Problem #1: Line and Surface Integrals. Do the following:
(a) Let \(f(x, y, z) = 3x + xy + z^3 \) and let \(c(t) = (\cos(4t), \sin(4t), 3t), t \in [0, 2\pi] \). Find \(\int_C f \, ds \).
(b) Let \(c(t) \) be a path and \(T \) the unit tangent vector. What is \(\int_C T \cdot ds \)?
(c) Let \(c(t) = (e^{2t}\cos(3t), e^{2t}\sin(3t)), t \in [0, 2\pi] \). Find \(\int_C \frac{x \, dx + y \, dy}{(x^2 + y^2)^{3/2}} \).
(d) Set up but do not evaluate an integral that represents the surface area of the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \).
(e) Let \(D \) be the dome shaped region bounded by \(z = 8 - 2x^2 - 2y^2 \) and the \(xy \)-plane and let \(S \) be the boundary surface of \(D \). Let \(f(x, y, z) = x^2 + y^2 + 3(z-2)^2 \) and let \(F = \nabla f \). Calculate the flux of \(F \) through \(S \).

Problem #2: Use Green’s Theorem. Do the following:
(a) Evaluate \(\oint_C (x^2 - y^2) \, dx + (x^2 + y^2) \, dy \) where \(C \) is perimeter of the rectangle with vertices \((0, 0), (2, 0), (0, 1), \) and \((2, 1)\).
(b) Show that for any closed curve \(C \) in the plane \(\oint_C 3x^2y \, dx + x^3 \, dy = 0 \).
(c) Sketch the curve given parametrically by \(c(t) = (1 - t^2, t^3 - t) \) and find the area enclosed by it.

Problem #3: Use Divergence or Stokes’ Theorem. Do the following:
(a) Let \(S \) be the surface defined by \(x^2 + y^2 + 5z = 1, z \geq 0 \). and let \(F(x, y, z) = (xz, yz, x^2 + y^2) \). Verify Stokes’s theorem for this surface and vector field.
(b) Let \(S \) be the surface defined by \(y = 10 - x^2 - z^2, y \geq 1 \) and let \(F(x, y, z) = (2xyz + 5z, e^x \cos(yz), x^2y) \). Find \(\iint_S \nabla \times F \cdot d\mathbf{S} \).
(c) Let \(S \) be the surface defined by \(z = e^{1-x^2-y^2}, z \geq 1 \) and let \(F(x, y, z) = (x, y, 2z-2z) \). Calculate \(\iint_S F \cdot d\mathbf{S} \).