the set A of elements of S acting trivially on B is finite. The triple

(χ, υ, τ) is an überderivation on S over B if χ is a τ -quasisymmetric υ-bideri-

vation such that the symmetric bicharacter χ|A×A is nondegenerate, and |A|τ τ̄ =

1B.

• Let fix(S) be the elements of B fixed under the S-actions. A gauge transfor-

mation from (χ, υ, τ) to another überderivation (χ̃, υ̃, τ̃ ), rendering them gauge

equivalent, is a triple (θ, φ, ς) ∈ fix(S)S×S × (B×)S × (B×), with φ normalized,
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such that for a, b ∈ S,

χ̃(a, b)

χ(a, b)
=
φ(a)aφ̄b(b)aςb · ς

φb(a)φ̄b(b)aςςb
υ̃

υ
=
δ̀φ

θ

τ̃

τ
=
ς̄

ς

• Let (θ, φ, ς), (θ̃, φ̃, ς̃) be gauge transformations between a pair of überderivations

on S over B. A 2-isomorphism from (θ, φ, ς) to (θ̃, φ̃, ς̃) is a pair (ζ0, ζ1) ∈

fix(S)S × (B×) such that

φ̃(a) =
aζ1
ζ1
ζ0(a)φ(a) ς̃ = ζ1ζ̄1ς

Definition 6.2.4. Let L be a feudal fusion rule with serfs S and lordsM . Let B = FM ,

with ring structure inherited from F. Then B is an involutory ambidextrous S-algebra:

for µ ∈ B and a, b ∈ S, define aµb, µ̄ ∈ B by aµb(m) = µ(āmb̄) and µ̄(m) = µ(m̄) for

m ∈M . For a 6j fusion system f on L, a gauge transformation ξ of 6j fusion systems

on L, or a 2-isomorphism ζ of such gauge transformations, let

Ψf = (χ, υ, τ) Ψξ = (θ, φ, ς) Ψζ = (ζ0, ζ1)

where for a, b ∈ S and m ∈M ,

χ(a, b)(m) = fa,āmb̄,b
mb̄,m,ām

θ(a, b)(m) = ξa,bab

υ(a, b)(m) = fa,b,b̄āmab,m,ām φ(a)(m) = ξa,āmm ζ0(a) = ζ(a)

τ(m) = fm,m̄,m1,m,1 ς(m) = ξm,m̄1 ζ1(m) = ζ(m)

Theorem 6.2.5. Let Y be the strict 2-category of 6j fusion systems on a feudal fusion

rule with lords M , and X the strict 2-category of überderivations on serfs over F
M; in

each category morphisms are gauge transformations, composed via multiplication in F.

Then Ψ: Y → X is an equivalence, surjective on the nose.
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Proof. Subsection 6.2.2.

Corollary 6.2.6. Let L be a properly feudal fusion rule, or a Z2-graded group all

of whose automorphisms are graded, with serfs S and lords M . Then fusion cate-

gories (or 6j fusion systems) on L up to equivalence are in 1-1 correspondence with

überderivations on S over FM up to gauge equivalence and up to simultaneously per-

muting S and M by an automorphism of L.

Proof. Theorems 6.2.5 and 6.0.9.

Corollary 6.2.7. Let G be a group and S an index 2 subgroup. Then H3(G,F×) is

in 1-1 correspondence with überderivations on S over FG\S up to gauge equivalence.

Proof. Theorems 6.2.5 and 6.1.2.

Example 6.2.8 (well-known). If F has square roots, H3(Z4,F
×) is in 1-1 correspondence

with 4th roots of unity in F.

Proof. See Subsection 6.2.1.

Example 6.2.9 (Tambara-Yamagami [28]). Let L = A⊔{m} be a Tambara-Yamagami

fusion rule. Then fusion categories on L up to equivalence are in 1-1 correspondence

with pairs (χ, τ) up to relabeling χ by an automorphism of A, where χ : A×A→ F×

is a nondegenerate symmetric bicharacter and τ = ±|A|−1/2 ∈ F.

Proof. This is a special case of Corollary 6.2.6.

Example 6.2.10 (Bonderson [3]). If F has square roots, fermionic Moore-Read fusion

categories up to equivalence are in 1-1 correspondence with 4th roots of −1 in F.
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Proof. See Subsection 6.2.1.

Corollary 6.2.11. If there is a fusion category on a feudal fusion rule with adjoint

subrule A and lords M , then

• A is abelian.

• The characteristic of F does not divide |A|.

• If |M | is odd or m = m̄ for some m ∈M , then
√

|A| ∈ F.

Proof. Let (χ, υ, τ) be an überderivation on serfs over B = F
M . The two desired

conditions on |A| follow from |A|τ τ̄ = 1B. Since χ|A×A is a bicharacter,

∑

c∈A

χ(abāb̄, c) = |A|1B

for a, b ∈ A. Since |A| 6= 0 in F and χ|A×A is nondegenerate, abāb̄ = 1.

Remark. The results of this section would still hold if we did not require fusion cate-

gories and 6j fusion systems to be rigid.

6.2.1 Proof of Examples 6.2.8 and 6.2.10

Lemma 6.2.12. Consider a feudal fusion rule with two lords M = {m1, m2}. Sup-

pose F has square roots, and let τ0(m1) = τ0(m2) = ±|A|−1/2 ∈ F×. Then any

überderivation on serfs over FM is gauge equivalent to one of the form (χ, υ, τ0). If

two such überderivations are gauge equivalent, they are related by a gauge transforma-

tion of the form (θ, φ, 1).
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Proof. Let (χ, υ, τ) ∈ objX , where X is as in Theorem 6.2.5. Choose ς ∈ FM such

that ς(m1)/ς(m2) = ±
√

τ(m1)/τ(m2). Let τ̃ (m) = ς(m̄)τ(m)/ς(m) for m ∈ M . Then τ̃ is

constant on M . By Lemma 6.0.11 and Theorem 6.2.5 there exist θ, φ, ς, χ̃, υ̃ such that

(χ̃, υ̃, τ̃) ∈ objX and (θ, φ, ς) ∈ morX ((χ, υ, τ), (χ̃, υ̃, τ̃ )). Since τ̃ 2 ≡ 1/|A| and ς̄/ς has

sign freedom, w.l.o.g. τ̃ = τ0.

Now let χ, υ, χ̃, υ̃ be arbitrary such that (χ, υ, τ0), (χ̃, υ̃, τ0) ∈ objX are related by

some gauge equivalence (θ, φ, ς). Then ς̄ = ς, implying

χ̃(a, b)

χ(a, b)
=
φ(a)aφ̄b(b)

φb(a)φ̄b(b)

Thus (θ, φ, 1) ∈ morX ((χ, υ, τ), (χ̃, υ̃, τ̃)).

Convention. When |M | = 2, identify FM with F2 naturally, and F with the diagonal.

Proof of Example 6.2.10. Let S = {1, ψ, α, α′} and M = {σ, σ′} (Example 2.2.2), and

suppose (χ, υ, τ) is an überderivation on S over B = F
M . By Lemma 6.2.12 we may

take τ constant. Writing χ and υ/ῡ as matrices over B indexed by S, we find

χ =

























1 1 1 1

1 −1 p −p

1 p x r

1 −p r̄ x

























υ/ῡ =

























1 1 1 1

1 p2 −pr/x −px/r

1 −p̄r/x x2/p xr

1 −p̄x/r xr̄ −x2/p

























for some x ∈ F
× and p, r ∈ B×; the only requirements are x4 = pp̄ = −1 and

rr̄ = −x2. By Lemma 6.0.11 and Theorem 6.2.5 the gauge equivalence class of f is

uniquely determined by x, which is invariant under fusion rule automorphisms. Then

invoke Corollary 6.2.6.
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Proof of Example 6.2.8. Regard Z4 = {±1,±i} as feudal with lords M = {±i}. Then

an überderivation (χ, υ, τ) on {±1} over F
M is uniquely determined by p, q, τ ∈ F

M ,

where p = χ(−1,−1) and q = υ(−1,−1). By Lemma 6.2.12 we may take τ constant.

Then the only requirements on p, q are p ∈ F× and p2 = q/q̄, i.e., p4 = 1 and q1 = p2q2

where (q1, q2) = q. The gauge equivalence class of (χ, υ, τ) is uniquely determined by

p. Then invoke Corollary 6.2.7.

6.2.2 Proof of Theorem 6.2.5

We generalize Tambara and Yamagamis’ proof [28] of Example 6.2.9. We ignore

2-morphisms, as they are easily dealt with.

Convention. We identify F× with the set of constant functions M → F×, and freely

use Lemma 2.2.3.

Let L be a feudal fusion rule with serfs S, lords M , and adjoint subrule A, and let

B = FM . We write f, f̃ for arbitrary 6j fusion systems on L with recoupling matrices

F, F̃ ; a, b, c, d, e for arbitrary serfs; and m, l for arbitrary lords. We identify f (likewise

f̃) with the collection of eight functions

α : S × S × S → F
×

α1, α2, α3, β1, β2, β3 : S × S → B×

γ : S × S → B
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defined according to the following convention:

α(a, b, c) = F a,b,c
abc

α1(a, b)(m) = Fmb̄ā,a,b
m α2(a, b)(m) = F a,āmb̄,b

m α3(a, b)(m) = F a,b,b̄ām
m

β1(a, b)(m) = F a,m,m̄āb
b β2(a, b)(m) = Fm,a,ām̄b

b β3(a, b)(m) = F bām̄,m,a
b

γ(a, b)(m) = fmā,am̄b,b̄mb,m,a

By Lemma 6.0.10, α, α1, α2, α3 are normalized and βi(1,−) ≡ 1 for i = 1, 2, 3.

Lemma 6.2.13. Every nonempty recoupling matrix is 1 × 1 or (γ(a, b))a∈A′,b∈A′′ for

some cosets A′, A′′ of A in S.

We write ξ for an arbitrary gauge transformation from f to f̃ , identified with the

collection of four functions

θ : S × S → F
×, φ, ψ, ω : S → B×

defined according to the following convention:

θ(a, b)(m) = ξa,bab ω(a)(m) = ξm,m̄aa

φ(a)(m) = ξa,āmm ψ(a)(m) = ξmā,am
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By Definition 6.0.7, θ, φ, ψ are normalized. It is routine to gather the rectangle axiom

for ξ and the pentagon axiom for f into

G000 = Ga,b,c
ab,abc,bc : α̃ = αδθ

G100 = Gmb̄ā,a,b

mb̄,m,ab
: α̃1δ́ψ = θα1

G010 = Ga,āmb̄,b

mb̄,m,ām
: α̃2(a, b)φ

b(a)ψ(b) = φ(a)aψ(b)α2(a, b)

G001 = Ga,b,b̄ām
ab,m,ām : α̃3θ = α3δ̀φ

G011 = Ga,m,m̄āb
am,b,āb : β̃1(a, b)

āφ(a)āω(b) = ω(āb)θ(a, āb)β1(a, b)

G101 = Gm,a,ām̄b
ma,b,m̄b : β̃2(a, b)ψ

ā(a)ωā(b) = bφ̄(a)ω(b)β2(a, b)

G110 = Gbām̄,m,a
bā,b,ma : β̃3(a, b)θ(bā, a)ω̄

bā(bā) = ω̄bā(b)ψā(a)β3(a, b)

G111 = Gmā,am̄b,b̄m
b,m,a : γ̃(a, b)ωa(b)φ(b) = bω̄a(a)ψ(a)γ(a, b)

P 0000 = P a,b,c,d
ab,abc,abcd,bcd,cd : 1 = δα

P 0001 = P a,b,c,c̄b̄ām

ab,abc,m,ām,b̄ām
: 1 = αδ̀α3

P 1000 = Pmc̄b̄ā,a,b,c

mc̄b̄,mc̄,m,abc,bc
: δ́α1 = α

P 0010 = P a,b,b̄āmc̄,c

ab,mc̄,m,ām,b̄ām
: α3(a, b)α2(ab, c) = aα2(b, c)α2(a, c)α

c
3(a, b)

P 0100 = P a,āmc̄b̄,b,c

mc̄b̄,mc̄,m,ām,bc
: α1(b, c)α2(a, bc) = αc2(a, b)α2(a, c)

aα1(b, c)
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P 0011 = P a,b,m,m̄b̄āc

ab,abm,c,āc,b̄āc
: α(a, b, b̄āc)β1(ab, c) = abα3(a, b)

b̄β1(a, c)β1(b, āc)

P 1100 = P cb̄ām̄,m,a,b

cb̄ā,cb̄,c,mab,ab
: α(cb̄ā, a, b)β3(ab, c) = β3(a, cb̄)β

ā
3 (b, c)αab1 (a, b)

P 0101 = P a,m,b,b̄m̄āc
am,amb,c,āc,m̄āc : β1(a, c)

āβ2(b, c) = β2(b, āc)β
b̄
1(a, c)

āαb̄2(a, b)

P 1010 = P cb̄m̄ā,a,m,b

cb̄m̄,cb̄,c,amb,mb
: bc̄βa2 (a, c)β3(b, c) = āαb̄2(a, b)

āβ3(b, c)bc̄β
a
2 (a, cb̄)

P 0110 = P a,m,m̄ācb̄,b

am,cb̄,c,āc,m̄āc
: β1(a, c)βbc̄a3 (b, c) = βbc̄a3 (b, āc)α(a, ācb̄, b)β1(a, cb̄)

P 1001 = Pm,a,b,b̄ām̄c
ma,mab,c,m̄c,ām̄c : β2(a, c)β

ā
2 (b, c) = cᾱ3(a, b)β2(ab, c)α

ab
1 (a, b)

P 0111 = P a,āmc̄,cm̄b,b̄m
mc̄,b,m,ām,c : α2(a, c)γ(c, b) = aγ(c, āb)α3(a, āb)

aβc1(a, b)

P 1110 = Pmc̄,cm̄b,b̄mā,a

b,mā,m,c,b̄m
: α2(b, a)γ(c, b) = bβa3 (a, c)α1(cā, a)γ

a(cā, b)

P 1011 = Pmc̄ā,a,cm̄b,b̄m
mc̄,b,m,ac,c : α1(a, c)γ(c, b) = βac2 (a, b)γ(ac, b)bβ̄1

c(a, ac)

P 1101 = Pmc̄,cm̄b,a,āb̄m

b,ba,m,c,b̄m
: γ(c, b)α3(b, a) = bβ̄2

c(a, c)γ(c, ba)bβ̄3
c(a, ba)

P 1111 = P am̄,m,m̄e,ēmāb
a,am̄e,b,māb,d : δb,ad

eβ̄1(a, b)β3(d, b) =
∑

c∈eA

eγ̄a(c, a)β̄a2 (c, b)γd̄(d, c)

where P 1111 assumes b̄ad ∈ A.

Definition 6.2.14. f is normal if β1(−, 1) = β2(−, 1) ≡ 1.

Lemma 6.2.15. Every 6j fusion system on L is gauge equivalent to a normal one.

Proof. Given arbitrary f , we construct ξ making f̃ normal. By G011,

β̃1(a, 1) =
ω(ā)θ(a, ā)β1(a, 1)

āω(1)āφ(a)

so we can choose ω making β̃1(a, 1) = 1. By G101,

β̃2(a, 1) =
φ̄(a)ω(1)β2(a, 1)

ψā(a)ωā(1)
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so we can choose ψ making β̃2 = 1. Then any choice of normalized φ, θ makes f̃ a 6j

fusion system on L by Lemma 6.0.11.

Lemma 6.2.16. Ψ restricts to an isomorphism on the category of normal 6j fusion

systems on L.

Proof. It is routine to check Y and X are categories. Let Z be the category of normal

6j fusion systems, a full subcategory of Y , and let Ξ = Ψ|Z . Let f ∈ objZ, and

(χ, υ, τ) = Ξf = (α2, α3, γ(1, 1)). Then

α =
1

δ̀υ
: S3 → F

× (P 0001)

β1(b, a) =
α(ā, b, b̄a)
b̄aυ(ā, b)

(P 0011)

β2(b, a) =
υ(a, ā)

υb̄(a, ā)
χb̄(a, b) (P 0101)

α1(b, c) =
1

ῡbc(b, c)
(P 1001, P 0100)

χ is an υ-biderivation (P 0010, P 0100)

γ(a, 1) = τ ῡ(ā, a) (P 1011)

γ(c, a) =
a(
τ ῡ(c̄, c)

υc(ā, a)

)

1

χ(a, c)
(P 0111)

τ ∈ B× (invertibility)

β3(a, c) =
ῡ(a, c̄)τ ā

α(a, c̄, c)α(ac̄, cā, a)τ
(P 1110)

τ τ̄ ∈ F
× (P 1101)

χ is τ -quasisymmetric (P 1010)

τ τ̄ ≡ 1/|A| (P 1111)

χ|A×A is nondegenerate (P 1111)
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Thus Ξ is well-defined and injective on the level of objects.

To check Ξ is surjective on the level of objects, suppose (χ, υ, τ) ∈ X . We must

show f defined via the above equations, with α2 = χ and α3 = υ, is in objZ. It

suffices to show f is a 6j fusion system on L. By construction f satisfies admissibility.

To check invertibility, let p, q ∈ S. Since τ τ̄ ≡ 1/|A| and χ|A×A is a nondegenerate

symmetric bicharacter, the matrix (qτ/χ(y,x))x,y∈A has inverse (q τ̄χ(y, x))x,y∈A. Since

γ(px, yq) =
qῡ(x̄p̄, px)

χ(q, px)

qτ

χ(y, x)

υ(y, q)

χ(y, p)υp(y, q)qυp(q̄ȳ, yq)

for x, y ∈ A, the matrix (γ(px, yq))x,y∈A is invertible over B. Equivalently, for all

m ∈ M the recoupling matrix Fmp̄,pm̄q,q̄m
m = (γ(u, v)(m))u∈pA,v∈qA is invertible over

F. Therefore f satisfies the invertibility axiom by Lemma 6.2.13. It is routine to

verify the pentagon axiom, and trivial to verify the triangle axiom. Rigidity means

α(a, ā, a)α(ā, a, ā) = 1 and τ(m) = ((F m̄,m,m̄
m̄ )−1)1,1 for all a ∈ S and m ∈ M . The

first condition follows from δα(a, ā, a, ā) = 1. The second follows from

F m̄,m,m̄
m̄ =

(

ῡ(x̄, x)τ

χ(y, x)υ(ȳ, y)
(m̄)

)

x,y∈A

(F m̄,m,m̄
m̄ )−1 =

(

υ(x̄, x)τ̄χ(y, x)

ῡ(ȳ, y)
(m̄)

)

x,y∈A

as χ is normalized and τ(m) = τ̄(m̄). Thus f is a 6j fusion system on L, showing Ξ is

surjective on the level of objects.

Suppose ξ ∈ morZ(f, f̃). Letting (χ̃, υ̃, τ̃) = Ξf̃ , we have

ω(a) =
aφ(ā)aς

θ(ā, a)
(G011)

ψ(a) =
φ̄a(a)ςa

ς
(G110)
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υ̃

υ
=
δ̀φ

θ
(G001)

χ̃(a, b)

χ(a, b)
=
φ(a)aψ(b)

φb(a)ψ(b)
=
φ(a)aφ̄b(b)aςb · ς

φb(a)φ̄b(b)aςςb
(G010)

τ̃

τ
=
ς̄

ς
(G111)

Since θ : M → F×, we see Ξ is well-defined and injective on each morphism space.

It is routine to check Ξ is surjective on each morphism space. Therefore Ξ is an

isomorphism.

Proof of Theorem 6.2.5. The two preceding lemmas suffice.
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Chapter 7

Twines and fermionic Moore-Read

Fusion categories may admit various extra stuctures manufacturing topological in-

variants defined on various sorts of tangles. One of the main such structures is braiding,

yielding representations of object-colored braids. Braided fusion categories apply to

physics by interpreting braids as trajectories (Chapter 8). They enjoy Ocneanu rigid-

ity: there are only finitely many braidings on a given finite fusion category over a

favorable field. But in cases where the full structure of braiding is unnecessary or

unavailable, it may be fruitful to consider only pure braids. To this end Bruguieres [6]

introduced entwined or purely braided strict monoidal categories. For entwined monoi-

dal categories we consider two notions of equivalence, a naturally discovered categorical

equivalence and homothetic equivalence. Under the former, Ocneanu rigidity holds,

and second group cohomology classifies entwined fusion categories on groups. Trans-

porting twines to fusion systems enables us to calculate them on fermionic Moore-Read
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fusion categories, where we find no nontrivial twines up to categorical equivalence but

a unique nontrivial twine up to homothetic equivalence.

7.1 Braided categories

A monoidal structure on a category defines, for any tuple of objects x1, . . . , xn, an

object x1� · · ·�xn well-defined up to unique structural natural isomorphisms which

can be swept under the rug. In a braided monoidal category, given a braid b on n

strands, there is a natural isomorphism

β(b, x1, . . . , xn) : x1� · · ·�xn → xπ(1)� · · ·�xπ(n) (7.1)

where π is the underlying permutation of b. The correspondence β must respect

composition and juxtaposition of braids. It determines, and is determined by, a natural

isomorphism

σ : (�) ⇒ (�) ◦ Flip

where Flip : C × C → C × C is the functor swapping the two coordinates. By a co-

herence theorem of Joyal and Street, σ furnishes a braiding iff it satisfies the hexagon

axiom. Some references are Joyal and Street [17]; Mac Lane [21]; Bakallov and Kir-

illov [2]; and Drinfeld, Gelaki, Nikshych, and Ostrik [9].

Braided categories are used in category theory, representation theory, knot theory,

and quantum topology. As sketched in Chapter 8, braided fusion categories with

extra structures are used to model anyons in the fractional quantum Hall effect, such

as might be used for topological quantum computation.
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7.2 Entwined categories

Only commutative fusion rules may admit braided fusion categories. For noncom-

mutative fusion rules, in general an isomorphism of the form (7.1) can only be defined

when the underlying permutation π is trivial, i.e., the braid b is pure. Specializing to

pure braids is of independent interest. An entwined category is like a braided category,

except that the correspondence β from braids to isomorphisms is only defined for pure

braids.

Entwined categories are a recent invention of Bruguieres [6]. They may see appli-

cations in anyon theory (Chapter 8) and invariants of ribbon links and tangles. Like

a braiding, a twine is completely pinned down by a natural isomorphism of bifunctors

via a coherence theorem motivating the following axiomatization.

Bruguieres [6] uses strict monoidal categories and functors (strict meaning all struc-

tural isomorphisms are equalities); the following definitions are the natural adaptations

to general monoidal categories and oplax monoidal functors.

Definition. Let C = (C,�, 1, α, λ, ρ) be a monoidal category. A twine or pure braiding

on C is a natural automorphism τ of � such that (idC , τ, id1) is a gauge automorphism
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of C (Definition 4.1.8) satisfying the dodecagon axiom: the diagram

((ab)c)d // a(b(cd))

((ab)c)d

τ(ab,c)�d

OO

a(b(cd))

a�τ(b,cd)

OO

a((bc)d)

OO

(a(bc))d

OO

a((bc)d)

a�(τ−1(b,c)�d)

OO

(a(bc))d

(a�τ−1(b,c))�d

OO

a(b(cd))

OO

((ab)c)d

OO

a(b(cd))

a�τ(b,cd)

OO

((ab)c)d

τ(ab,c)�d

OO

oo

commutes for all objects a, b, c, d, where the unlabeled arrows are canonical associa-

tions. An entwined or purely braided monoidal category is one equipped with a twine.

Observation. Every fusion category has a trivial twine given by the trivial gauge

transformation.

Definition. Let C and C ′ be entwined monoidal categories. A strictly entwined colax

monoidal functor from C to C ′ is a colax monoidal functor (F, F2, F0) such that for

all a, b ∈ objC, this square commutes:

Fa�′Fb
τ ′(Fa,F b)// Fa�′Fb

F (a�b)

F2(a,b)

OO

Fτ(a,b)
// F (a�b)

F2(a,b)

OO

Definition 7.2.1. Let C = (C,�, 1, α, λ, ρ) and C̃ = (C̃, �̃, 1̃, α̃, λ̃, ρ̃) be monoidal cat-

egories with twines τ and τ̃ respectively. A colax entwined functor is a colax monoidal

functor T = (T, T2, T0) : C → C̃ equipped with a monoidal natural transformation
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ǫ : T ◦ (idC , τ, id1) ⇒ (idC̃ , τ̃ , id1̃)◦T . Written out in full, ǫ is a natural transformation

T ⇒ T such that the diagram

T �̃T
ǫ�̃ǫ // T �̃T T �̃T

τ̃◦(T×T )oo

T ◦ (�)

T2

OO

T ◦ (�)
T◦τ

oo
ǫ◦(�)

// T ◦ (�)

T2

OO

commutes in Fun(C × C, C̃), and ǫ(1) = idT (1).

Proposition 7.2.2. Entwined categories, colax entwined functors, and monoidal nat-

ural transformations form a strict 2-category.

Proof. Routine diagram check.

Definition 7.2.3. Two twines on a monoidal category C are equivalent if the identity

monoidal functor on C can be promoted to an equivalence (Definition 4.3.4) in the

strict 2-category of Proposition 7.2.2.

Proposition 7.2.4. Two twines on the same monoidal category C are equivalent iff

they are isomorphic as monoidal functors, i.e., related by a monoidal natural isomor-

phism.

This chapter’s narrow computational exploration will not suffice to judge whether

Definition 7.2.3 is good; some future refinement might prove more useful.

7.2.1 Entwined fusion categories

The notions of entwined monoidal categories so far introduced carry over un-

changed to the realm of fusion categories, where a virtue of Definition 7.2.3 is im-

mediately discovered:
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Corollary 7.2.5. Ocneanu rigidity holds for entwined fusion categories: there are

only finitely many equivalence classes of twines on a given finite fusion category.

Proof. Proposition 7.2.4 and Ocneanu rigidity for tensor functors (Theorem 4.4.3).

Entwined fusion categories may be suitable for describing certain fractional quan-

tum Hall theories when braidings are unavailable. For instance, the fermionic Moore-

Read fusion rule is significant physically, but lacks braidings (Bonderson [3]), and so

needs an alternative to the usual structure of braided fusion categories.

7.2.2 Entwined fusion systems

Definition 7.2.6. For ring elements X, Y, Z, write [X, Y, Z] = XY Z−ZY X. We say

X, Y, Z triple commute if [X, Y, Z] = 0.

Definition 7.2.7. A twine ξ on a fusion system S = (L, V, 1, F, λ, ρ) assigns an

automorphism ξx,yr of V x,y
r to each triple r, x, y ∈ L, such that (idL, ξ, 1) is a gauge

automorphism of S (Definition 5.0.15) satisfying the following dodecagon axiom. Let

P0, P1, P2 be the left, bottom left or bottom right, and right vertices of the pentagon

equation (5.0.8), respectively. Let Ai : Pi → Pi+1 be the canonical associators, for

i = 1, 2. Let

Ξ0 =
⊕

p,u

id ⊗ ξp,yu ⊗ id, Ξ1 =
⊕

s,u

ξx,ys ⊗ id ⊗ id, Ξ2 =
⊕

q,v

id ⊗ ξx,qv ⊗ id

Then Dwxyz
r : [A1Ξ0A

−1
1 ,Ξ−1

1 , A−1
2 Ξ2A2] = 0.

Definition 7.2.8. Two twines on the same fusion system are equivalent if they are

isomorphic as gauge automorphisms (Definition 5.0.10).
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Proposition 7.2.9. Let C be a fusion category, and S a corresponding fusion system.

Then up to equivalence, twines on C are in 1-1 correspondence with twines on S.

Proof. By Corollary 5.1.5, up to isomorphism, gauge automorphisms of C are in 1-1

correspondence with gauge automorphisms of S. It is straightforward to check that

the two versions of the dodecagon axiom for fusion categories and fusion systems are

equivalent.

Proposition 7.2.10. Let C be a fusion category whose fusion rule is a group G. Then

twines on C up to equivalence are in 1-1 correspondence with H2(G,F×).

Proof. Since G is a group, the splitting spaces Pi in Definition 7.2.7 have rank 1, so

the dodecagon axiom is trivially satisfied. Then see Theorem 6.0.9.

7.3 Fermionic Moore-Read twines

7.3.1 Entwined 6j fusion systems

Definition 7.3.1. Let f be a 6j fusion system on a multiplicity-free fusion rule L.

A twine on f is a gauge automorphism ξ (Definition 6.0.7) satisfying the following

dodecagon axiom: Let w, x, y, z, r ∈ L, and let A,X,B, Y, C be the square matrices

indexed by L× L with ((s′, t′), (s, t))-entries

δs′,sδt′,tξ
sy
t fws

′z
trt′ f

wxy
sts′ δs′,sδt′,tξ

xy
s fxyzsts′ δs′,sδt′,tξ

xs
t

respectively. Then Dwxyz
r : [XAX−1, B−1, Y −1CY ] = 0.
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Definition 7.3.2. Two twines ξ, ξ̃ on a 6j fusion system on a multiplicity-free fusion

rule L are equivalent if they are related by a 2-isomorphism, i.e., if there exists ζ : L→

F× such that ζ(x)ζ(y)ξx,yr = ζ(r)ξ̃x,yr for x, y, r ∈ L.

Proposition 7.3.3. Let C be a fusion category on a multiplicity-free fusion rule L,

and let f be a corresponding 6j fusion system on L. Up to equivalence, twines on C

are in 1-1 correspondence with twines on f .

Proof. Follows from Proposition 7.2.9 and Theorem 6.0.9.

7.3.2 Feudal twines

In this subsection we study twines on feudal 6j fusion systems. Unfortunately the

formulas we wring out of the dodecagon axiom are opaque; their only application here

is for fermionic Moore-Read twines, in the next subsection.

Lemma 7.3.4. Let B be an invertible ambidextrous algebra over a group S. Then

(θ, φ, ς) ∈ fix(S)S×S × (B×)S × (B×) is a gauge automorphism (Definition 6.2.3) of

any überderivation on S over FB iff φ is normalized and for a, b ∈ S,

1 =
φ(a)aφ̄b(b)aςb · ς

φb(a)φ̄b(b)aςςb
θ = δ̀φ ς̄ = ς

Proof. Immediate from Definition 6.2.3, recorded here for convenience.

The following convention and definition are purely technical, only used in the

following lemma.

Convention. In this subsection we use three special notational conveniences. Let AES

be groups and B a ring. An underscore within an expression denotes an arbitrary
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element of A. For instance, if φ : S → B and b ∈ S, we write φ( b) for the function

A → B taking each x ∈ A to φ(xb). If χ : S × S → B, then for any y ∈ A, we write

χy = χ(y, ) : A→ B. Finally, for any f, g : A→ B, we write f ·A g =
∑

x∈A f(x)g(x).

Definition 7.3.5. Let B be an invertible ambidextrous bimodule over a group S, and

suppose the set A of elements of S acting trivially on B is finite. Suppose (χ, υ, τ)

is an überderivation on S over B (Definition 6.2.3). A twine on (χ, υ, τ) is a gauge

transformation (θ, φ, ς) from (χ, υ, τ) to itself satisfying the following five axioms: for

all a, b, c, d, e ∈ S and r ∈ A,

D1110 : φ( b) ·A χr = 0 or φ(e)φ(era) = φ(er)φ(ea)

D0111 : aφ(e)φ(are) = φ(ae)aφ(re) or χr ·A φ̄
c(c ) = 0

D1011 : χr ·A
1

φd
( b) = 0 or aφ(d)φ(adr) = φ(ad)aφ(dr)

D1101 : φ(rd)φ(da) = φ(d)φ(rda) or χr ·A
1
dφ̄c

(c ) = 0

D1111 :
∑

z

ā(χz/x ·A φ( a))φ̄e(ez)(cχ̄z/y ·A φ
e(c ))

=
∑

z

ā(χy/z ·A φ( a))φ̄e(ez)(cχ̄x/z ·A φ
e(c ))

Lemma 7.3.6. Let L be a feudal fusion rule with serfs S and lords M , and let f be a

6j fusion system on L, corresponding to an überderivation (χ, υ, τ) on S over FM as in

Theorem 6.2.5. Then twines on f are in 1-1 correspondence with twines on (χ, υ, τ),

via the equivalence of that theorem.
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Proof. Just trudging through the dodecagon axiom (Definition 7.3.1), using the feu-

dal pentagons of Subsection 6.2.2. Fortunately all but five of the dodecagons are

1-dimensional and thus automatically satisfied.

7.3.3 Equivalence of twines

Lemma 7.3.7. Let (χ, υ, τ) be an überderivation on the fermionic Moore-Read fusion

rule {1, α, ψ, α′, σ, σ′} (Example 2.2.2), corresponding to a fusion category as in Ex-

ample 6.2.10. W.l.o.g. by Lemma 6.2.12, take τ ∈ F. Then (θ, φ, ς) ∈ fix(S)S×S ×

(B×)S × (B×) is a gauge automorphism of (χ, υ, τ) iff φ is normalized and

θ = δ̀φ, φ(ψ) ∈ F
×,

φ(α)

φ̄(α)
=
φ(α′)

φ̄(α′)
∈ {1,−1}.

Moreover, (θ, φ, ς) is a twine iff in addition φ(α′)
φ(α)

= φ(ψ) ∈ {1,−1}.

Proof. With only four serfs and two lords, it is straightforward to work out the for-

mulas of Lemma 7.3.4 and Definition 7.3.5. Then invoke Lemma 7.3.6.

Theorem 7.3.8. Every twine on a fermionic Moore-Read fusion category is equivalent

in the eyes of Definition 7.2.3 to the trivial twine.

Proof. Let (θ, φ, ς) be as in Lemma 7.3.7. Let S = {1, α, ψ, α′} be the serfs of

the fermionic Moore-Read fusion rule (Example 2.2.2). By Theorem 6.2.5, a 2-

isomorphism (Definition 6.0.8) from the trivial twine to the gauge automorphism

corresponding to (θ, φ, ς) is given by ζ0 : S → F× and ζ1 ∈ (F×)M such that

φ(ψ) = ζ0(ψ) φ(α) = ζ0(α)
ζ1
ζ1

φ(α′) = ζ0(α
′)
ζ1
ζ1

ς = ζ1ζ1
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Due to the constraints on φ, these equations can always be satisfied. Thus (θ, φ, ς) is

equivalent to the trivial twine.

It is not clear that Definition 7.2.3 is the right notion of equivalence of twines. Its

virtues are categoricity and Ocneanu rigidity. Here is an alternative notion.

Definition 7.3.9. A twine ξ on a 6j fusion system on a multiplicity-free fusion rule L is

homothetically trivial if it factors through the universal grading of L, i.e., ξxyz depends

only on the images of x, y, z in the universal grading group (Theorem 2.1.9). Two

twines on a 6j fusion system are homothetically equivalent if their pointwise quotient

in F is homothetically trivial.

Note that a twine is homothetically trivial iff it is homothetically equivalent to

the trivial twine. This definition is motivated by what sort of representations of pure

braid groups are afforded by an entwined fusion category. With a homothetically

trivial twine, an n-strand pure braid acts as a homothety on each splitting space from

one simple object to n simple objects.

Theorem 7.3.10. Up to homothetic equivalence, there is a unique nontrivial twine

on any fusion category on the fermionic Moore-Read fusion rule of Example 2.2.2.

Using a 6j fusion system f with fσ,σ
′,σ

1,σ,1 = fσ
′,σ,σ′

1,σ′,1 , a representative ξ of the nontrivial
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homothetic equivalence class of twines is given by

ξ1,σ
σ = 1 ξ1,σ′

σ′ = 1 ξσ,σ
′

1 = −i ξσ
′,σ

1 = −i

ξψ,σσ = −1 ξψ,σ
′

σ′ = −1 ξσ,σ
′

ψ = i ξσ
′,σ

ψ = i

ξα,σ
′

σ = 1 ξα,σσ′ = −1 ξσ,σα = i ξσ
′,σ′

α = −i

ξα
′,σ′

σ = −1 ξα
′,σ

σ′ = 1 ξσ,σα′ = −i ξσ
′,σ′

α′ = i

with ξ symmetric in the superscripts and ξa,bab = 1 for all serfs a, b ∈ {1, α, ψ, α′}. In

the notation of Lemma 7.3.7, this representative ξ is given by

φ(ψ) = (−1,−1), φ(α) = (1,−1), φ(α′) = (−1, 1), ς = −i.

Proof. The constraint on f is synonymous, via Definition 6.2.4, with the innocu-

ous assumption τ ∈ F of Lemma 7.3.7. The theorem follows straightforwardly from

Lemma 7.3.7, as we now sketch. Recall from Example 2.2.2 that the universal grading

of the fermionic Moore-Read fusion rule identifies ψ with 1 and α′ with α while leav-

ing the two lords distinct. Then a twine (θ, φ, ς) as in Lemma 7.3.7 is homothetically

trivial iff φ(ψ) = 1. The homothetically nontrivial twines, with φ(ψ) = −1, are all

homothetically equivalent.
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7.4 Structures on fermionic Moore-Read

7.4.1 Pure twists

A key notion for braided fusion categories is a twist, needed to define a ribbon

structure, which gives invariants of ribbon tangles. A twist determines a twine via the

so-called suspender formula, stated here categorically:

Definition 7.4.1. A twist on an entwined monoidal category, fusion category or

system is a 2-isomorphism from the automorphism corresponding to the twine to the

identity.

Definition 7.4.2. Let C = (C,�, 1, α, λ, ρ) be a rigid entwined monoidal category

with twine τ . A twist θ on C is self-dual if

θ2(x) = x
λ
→ 1x

b�x
→ (xx∗)x

α
→ x(x∗x)

x�τ−1

→ x(x∗x)
x�d
→ x1

ρ−1

→ x (7.2)

for all objects x, where x∗ is a right dual of x (Definition 4.1.7).

This notion of a twist in the absence of braiding is due to Bruguieres [6], who

showed that self-dual twisted rigid monoidal categories give invariants of ribbon string

links. A twist corresponds to a 2π rotation of a ribbon strand. For modeling fermionic

fractional quantum Hall theories such as fermionic Moore-Read, it may be useful to

consider only rotations that are multiples of 4π:

Definition 7.4.3. A pure twist on an entwined monoidal category is a 2-isomorphism

from the automorphism corresponding to the square of the twine to the identity.
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Definition 7.4.4. A pure twist on a rigid entwined monoidal category is self-dual if

it plays the role of θ2 in equation (7.2).

Definition 7.4.5. Let f be a 6j fusion system on a multiplicity-free fusion rule L,

with twine ξ and twist ζ : L→ F×. We say ζ is self-dual if ζ(x) = 1/ξx,x̄1 for x ∈ L.

Lemma 7.4.6. Definitions 7.4.4 and 7.4.5 agree.

Proof. Similar to the corresponding correspondence for rigidity.

Proposition 7.4.7. A fermionic Moore-Read twine ξ given by (θ, φ, ς) as in Lemma

7.3.7 admits a self-dual pure twist iff φ(ψ) = φ̄
φ
(α), or equivalently

ξψ,σσ =
ξα,σ

′

σ

ξα,σσ′

If it exists, the pure twist ζ is given by ζ0 ≡ 1 and ζ1 ≡ 1/ς, or equivalently

ζ(a) = 1, ζ(m) = 1/ξσ,σ
′

1 = 1/ξσ
′,σ

1

for any serf a ∈ {1, α, ψ, α′} or lord m ∈ {σ, σ′}. The representative twine of Theo-

rem 7.3.10 has a self-dual pure twist of 1 on serfs and i on lords.

Proof. A self-dual pure twist ζ is given by ζ0 : S → F
× and ζ1 : M → F

×, where S is

the serfs and M the lords, such that

ζ0(1) = ζ0(ψ) = 1, ζ0(α) = φ(ψ)
φ

φ̄
(α′), ζ0(α

′) = φ(ψ)
φ

φ̄
(α), ζ1 ≡

1

ς

with the condition φ(α) = φ̄(α′), which is equivalent to φ(ψ) = φ̄
φ
(α).

Remark. To build well-behaved invariants for a suitable class of ribbon tangles, Bru-

guieres [6] imposes additional axioms on twisted spherical monoidal categories, defining
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turban categories. Perhaps analogues of these axioms may be found for purely twisted

entwined spherical monoidal categories, and may be needed for physical applications.

7.4.2 Pivotality and sphericity

Pivotality is a key property of rigid monoidal categories, generalizing the natural

isomorphism between a finite-dimensional vector space and its double dual. See for

instance Boyarchenko [4] or Wang [29]. We skip to the corresponding notion for 6j

fusion systems.

Definition 7.4.8 (Wang [29]). A pivotal structure on a 6j fusion system on a

multiplicity-free fusion rule L is a function t : L→ F× such that

t(1) = 1,

t(ā) = t(a)−1,

t(a)−1t(b)−1t(c) = F a,b,c̄
1 F b,c̄,a

1 F c̄,a,b
1

for all a, b, c ∈ L with c ∈ ab. We say t is spherical if t(a)2 = 1 for all a.

Lemma 7.4.9. Let f be a normal (Definition 6.2.14) feudal 6j fusion system. Let

(χ, υ, τ) be the corresponding überderivation on FM over the serfs S, where M is the

lords. A pivotal structure on f is given by a pair (t0, t1) ∈ (F×)S × (FM)× with

t0(1) = 1, t0(ā) = t0(a)
−1, t1t1 ≡ 1,

δt0(a, b)
−1 = α(a, b, b̄ā)α(b, b̄ā, a)α(b̄ā, a, b),

t0(a) =
t1

at1β̄3(a, 1)
=

t1
βa3 (a, 1)ta1

=
a
t1t1β3(ā, 1)
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where as in the proof of Lemma 6.2.16,

α =
1

δ̀υ
: S3 → F

× β3(a, 1) =
τ ā

α(a, ā, a)τ

Proof. Straight from Definition 7.4.8.

Proposition 7.4.10. Over a field with square roots and four distinct 4th roots of

unity, a fermionic Moore-Read fusion category has four pivotal structures, two of them

spherical. In a nice gauge—a normal feudal gauge whose corresponding überderivation

(χ, υ, τ) has τ ∈ F and υ symmetric—a pivotal structure t : L→ F× is given by

t(1) = t(ψ) = 1, t(α) = t(α′) = t(σ)2xr, t(σ)4 = 1, t(σ′) = t(σ)−1

where {1, α, ψ, α′, σ, σ′} is the fermionic Moore-Read fusion rule (Example 2.1.2) and

xr = ±1 is determined by the 6j symbols as in the proof of Example 6.2.10.

Proof. Routine consequence of Lemma 7.4.9.

7.4.3 Summary

# structures underlying structure
1 fusion rule hypergroup
4 fusion categories fusion rule
1 twine fusion category
0 braidings fusion category
0 or 1 self-dual pure twists twine
4 pivotal structures fusion category
2 spherical structures fusion category

Table 7.1: Structures on the fermionic Moore-Read hypergroup, each considered up to equivalence
fixing the underlying structure. Twines are considered up to monoidal natural isomorphism of

tensor functors.
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Chapter 8

Fractional quantum Hall physics

Here we sketch the roles of translation invariant polynomials, fusion rules, fusion

categories, and twines in fractional quantum Hall physics and topological quantum

computation. A decent introduction to these miraculous realms is beyond the scope of

this thesis; we merely aim to motivate our mathematics. For reference, see Wang [29].

In the fractional quantum Hall effect (FQHE), a two-dimensional layer of elec-

trons sandwiched between two semiconductors is subjected to a strong perpendicular

magnetic field and cooled near absolute zero. The electrons are described by a wave-

function which is a Gaussian multiplied by a complex polynomial. Properties of such

polynomials are studied in Sections 8.1 and 8.2. As an example, the Pfaffian wave-

function

Pf

(

1

zi − zj

)

∏

i<j

(zi − zj)
2
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(dropping the Gaussian) for 2n electrons at z1, . . . , z2n, where Pf denotes the Pfaffian

polynomial of a skew-symmetric 2n× 2n matrix, is believed to model the Moore-Read

state.

Under the right conditions, certain defects or vortices or localized patterns arise

in the electron liquid, called quasiparticles. At an emergent level of description, these

quasiparticles take on a life of their own. For a given theory, corresponding to some

range of physical conditions, there is a finite set of quasiparticle types, called labels.

Quasiparticles can fuse together, or split apart into other quasiparticles. Regarding

the absence of a quasiparticle as the trivial label 1, the combinatorial laws of fusing

and splitting are described by a fusion rule, as discussed at the start of Chapter 3.

A category C could describe a physical theory as follows: objects correspond to pos-

sible states; morphisms correspond to physical processes. For a quantum-mechanical

theory such as in the FQHE, morphism spaces are Hilbert spaces, and states can be su-

perposed yielding a biproduct on objects; thus C is C-linear (Definition 4.2.1). Unlike

in ordinary physical theories such as govern the underlying electrons, in a FQH state

quasiparticle positions are immaterial; a state is determined by a multiset of labels.

As a quasiparticle cannot change its label and lacks degrees of freedom other than

changing phase, C is semisimple, labeled by the quasiparticle types (Definition 4.4.1).

Juxtaposition or coexistence of quasiparticles yields a monoidal structure on C. The

monoidal unit 1 is simple, being the trivial label. Each label has a dual label; the elec-

tron sea may birth a quasiparticle along with its dual, and reversely a quasiparticle
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and its dual may annihilate, making C rigid (Definition 4.1.7). Thus labeled fusion

categories describe FQH quasiparticles.

In a theory with n spatial dimensions and one time dimension, a worldline or

history of events can be regarded as an (n + 1)-dimensional sculpture. If the events

are m (quasi)particles dancing about without touching, the sculpture is an m-strand

braid in an (n + 1)-dimensional space. The physical theory governing the dancers is

topological if it is invariant under local deformations, i.e., only the braid’s topology

matters. Topological theories only exist as emergent descriptions of special condensed

matter regimes such as in the FQHE, called topological phases of matter, a hot topic

for experimentalists and theorists.

For n ≥ 3, it is well-known that braiding in (n + 1) dimensions is uninteresting:

topologically, all that matters is how particles are permuted. In particular, transposing

or swapping two identical particles is an order 2 operation; for a quantum mechanical

theory, it is trivial or hits the wavefunction with a minus sign. These are the precise

meanings of boson and fermion, describing protons and electrons respectively. But for

n = 2, as in the FQHE, interesting braid action is possible. In particular, transposing

two identical particles may introduce a complex phase other than ±1; such particles are

called abelian anyons. Even more exotic are nonabelian anyons, whose transposition

effects a unitary transformation between Hilbert spaces (ground state degeneracies)

of dimension > 1. Nonabelian anyons provide the topological interest of the FQHE

and the source of its quantum computational power.
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Braiding of FQH quasiparticles is usually modeled by a braided fusion category

(Section 7.1). Actually there are structures other than braiding, such as sphericity

and twists, leading to modular categories. Given objects x1, . . . , xn in a braided fusion

category with bifunctor �, an n-strand braid b with underlying permutation π induces

a morphism

x1� · · ·�xn → xπ(1)� · · ·�xπ(n)

For any object x, postcomposition with this morphism gives a linear map

mor(x, x1� · · ·�xn) → mor(x, xπ(1)� · · ·�xπ(n))

of complex vector spaces. Thus a braided fusion category affords representations

of colored braid groups. Some of these representations are of considerable interest

within pure mathematics. But they may also come to exist in our world, for instance

by braiding nonabelian anyons, one possible mechanism for quantum computing using

the FQHE.

A quantum algorithm is a family of unitary transformations T : V → W of finite-

dimensional Hilbert spaces. Computational input is encoded as a state vector in V ;

the transformation T is applied; and the result in W is measured. The challenge of

quantum algorithm design is to cook up a T which solves some interesting problem

more efficiently than known classical solutions. For practical purposes, the most ex-

citing quantum algorithms are simulations of quantum physical systems, which would

be useful in the science and engineering of small things like molecules. But building

quantum computers is hard because they tend to be terribly sensitive to noise in the

hardware or environment. Topological quantum computation is the strategy of build-

86



ing a quantum computer using topological phases of matter, which are “deaf” to local

perturbations.

Some FQH theories do not seem to fit the usual framework of a braided fusion

category (Read and Wang [25]). One reason may be that as a FQH anyon is a pattern

made of many electrons, it should not notice an extra electron, which as a fermion

might gum up a braiding with a minus sign. This difficulty might be circumvented

with twines (pure braidings), which is why we studied them in Chapter 7.

8.1 Translation invariant polynomials

A polynomial p(z1, . . . , zn) is translation invariant if

p(z1 + c, . . . , zn + c) = p(z1, . . . , zn)

for all c. A wavefunction for n electrons in the FQHE is usually a translation in-

variant complex polynomial multiplied by a Gaussian (Wen and Wang [30]). For

classifying such wavefunctions, the Gaussian may be ignored. One might expect the

polynomial to be antisymmetric, as electrons are fermions. But under the strange

conditions of the FQHE, sometimes we can model them as bosons, yielding a sym-

metric polynomial. Thus we are led to study translation invariant (anti)symmetric

polynomials. Antisymmetric polynomials need no special treatment, being symmetric

polynomials multiplied by the Vandermonde determinant
∏

i<j(zi − zj). Translation

invariant symmetric polynomials are studied in this section and the next over a field

F of characteristic 0. For intended applications, F = C.
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In this section we give a simple description of the ring of all translation invariant

symmetric polynomials (Corollary 8.1.3). We begin with just translation invariance.

Let T ⊆ F[z1, . . . , zn] be the ring of translation invariant polynomials. Imagining

z1, . . . , zn as the locations of n identical particles, and x1, . . . , xn as the corresponding

center of mass coordinates, our main theorem says that T written in terms of x1, . . . , xn

is F[x1, . . . , xn] modulo one degree of freedom.

Theorem 8.1.1. Let ρ : F[x1, . . . , xn] → T be the surjective algebra homomorphism

xi 7→ zi − zavg

where zavg = 1
n
(z1 + · · · + zn). Then ker ρ = (xavg).

Proof. Subsection 8.1.1.

Now let R ⊆ T be the ring of translation invariant symmetric polynomials in

z1, . . . , zn, and S ⊆ F[x1, . . . , xn] be the ring of symmetric polynomials in x1, . . . , xn.

Corollary 8.1.2. Let σ : S → R agree with ρ. Then σ is a surjective algebra homo-

morphism, with kernel (x1 + · · · + xn).

Proof. It suffices to show ρ(S) = R. Clearly ρ(S) ⊆ R. Given p(z1, . . . , zn) ∈ R,

translation invariance yields

p(z1, . . . , zn) = p(z1 − zavg, . . . , zn − zavg) = ρ(p(x1, . . . , xn)).

Thus ρ(S) = R.

Since F has characteristic 0, any element of S can be written uniquely as a poly-

nomial in the power sum symmetric polynomials xk1 + · · · + xkn, where 1 ≤ k ≤ n.
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In other words, the algebra homomorphism θ : F[w1, . . . , wn] → S defined by θ(wk) =

xk1 + · · ·+ xkn is an isomorphism. Note that we could define a different isomorphism θ

using elementary symmetric polynomials or complete homogeneous symmetric poly-

nomials. In any case, σθ : F[w1, . . . , wn] → R is a surjective algebra homomorphism,

with kernel (w1).

Corollary 8.1.3. The algebra homomorphism F[w2, . . . , wn] → R given by

wk 7→ (z1 − zavg)
k + · · ·+ (zn − zavg)

k

is an isomorphism.

Next we consider the vector space Rd of all polynomials in R which are homoge-

neous of degree d. Let f be the above isomorphism. Since f(wk) is homogeneous of

degree k, we obtain a basis for Rd, namely all

wλ =
n

∏

k=2

f(wk)
λk (8.1)

where λ is any partition of d into integers between 2 and n, and λk is the multiplicity

of k in λ. Simon, Rezayi, and Cooper [27] prove directly that these wλ form a basis

of Rd, whereas we have deduced this fact from the ring structure of R. Although [27]

defines wλ using elementary symmetric polynomials rather than power sum symmetric

polynomials, this difference is purely cosmetic. Since the dimension md of Rd is the

number of partitions of d into integers between 2 and n, a generating function for md

is
∞

∑

d=0

mdt
d =

n
∏

s=2

1

1 − ts
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Finally, we describe the vector space A ⊂ F[z1, . . . , zn] of translation invariant

antisymmetric polynomials. It is well-known that any antisymmetric polynomial can

be written uniquely as q∆, where q is a symmetric polynomial and ∆ is the Vander-

monde determinant
∏

i<j(zi− zj). Since ∆ is translation invariant, we have A = R∆,

defining a vector space isomorphism R → A, which sends each basis (8.1) to a basis

for the vector space of homogeneous translation invariant antisymmetric polynomials

of degree d+ n(n− 1)/2.

8.1.1 Proof of Theorem 8.1.1

We factor ρ into two maps which are easier to study:

X τ
//

ρ

""
Y π

// T

Let Y = F[y1, . . . , yn], and define τ, π by

τ(xi) =
1

n

n−1
∑

j=0

(n− 1 − j)yi+j π(yi) = zi − zi+1

where index addition is modulo n. Then

πτ(xi) =
1

n

(

(n− 1)zi −
∑

j 6=i

zj

)

= zi − zavg

showing πτ = ρ. It suffices to show τ−1(ker π) = (xavg). Since τ(xavg) ∝ yavg, this

follows from Lemmas 8.1.4 and 8.1.6 below.

Lemma 8.1.4. τ is an isomorphism.

Proof. Let τ̂ : Fx1 + · · ·+ Fxn → Fy1 + · · ·+ Fyn be the linear map which extends to

τ . Then the matrix M of τ̂ with respect to the evident bases is the n × n circulant
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matrix with first column vector

v =
1

n
(n− 1, n− 2, . . . , 0).

Then M⊤ is the circulant matrix with first row v. Since charF = 0, the entries of v

form a strictly decreasing sequence of nonnegative reals. Therefore M⊤ is nonsingular

by Theorem 3 of Geller, Kra, Popescu, and Simanca [14]. Hence τ̂ is an isomorphism.

Therefore τ is an isomorphism by Observation 8.1.5.

Observation 8.1.5. Suppose f : F[a1, . . . , an] → F[b1, . . . , bn] is an algebra homomor-

phism between polynomial rings which restricts to a linear map

f̂ : Fa1 + · · · + Fan → Fb1 + · · ·+ Fbn

If f̂ is an isomorphism, then so is f .

Proof. The universal property of polynomial rings.

Lemma 8.1.6. ker π = (yavg).

Proof. Let α = (α1, α2, α3) be the chain map

0 // (yavg) // Y
π // T // 0

0 // (y1)

α1

OO

// Y

α2

OO

π′

// Y ′

α3

OO

// 0

where Y ′ = F[y2, . . . , yn], and π′, α3, α2, α1 are the algebra homomorphisms such that

π′ kills y1 and fixes the other variables, α3 and π agree, α2 sends y1 to yavg and fixes

the other variables, α1 and α2 agree, and the unlabeled nonzero maps are inclusions

of ideals. We want the top sequence to be exact. Since the bottom sequence is exact,

it suffices to check α is a chain isomorphism.
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Since α is a chain map, it suffices to show each component is an isomorphism.

By Observation 8.1.5, α2 is an isomorphism. Then so is α1. For α3, let β : Y ′ → Y ′

be the algebra homomorphism given by β(yi) = yi + · · · + yn for 2 ≤ i ≤ n. Again

by Observation 8.1.5, β is an isomorphism. Then it suffices to show γ = α3β is an

isomorphism.

Note γ : Y ′ → T and γ(yi) = zi − z1 for 2 ≤ i ≤ n. Since

p(z1, . . . , zn) = p(0, z2 − z1, . . . , zn − z1) = γ(p(0, y2, . . . , yn))

for any p(z1, . . . , zn) ∈ T , the homomorphism γ is surjective. If

0 = γ(q(y2, . . . , yn)) = q(z2 − z1, . . . , zn − z1)

then 0 = π′(q(y2 − y1, . . . , yn − y1)) = q(y2, . . . , yn), showing γ is injective. Thus γ is

an isomorphism.

8.2 Haldane’s conjecture

In this section we find a counterexample to Haldane’s conjecture [15] that every

homogeneous translation invariant symmetric polynomial satisfies a certain physically

convenient property (Proposition 8.2.7). We prove the conjecture for polynomials of

at most three variables, construct a minimal counterexample, and discuss whether a

weakened version of the conjecture holds.

Every symmetric polynomial is a unique linear combination of symmetrized mono-

mials, which physicists like to call boson occupation states. We identify symmetrized
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monomials with multisets of natural numbers:

[l1, . . . , ln] =
∑

σ∈Sym(n)

zl1σ(1) · · · z
ln
σ(n)

For instance, the multiset [5, 0, 0] corresponds to the symmetrized monomial 2z5
1 +

2z5
2 + 2z5

3 . Squeezing a symmetrized monomial [l1, . . . , ln] means decrementing li and

incrementing lj for any pair of indices i, j such that li > lj + 1. The squeezing order

is a partial order on symmetrized monomials: put s > t iff t can be obtained from

s by repeated squeezing. For a symmetric polynomial p, let B(p) be the set of all

symmetrized monomials with nonzero coefficient in p. We view B(p) as a poset under

the squeezing order and refer to it as the squeezing poset of p.

Definition 8.2.1. A symmetric polynomial is Haldane if its squeezing poset has a

maximum.

Conjecture 8.2.2 (Haldane [15]). Every homogeneous translation invariant symmet-

ric polynomial is Haldane.

Remark. Since squeezing preserves homogeneous degree, Haldane polynomials are ho-

mogeneous. Many homogeneous symmetric polynomials are not Haldane, such as

[3, 3, 0] + [4, 1, 1], but these might not be translation invariant.

Proposition 8.2.3. Haldane’s conjecture holds for polynomials of ≤ 3 variables.

Proof. The conjecture is vacuously true for univariate polynomials. Every bivariate

symmetrized monomial of homogeneous degree d has the form [a, b], with a + b = d.

These are linearly ordered under squeezing, so Haldane’s conjecture is automatic in

the bivariate case.
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For the trivariate case, define τ : F[z1, z2, z3] → F[z1, z2, z3, t] by

τ(p)(z1, z2, z3, t) = p(z1 + t, z2 + t, z3 + t),

so that p is translation invariant iff τ(p) = p. Define linear endomorphisms τi of

F[z1, z2, z3] by τ(p) =
∑d

i=0 τi(p)t
i, so that p is translation invariant iff τi(p) = 0 for

all i > 0. Then

τ1([a, b, c]) = a[a− 1, b, c] + b[a, b− 1, c] + c[a, b, c− 1]

for all a, b, c > 0. Now suppose [a, b, c] is a maximal element of the squeezing poset

of some p ∈ Rd
3, with a ≥ b ≥ c > 0. Then [a + 1, b, c − 1] and [a, b + 1, c − 1]

are not in B(p). The above equation then implies that the coefficient of [a, b, c] in p

equals c times the coefficient of [a, b, c− 1] in τ1(p). Thus τ1(p) 6= 0, contradicting the

translation invariance of p. Therefore every maximal element of B(p) has the form

[a, b, 0], with a + b = d. These are linearly ordered under squeezing; their maximum

is the maximum of B(p).

Any two symmetrized monomials written as weakly decreasing sequences of nat-

ural numbers can be compared lexicographically. The lexicographic order >lex on

symmetrized monomials linearizes the squeezing order. Let Rd
n be the vector space of

translation invariant symmetric n-variate polynomials of homogeneous degree d, and

let Ldn be the set of lexicographic maxima of squeezing posets of polynomials in Rd
n.

Note |Ldn| ≤ dimRd
n.

Definition 8.2.4. A symmetrized monomial s is completely squeezable if s >lex t

implies s > t, for all symmetrized monomials t.
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Lemma 8.2.5. If every element of Ldn is completely squeezable, then Haldane’s con-

jecture holds for Rd
n. If Haldane’s conjecture holds for Rd

n, then Ldn is linearly ordered

under squeezing.

Proof. The first statement is immediate. For the second, suppose m1, m2 ∈ Ldn are

incomparable. Let p1, p2 ∈ Rd
n such that mi is the lexicographic maximum of B(pi)

for i = 1, 2. W.l.o.g. assume m1 is lexicographically bigger than m2, and let ci be the

coefficient of m2 in pi. Choose a scalar c 6= −c1/c2, and let q = p1 + cp2. Then q ∈ Rd
n

and m1, m2 ∈ B(q). Since m1 is the lexicographic maximum of B(q), it is maximal in

B(q) under squeezing. Since m1 and m2 are incomparable, q is not Haldane.

Proposition 8.2.6. Haldane’s conjecture holds for Rd
4 with d < 14 but fails for R14

4 .

Proof. It is a straightforward computational linear algebraic exercise to compute Ldn

using the basis forRd
n given by formula (8.1). Since every symmetrized monomial of the

form [a, b, 0, . . . , 0] is completely squeezable, as is [6, 4, 2, 0], we see that every element

of Ld4, d < 14, is completely squeezable (Table 8.1). But L14
4 is not linearly ordered

under squeezing: [8, 4, 2, 0] and [7, 7, 0, 0] are incomparable. Then apply Lemma 8.2.5.
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d Ld4
0 ∅
1 ∅
2 {[2, 0, 0, 0]}
3 {[3, 0, 0, 0]}
4 {[4, 0, 0, 0], [2, 2, 0, 0]}
5 {[5, 0, 0, 0]}
6 {[6, 0, 0, 0], [4, 2, 0, 0], [3, 3, 0, 0]}
7 {[7, 0, 0, 0], [5, 2, 0, 0]}
8 {[8, 0, 0, 0], [6, 2, 0, 0], [5, 3, 0, 0], [4, 4, 0, 0]}
9 {[9, 0, 0, 0], [7, 2, 0, 0], [6, 3, 0, 0]}

10 {[10, 0, 0, 0], [8, 2, 0, 0], [7, 3, 0, 0], [6, 4, 0, 0], [5, 5, 0, 0]}
11 {[11, 0, 0, 0], [9, 2, 0, 0], [8, 3, 0, 0], [7, 4, 0, 0]}
12 {[12, 0, 0, 0], [10, 2, 0, 0], [9, 3, 0, 0], [8, 4, 0, 0], [7, 5, 0, 0], [6, 6, 0, 0], [6, 4, 2, 0]}
13 {[13, 0, 0, 0], [11, 2, 0, 0], [10, 3, 0, 0], [9, 4, 0, 0], [8, 5, 0, 0]}
14 {[14, 0, 0, 0], [12, 2, 0, 0], [11, 3, 0, 0], [10, 4, 0, 0], [9, 5, 0, 0], [8, 6, 0, 0],

[8, 4, 2, 0], [7, 7, 0, 0]}

Table 8.1: Enumeration of lexicographic maxima.

It is a straightforward computational linear algebraic exercise to construct a non-

Haldane polynomial in R14
4 by following the proof of Lemma 8.2.5. We get

p = 3[8, 4, 2, 0]− 3[8, 4, 1, 1]− 3[8, 3, 3, 0] + 6[8, 3, 2, 1] − 3[8, 2, 2, 2]

+ 3[7, 7, 0, 0] − 42[7, 6, 1, 0] + 46[7, 5, 2, 0] + 80[7, 5, 1, 1]− 22[7, 4, 3, 0]

− 188[7, 4, 2, 1] + 112[7, 3, 3, 1] + 8[7, 3, 2, 2] + 77[6, 6, 2, 0] + 70[6, 6, 1, 1]

− 182[6, 5, 3, 0]− 700[6, 5, 2, 1] + 112[6, 4, 4, 0] + 168[6, 4, 3, 1] + 1078[6, 4, 2, 2]

− 728[6, 3, 3, 2] + 5[5, 5, 4, 0] + 1072[5, 5, 3, 1] + 246[5, 5, 2, 2]− 722[5, 4, 4, 1]

− 2976[5, 4, 3, 2] + 1808[5, 3, 3, 3] + 1805[4, 4, 4, 2]− 1130[4, 4, 3, 3].

Proposition 8.2.7. The polynomial p is a minimal counterexample to Haldane’s con-

jecture.
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Proof. One checks by computer that p is translation invariant. Since it is symmetric

and homogeneous but lacks a maximum (Figure 8.1), it breaks Haldane’s conjecture.

By Proposition 8.2.6 it is minimal with respect to arity and homogeneous degree.

Remark. The counterexample of Proposition 8.2.7 is not minimal with respect to

homogeneous degree. For instance, the smallest pentavariate counterexamples have

homogeneous degree 10.

Remark 8.2.8. We might weaken Haldane’s conjecture by hoping Rd
n has a basis of

Haldane polynomials. Computer evidence suggests |Ldn| = dimRd
n. Writing Ldn =

{l1, . . . , lk}, we could then obtain a special basis {p1, . . . , pk} of Rd
n satisfying B(pi) ∩

Ldn = {li}. Perhaps it would be a Haldane basis or could be used to construct one.

97



[7,7,0,0]

[8,4,2,0]

[8,4,1,1] [8,3,3,0]

[7,6,1,0]

[7,5,2,0]

[8,3,2,1]

[8,2,2,2]

[7,5,1,1] [7,4,3,0] [6,6,2,0]

[6,5,3,0][6,6,1,1][7,4,2,1]

[7,3,3,1] [6,5,2,1] [6,4,4,0]

[5,5,4,0][6,4,3,1][7,3,2,2]

[6,4,2,2] [5,5,3,1]

[5,4,4,1][5,5,2,2][6,3,3,2]

[5,4,3,2]

[4,4,4,2] [5,3,3,3]

[4,4,3,3]

Figure 8.1: Hasse diagram of B(p). Arrows point from smaller to bigger elements.
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Chapter 9

Open problems

1. Classify absolutely regular hypergroups of nilpotence class 2, perhaps in terms

of groups and posets as in Section 2.3.

2. Classify fusion rules of nilpotence class 2, perhaps in terms of the underlying

ARHs and group 2-cocycles over Z+ as in Section 3.3.

3. Determine which nilpotent fusion rules of simple current index 2 admit fusion

categories, and which of these fusion categories admit braidings or twines, per-

haps using Theorem 6.2.5 and Lemma 7.3.6.

4. Decide the best definition of equivalence of entwined monoidal categories.

5. Determine how to model fractional quantum Hall quasiparticle motion in the

absence of braiding, such as for fermionic Moore-Read. We know of three poten-

tially suitable weakenings of the notion of a braided fusion category: projectively

braided fusion categories, whose pentagons and hexagons need only commute up

99



to phase; twines; and braided fusion categories enriched not over the category

of vector spaces, but over some other category such as super vector spaces.

Projectivization does not seem promising. We conjecture that entwined fusion

categories will provide useful models which will ultimately be refined by enriched

braided fusion categories.

6. Determine whether homogeneous translation invariant symmetric polynomials

enjoy Haldane bases (Remark 8.2.8).
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