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This is one of the survey talks at the workshop on “Braid groups, clusters, and free
probability” at the American Institute of Mathematics, January 10-14, 2005. The goal of
the talk is to give a quick and elementary introduction to some combinatorial aspects of
free probability, addressed to an audience who is not familiar with free probability but is
acquainted to lattices of non-crossing partitions. The (attempted) line of approach is to
select a cross-section of relevant material, and increase its rate of absorption by working
through a set of exercises (the exercises are embedded in the lecture, and are straightforward
applications of the material presented). While this is hopefully an efficient approach, it is
quite far from being comprehensive; for a more detailed treatment of the subject, one can
check the references [3, 5, 8, 9] listed at the end of the lecture. (Among these references,
the one which is closest to the spirit of the present lecture is [3] – but, of course, there is a
lot of material from [3] that could not be even mentioned here.)

The plan of the lecture is as follows. The first section reviews a minimal amount of
general terminology, and then the Sections 2 and 3 present some basic tools used in the
combinatorics of free probability – the non-crossing cumulants and the R-transform. The
main Section 4 is devoted to explaining how convolution in lattices of non-crossing partitions
is intimately related to the multiplication of free random variables. This connection can
in principle be used both ways, but (to my knowledge) its applications up to present have
been focused on the direction of doing computations with free random variables via the
combinatorics of NC(n). We give some illustrative examples of how this is done, and we
explain how the S-transform of Voiculescu (a device which is also used in connection to the
multiplication of free random variables) fits in this picture.

1. Basic free probabilistic terminology

The framework used in free probability is the one of a non-commutative probability space.
We will work with a version of this concept which goes under the name of “∗-probability
space”.

1.1 Definition. By a ∗-probability space we will understand a system (A, ϕ) where:
• A is a unital algebra over C.
• A is a endowed with a ∗-operation (an antilinear map A 3 a 7→ a∗ ∈ A such that

(a∗)∗ = a and such that (ab)∗ = b∗a∗, for a, b ∈ A).
• ϕ : A → C is a linear functional which is normalized by the condition that ϕ(1A) = 1

(where 1A is the unit of A), and is strictly positive definite in the sense that ϕ(a∗a) ≥ 0 for
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all a ∈ A, with equality holding if and only if a = 0.

1.2 Remarks (and disclaimers).
(a) A more suggestive name for an (A, ϕ) as above would probably be “generalized

algebra of integrable functions” – the elements of A are viewed as some sort of integrable
functions, and applying ϕ to an a ∈ A is viewed like an operation of taking an integral.
This comment is just made to explain the terminology, we will not encounter the functional
analysis side of free probability in the present lecture.

(b) There are various alternative “flavours” for the definition of a non-commutative prob-
ability space. For instance one sometimes requires that ϕ is a trace – i.e. that ϕ(ab) = ϕ(ba)
for all a, b ∈ A. On the other hand one sometimes drops the non-degeneracy assumption
that ϕ(a∗a) = 0 implies a = 0, or renounces to the ∗-operation and to the positivity of ϕ
altogether (but in this lecture we will stick to the definition as given above).

(c) Another useful property of ϕ which could have been mentioned in Definition 1.1 is
that

ϕ(a∗) = ϕ(a), ∀ a ∈ A. (1.1)

The reason for not mentioning (1.1) explicitly in the definition is that it follows from the
positivity of ϕ. Indeed, it is easily seen that (1.1) is equivalent to the fact that ϕ(a) ∈ R
whenever a ∈ A is such that a = a∗, and the latter fact follows from the positivity by
writing

a =
1
4

[
(a+ 1A)2 − (a− 1A)2

]
.

1.3 Examples.
(a) One can take A to be the algebra of polynomials C[t], and then let ϕ : A → C

be defined by ϕ(f) =
∫ 1

0 f(t) dt, for f ∈ A. This is an example where the elements of A
really are functions, and applying ϕ really amounts to taking an integral. (Of course, in
this example one could replace C[t] by some larger algebra of integrable functions on [0, 1].)

(b) One can take A to be the algebraMn(C) of n×n matrices, and then let ϕ : A → C

be the normalized trace,

ϕ(A) =
1
n

Tr(A) =
1
n

n∑
i=1

αi,i, for A = [αi,j ]ni,j=1 ∈ A.

(c) Let G be a group (not necessarily finite). One can take A to be the associated group
algebra,

A = C[G] = span{χg | g ∈ G},
where the elements of the linear basis {χg | g ∈ G} for A are multiplied according to the
rule χg · χh = χgh, and the ∗-operation is determined by the condition χ∗g = χg−1 , g ∈ G.
Then one can take ϕ : A → C to be the so-called canonical trace on C[G], i.e. to be the
linear functional determined by the fact that

ϕ(χg) =
{

1, if a = e, the unit of G,
0, otherwise.
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1.4 Remark (how to think of free independence). Let (A, ϕ) be a ∗-probability space,
and let A1, . . . ,As be unital ∗-subalgebras of A (where by “∗-subalgebra” we understand a
subalgebra of A which is also closed under the ∗-operation). Consider the algebra (equiva-
lently ∗-algebra) generated by A1, . . . ,As together,

U := Alg(A1 ∪ · · · ∪ As) ⊆ A.

Then U is spanned linearly by products of elements from A1∪· · ·∪As; since ϕ is not assumed
to be (and typically is not) multiplicative, the knowledge of the restrictions ϕ|A1, . . . , ϕ|As
isn’t usually sufficient for determining what is ϕ|U . Well, free independence is a recipe which
is allowing us to compute ϕ|U – if we know ϕ|A1, . . . , ϕ|As, and we know that A1, . . . ,As
are freely independent.

So once again, for the purpose of this lecture, the free independence of A1, . . . ,As is a
recipe which allows us to compute any value

ϕ(a1a2 · · · an), with n ≥ 1 and a1 ∈ Ai1 , . . . , an ∈ Ain (and where 1 ≤ i1, . . . in ≤ s),

in terms of the restrictions ϕ|A1, . . . , ϕ|As. The recipe is usually stated in a special case,
to which the computations can always be reduced. More precisely, we have:

1.5 Definition. Let (A, ϕ) be a ∗-probability space, and let A1, . . . ,As be unital
∗-subalgebras of A. We say that A1, . . . ,As are freely independent if the following
implication holds:

1 ≤ i1, . . . , in ≤ s
such that i1 6= i2, i2 6= i3, . . . , in−1 6= in

a1 ∈ Ai1 , . . . , an ∈ Ain
such that ϕ(a1) = · · · = ϕ(an) = 0

 ⇒ ϕ(a1 · · · an) = 0. (1.2)

In order to see how the Equation (1.2) can be bootstrapped to a recipe which computes
any value ϕ(a1 · · · an), it is probably best to work out explicitly a few monomials of small
length.

Exercise 1. Let (A, ϕ) be a ∗-probability space, and let B, C be two unital ∗-subalgebras
of A which are freely independent. Verify that:

(a) ϕ(bc) = ϕ(b) · ϕ(c), ∀ b ∈ B, c ∈ C.
(b) ϕ(b1cb2) = ϕ(b1b2) · ϕ(c), ∀ b1, b2 ∈ B, c ∈ C.
(c) ϕ(b1c1b2c2) = ϕ(b1b2) · ϕ(c1) · ϕ(c2) + ϕ(b1) · ϕ(b2) · ϕ(c1c2)

−ϕ(b1) · ϕ(b2) · ϕ(c1) · ϕ(c2), ∀ b1, b2 ∈ B, c1, c2 ∈ C.

[Comment: A less tedious derivation for the expression in the Exercise 1(c) appears in
Section 2, Exercise 6.]
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For practicing the concept of free independence, here are a couple more exercises.

Exercise 2. Let (A, ϕ) be a ∗-probability space.
(a) Verify that the unital ∗-subalgebra C1A of A is freely independent from any unital

∗-subalgebra B ⊆ A.
(b) Let B be a unital ∗-subalgebra of A, such that B is freely independent from itself.

Prove that B = C1A.
(c) Let B and C be unital ∗-subalgebras of A such that B is freely independent from C,

and such that B commutes with C (i.e. bc = cb, for every b ∈ B and c ∈ C). Prove that at
least one of the algebras B, C is equal to C1A.

[Comments: The non-degeneracy of ϕ is important for the parts (b) and (c) of this exercise
– indeed, when we aim to show an equality x = y in A it may be more convenient to do that
by checking that ϕ( (x− y)∗(x− y) ) = 0. Note that the Exercise 2(b) implies in particular
that if the unital ∗-subalgebras A1, . . . ,As of A are freely independent, then Ai∩Aj = C1A
for every 1 ≤ i < j ≤ s.]

Exercise 3. Let (A, ϕ) be a ∗-probability space, and let A1, . . . ,As be unital ∗-
subalgebras of A which are freely independent. Let U be the subalgebra of A generated by
A1, . . . ,As together. Prove that if ϕ|Ai is a trace for every 1 ≤ i ≤ s, then ϕ|U is a trace
as well.

2. Using non-crossing cumulants to describe free independence

2.1 Remark (how to think of non-crossing cumulants). Let (A, ϕ) be a ∗-probability
space. The non-crossing cumulants of (A, ϕ) are a family of multilinear functionals
κn : An → C, n ≥ 1. Their role is of “straightening” the formulas which we use to retrieve
the values of ϕ on the algebra generated by A1 ∪ · · · ∪ As, when A1, . . . ,As ⊆ A are freely
independent (in the sense discussed in Section 1).

The first few of the functionals κn look like this:

κ1(a) = ϕ(a), a ∈ A

κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2), a1, a2 ∈ A

κ3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a3)ϕ(a2)
−ϕ(a1a2)ϕ(a3) + 2ϕ(a1)ϕ(a2)ϕ(a3), a1, a2, a3 ∈ A.

(2.1)

It is in fact nicer to re-write the above equations by expressing ϕ(a), ϕ(a1a2), ϕ(a1a2a3) in
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terms of the functionals κn, because then we just have some plain sumations:

ϕ(a) = κ1(a), a ∈ A

ϕ(a1a2) = κ2(a1, a2) + κ1(a1)κ1(a2), a1, a2 ∈ A

ϕ(a1a2a3) = κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3) + κ2(a1, a3)κ1(a2)
+κ2(a1, a2)κ1(a3) + κ1(a1)κ1(a2)κ1(a3), a1, a2, a3 ∈ A.

(2.2)

Moreover, the way to read the right-hand sides of the Equations (2.2) is as summations over
the lattices NC(1), NC(2), and respectively NC(3). For instance in the last one of these
equations, the first term on the right-hand side is indexed by the non-crossing partition 13

with only one block, the term coming after it is indexed by { {1}, {2, 3} }, and so on until
the last term, which is indexed by the partition 03 = { {1}, {2}, {3} }. The general rule for
forming the term “termπ” indexed by π = {A1, . . . , Ak} ∈ NC(n) in a summation like in
(2.2) (which has ϕ(a1 · · · an) on the left-hand side) is thus:

termπ =
k∏
j=1

κ|Aj |( (a1, . . . , an)|Aj ),

where “(a1, . . . , an)|A” designates the |A|-tuple obtained by only looking at ai’s with i ∈ A
(e.g. if n = 6 and A = {1, 3, 4} then (a1, . . . , a6)|A = (a1, a3, a4)).

So, for the record, the precise definition of the cumulant functionals κn goes as follows:

2.2 Definition (and Proposition). Let (A, ϕ) be a ∗-probability space. There exists a
family of multilinear functionals κn : An → C, n ≥ 1, uniquely determined by the following
formula:

ϕ(a1 · · · an) =
∑

π∈NC(n)

π=:{A1,...,Ak}

k∏
j=1

κ|Aj |( (a1, . . . , an)|Aj ), (2.3)

for every n ≥ 1 and every a1, . . . , an ∈ A. The functionals κn are called the non-crossing
cumulant functionals of the space (A, ϕ).

[The “proposition” part in 2.2 is immediate, its proof consists in observing that the Equation
(2.3) is actually of the form ϕ(a1 · · · an) = κn(a1, . . . , an) + a sum of products of km’s with
m < n.]

Of course, one can also write a general fomula which generalizes the Equations (2.1).
This is obtained from Equation (2.3) by using the Moebius function on the lattice NC(n),
and is stated in the next exercise.

The part (b) of Exercise 4 mentions the Kreweras complementation map Kr : NC(n)→
NC(n). This is defined geometrically exactly as in the Exercise 2(h) of the “warm-up”
set of Vic Reiner, with the difference that the new points 1′, . . . , n′ are placed to the other
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side of 1, . . . , n, respectively (i.e. 1′ is the midpoint of the edge from 1 to 2, . . . , n′ is the
midpoint of the edge from n to 1). Or in other words, we have

Kr = ψ−1,

with ψ : NC(n)→ NC(n) as in the Exercise 2(h) of the warm-up set.

Exercise 4. Let (A, ϕ) be a ∗-probability space, let n be a positive integer, and let
a1, . . . , an be in A. For every non-empty subset A = {a1 < a2 < · · · < am} of [n] we denote
ϕ(ai1 · · · aim) =: ϕA ∈ C.

(a) Prove that:

κn(a1, . . . , an) =
∑

π∈NC(n)

π=:{A1,...,Ak}

α(π) · ϕA1 · · ·ϕAk , (2.4)

where {α(π) | π ∈ NC(n)} are some universal constants (not depending on a1, . . . , an, or
on the space (A, ϕ) that we started with).

(b) Prove that the universal constants α(π) from the part (a) of the exercise are described
as follows: Let π be in NC(n), and consider the Kreweras complement of π, Kr(π) =:
{B1, . . . , Bl}. Then we have

α(π) = s|B1| · · · s|Bl|,
where (sn)∞n=1 is the sequence of signed Catalan numbers, sn = (−1)n+1(2n−2)!/( (n−1)!n! )
for n ≥ 1.

Exercise 5. Let (A, ϕ) be a ∗-probability space. Let a1, . . . , an be elements of A, where
n ≥ 2, and suppose that at least one of a1, . . . , an is a scalar multiple of 1A. Prove that
κn(a1, . . . , an) = 0.

[Comment: This exercise becomes trivial if instead of working directly from the definitions
one invokes the Theorem 2.4 below. On the other hand, the proof (or at least one of the
possible proofs) of Theorem 2.4 makes use of the statement of this exercise.]

The main point about non-crossing cumulant functionals is the Theorem 2.4 below, due
to Speicher [4], which describes free independence in terms of cumulants. The relevant
fact to look for turns out to be the vanishing of mixed cumulants, as reviewed in the next
definition.

2.3 Definition. Let (A, ϕ) be a ∗-probability space and let A1, . . . ,As be a family
of unital ∗-subalgebras of A. We will say that A1, . . . ,As have vanishing mixed (non-
crossing) cumulants if the following happens:

1 ≤ i1, . . . in,≤ s, such that
not all of i1, . . . , in are equal to each other

a1 ∈ Ai1 , . . . , an ∈ Ain

 ⇒ κn(a1, . . . , an) = 0. (2.5)
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[Comment: Note that Definition 2.3 does not require the condition i1 6= i2, . . . , in−1 6= in
among the hypotheses of the implication (2.5), nor is there any requirement on the values
of ϕ(am), 1 ≤ m ≤ n.]

2.4 Theorem. Let (A, ϕ) be a ∗-probability space and let A1, . . . ,As be a family of
unital ∗-subalgebras of A. Then A1, . . . ,As are freely independent if and only if they have
vanishing mixed cumulants.

The upshot of Theorem 2.4 is thus: let (A, ϕ) be a ∗-probability space and let A1, . . . ,As
be a family of unital ∗-subalgebras of A, which are freely independent. Let U ⊆ A be the
subalgebra generated by A1, . . . ,As together. Then (as discussed in Section 1) ϕ|U can
be recaptured if we know the restrictions ϕ|A1, . . . , ϕ|As. The best way to do this isn’t,
however, via the route suggested in Section 1 (and started in Exercise 1), but goes via
non-crossing cumulants – we look at the non-crossing cumulant functionals restricted to
A1, . . . ,As, then we “fill in” all the possible mixed cumulants of these algebras as being
equal to 0, and finally we go back to computing moments via the Equation (2.3). For
someone who wants to practice such a computation, here is a concrete one in length n = 4.

Exercise 6. Let (A, ϕ) be a ∗-probability space, and let B, C be two unital ∗-subalgebras
of A, which are freely independent. Verify that for b1, b2 ∈ B and c1, c2 ∈ C we have

ϕ(b1c1b2c2) = κ2(b1, b2)κ1(c1)κ1(c2) + κ1(b1)κ1(b2)κ2(c1, c2)
+κ1(b1)κ1(b2)κ1(c1)κ1(c2),

and use this to give a shorter solution to the part (c) of Exercise 1.

3. The R-transform, and the addition of free elements

3.1 Definition (moments and moment series). Let (A, ϕ) be a ∗-probability space. It
is customary (in line with the probabilistic origin of the terminology we use) to refer to
the elements of A as random variables. In the same vein it is customary that, for a given
random variable a ∈ A, we refer to the number ϕ(an) by calling it the moment of order n
of a. The generating series for the moments of a,

Ma(z) :=
∞∑
n=1

ϕ(an)zn, (3.1)

is called the moment series of a.
This terminology extends to the situation when we deal with an s-tuple a1, . . . , as of

elements of A. The family

{ϕ(ai1 · · · ain) | n ≥ 1, 1 ≤ i1, . . . , in ≤ s}
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is called the family of joint moments of a1, . . . , as. These joint moments are the coefficients
of a formal power series in s non-commuting indeterminates z1, . . . , zs, which will be denoted
by Ma1,...,as and will be called the joint moment series of a1, . . . , as:

Ma1,...,as(z1, . . . , zs) :=
∞∑
n=1

s∑
i1,...,in=1

ϕ(ai1 · · · ain)zi1 · · · zin . (3.2)

3.2 Definition (the R-transform). Let (A, ϕ) be a ∗-probability space, and let
κn : An → C, n ≥ 1, be the non-crossing cumulant functionals for this space. On the other
hand, let a1, . . . , as be an s-tuple of elements of A. The family

{κn(ai1 , . . . , ain) | n ≥ 1, 1 ≤ i1, . . . , in ≤ s}

is called the family of joint (non-crossing) cumulants of a1, . . . , as. The series in
C〈〈z1, . . . , zs〉〉 which has these numbers as coefficients is called the joint R-transform
of a1, . . . , as, and will be denoted by Ra1,...,as :

Ra1,...,as(z1, . . . , zs) :=
∞∑
n=1

s∑
i1,...,in=1

κn(ai1 , . . . , ain)zi1 · · · zin . (3.3)

In particular, if a is an element of A, then the generating series

Ra(z) :=
∞∑
n=1

κn( a, a, . . . , a︸ ︷︷ ︸
n times

)zn, (3.4)

is called the R-transform of a.

3.3 Remark (free independence for random variables, and the R-transform). Let (A, ϕ)
be a ∗-probability space, and let a1, . . . , as be a family of elements of A. For the ease of the
discussion we will assume that the ai’s are selfadjoint (ai = a∗i , 1 ≤ i ≤ s).

For every 1 ≤ i ≤ s, let Pi denote the unital subalgebra (equivalently, ∗-subalgebra) of
A generated by ai; thus Pi consists of the elements of A which can be written as polynomial
expressions in ai. If the ∗-subalgebras P1, . . . ,Ps are freely independent, then we will say
that the random variables a1, . . . , as are freely independent.

Suppose now that a1, . . . , as are freely independent. By paraphrasing (and paralleling)
the discussion in Section 1, one can say that their free independence amounts to a recipe
for how to retrieve the joint moment series Ma1,...,as , from the knowledge of the individual
moment series Ma1 , . . . ,Mas . On the other hand, the discussion made in Section 2 tells
us that the best way for retrieving Ma1,...,as is by passing from moments to non-crossing
cumulants – i.e. to R-transforms. Indeed, at the level of R-transforms, the condition that
mixed cumulants vanish gives an extremely simple formula for Ra1,...,as (cf. Equation (3.5)
below). So the recommended way for getting at Ma1,...,as is by getting first the individual
R-transforms Ra1 , . . . , Ras , then by using Equation (3.5) to get Ra1,...,as , and finally by
passing back from cumulants to moments, to obtain what we need to know about Ma1,...,as .
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The formula announced above for the joint R-transform of a free family is stated as
follows (and is a version of the Theorem 2.4 in Section 2).

3.4 Theorem. Let (A, ϕ) be a ∗-probability space, and let a1, . . . , as be a family of
selfadjoint elements of A. Then a1, . . . , as are freely independent if and only if the following
equation holds:

Ra1,...,as(z1, . . . , zs) = Ra1(z1) + · · ·+Ras(zs) (3.5)

(equality of formal power series in C〈〈z1, . . . , zs〉〉).

The R-transform was originally pinned down by Voiculescu [6] because of its property
of “linearizing the addition” of freely independent random variables. In the approach to
R-transforms used here (which is not the same as in [6]) this property is an easy consequence
of what was discussed above.

Exercise 7. Let (A, ϕ) be a ∗-probability space.
(a) Let a and b be two selfadjoint elements of A, such that a is freely independent from

b. Prove that
Ra+b(z) = Ra(z) +Rb(z). (3.6)

(b) More generally, suppose that {a1, . . . , as} and {b1, . . . , bs} are two sets of selfad-
joint elements of A, such that the unital algebras generated by these two sets are freely
independent. Prove that we have

Ra1+b1,a2+b2,...,as+bs = Ra1,...,as +Rb1,...,bs (3.7)

(equality of formal power series in C〈〈z1, . . . , zs〉〉).

The next exercise is an illustration of how much a computation can be simplified by
going to R-transforms, as opposed to sticking exclusively to moments. We will use the
following definition.

3.5 Definition. Let (A, ϕ) be a ∗-probability space, and let a be a selfadjoint element
of A. We will say that a is semicircular of radius r > 0 if its moments are given by the
formula:

ϕ(an) =

{
0 if n is odd(

r2

4

)m
· (2m)!
m!(m+1)! if n is even, n = 2m.

(3.8)

[Comments: The justification of the name “semicircular” is better understood if one writes
the right-hand side of (3.8) in the form

∫ r
−r t

n · 2
πr2

√
r2 − t2 dt, which involves (the normal-

ization of) a density with a semicircular graph of radius r.
If r = 2, then the element a is said to be standard semicircular. In this case the even
moments of a are plainly given by the Catalan numbers.]
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Exercise 8. Let (A, ϕ) be a ∗-probability space.
(a) Suppose that a = a∗ ∈ A is semicircular of radius r. Prove that Ra(z) = r2

4 z
2.

Conversely, prove that if a = a∗ ∈ A has R-transform Ra(z) = r2

4 z
2, then a is semicircular

of radius r.
(b) Let a1, . . . , as be a freely independent family of selfadjoint elements ofA, and suppose

that ai is semicircular of radius ri, for 1 ≤ i ≤ s. By using R-transforms, prove that the
element a := a1 + · · ·+ as is semicircular of radius r :=

√
r2

1 + · · ·+ r2
s .

(c) Consider the possibility of solving the part (b) of this exercise solely in terms of
moments (by just using the Definition 3.5 and the material from Section 1), and compare
the relative difficulty of the two solutions.

3.6 Remark. Let (A, ϕ) be a ∗-probability space, let a be an element of A, and let us
consider the moment series Ma(z) and the R-transform Ra(z). These are two generating
functions,

∑∞
n=1 αnz

n and respectively
∑∞

n=1 βnz
n, which (according to the Equation (2.3)

expressing moments in terms of cumulants) are related by the formula:

αn =
∑

π∈NC(n)

π=:{A1,...,Ak}

β|A1| · · ·β|Ak|, n ≥ 1. (3.9)

It is worth recording that the Equations (3.9) for all n ≥ 1 can be consolidated in one
functional equation relating Ma and Ra, namely

Ma(z) = Ra

(
z(1 +Ma(z))

)
. (3.10)

Moreover, if ϕ(a) 6= 0, then the series Ma and Ra are invertible under composition and the
Equation (3.10) can be restated in the very pleasing form

R<−1>
a (w) = (1 + w)M<−1>

a (w), (3.11)

where “f<−1>” stands for the inverse under composition 1 of a series f(z) =
∑∞

n=1 γnz
n

with γ1 6= 0. For a more detailed discussion about this, see e.g. the Lecture 13 in [3].
The Exercise 8(a) consisted essentially in verifying that if in Equation (3.9) we have

β2 = r2/4 and βn = 0 for n 6= 2, then the αn’s have the form appearing on the right-hand
side of Equation (3.8). This is a very special case when no reformulation of Equation (3.9)
is needed (indeed, the only thing which one has to know in this special case is that the non-
crossing pairings of {1, . . . , 2m} are counted by the Catalan number (2m)!/(m!(m + 1)!)).
But there are other – still very reasonable – situations when the moment series or R-
transform which is needed does not pop out directly from (3.9), and the use of the Equations
(3.10) or (3.11) is useful. Such an example is given in the next exercise.

1That is, f<−1>(w) is determined by the relations f( f<−1>(w) ) = w, and/or f<−1>( f(z) ) = z.
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Exercise 9. Let (A, ϕ) be a ∗-probability space, let p ∈ A be an idempotent element
(p = p2), and denote ϕ(p) =: α. Verify that the R-transform of a satisfies the quadratic
equation

Ra(z)2 + (1− z)Ra(z)− αz = 0.

4. Convolution in the lattices of non-crossing partitions, and multipli-
cation of free elements

4.1 Definition. Let Co[[z]] denote the set of generating series of the form f(z) =∑∞
n=1 αnz

n, where α1, α2, α3, . . . ∈ C. On Co[[z]] we define an operation called boxed
convolution, ?, by the following rule: given f(z) =

∑∞
n=1 αnz

n and g(z) =
∑∞

n=1 βnz
n in

Co[[z]], we set f ? g =:
∑∞

n=1 γnz
n with

γn =
∑

π∈NC(n)

π=:{A1,...,Ak}
Kr(π)=:{B1,...,Bl}

α|A1| · · ·α|Ak| β|B1| · · ·β|Bl|, n ≥ 1. (4.1)

4.2 Remark. It can be argued that the operation ? of Definition 4.1 “lies at mid-
distance” between the convolution operation (in lattice sense) on the NC(n)’s, and the
multiplication of free random variables.

On one hand, concerning the connection to convolution on the NC(n)’s: A basic fact
about the structure of the lattices NC(n) is that every interval [π, ρ] ⊆ NC(n) has a
canonical factorization as a direct product,

[π, ρ] ' NC(1)k1 ×NC(2)k2 × · · · ×NC(n)kn , (4.2)

for some k1, k2, . . . , kn ≥ 0. By using (4.2), we can associate to every series f(z) =∑∞
n=1 αnz

n ∈ Co[[z]] a function

f̃ : ∪n≥1{ [π, ρ] | π ≤ ρ in NC(n) } → C,

where for [π, ρ] factored as in (4.2) we set

f̃( [π, ρ] ) = αk1
1 α

k2
2 · · ·α

kn
n .

This f̃ is called the multiplicative function associated to f . It is easy to verify that if
f ? g = h in Co[[z]], then the corresponding multiplicative functions satisfy

f̃ ? g̃ = h̃, (4.3)

where the operation “∗” in Equation (4.3) is convolution in the large incidence algebra of
the lattices of non-crossing partitions.
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Thus, in a certain sense, the operation ? introduced in Definition 4.1 is just convolution
in lattice sense, for a special class of functions on (intervals in) the NC(n)’s.

But on the other hand, ? is equally close the operation of multiplying free random
variables; indeed, we have (Nica and Speicher [1], [2]):

4.3 Theorem. Let (A, ϕ) be a ∗-probability space, and let B, C ⊆ A be two unital
∗-subalgebras which are freely independent. Then we have

Rbc = Rb ? Rc, (4.4)

for every b ∈ B, c ∈ C.

4.4 Remarks and Notations. The operation ? is associative and commutative. These
properties can be verified by using either the connection between ? and the convolution on
NC(n)’s, or the Theorem 4.3. For instance the associativity follows naturally from Theorem
4.3 and the fact that there exist “free product constructions” which allow us to build a
triplet of freely independent elements with prescribed R-transforms (in some suitably large
∗-probability space). On the other hand it is more natural to check the commutativity of
? directly from the Equation (4.1) – indeed, the only point that has to be observed there
is that (for any given π ∈ NC(n)) the partitions Kr(π) and Kr−1(π) have the same block
sizes.

It is moreover obvious that the series

∆(z) := z ∈ Co[[z]]

is the unit for ?, and that f(z) =
∑∞

n=1 αnz
n ∈ Co[[z]] is invertible with respect to ? if and

only if α1 6= 0.
We will use the notation

Zeta(z) =
∞∑
n=1

zn ∈ Co[[z]].

The inverse of Zeta with respect to ? will be denoted by Moeb, and is written explicitly as

Moeb(z) =
∞∑
n=1

(−1)n+1(2n− 2)!
(n− 1)!n!

zn.

The boxed convolution with Zeta and with Moeb had in fact already appeared in the Section
3 – indeed, it is clear (by looking e.g. at the Equation (3.9) in Remark 3.6) that we have

Ma = Ra ? Zeta, (4.5)

and hence
Ra = Ma ? Moeb, (4.6)

for every element a in a ∗-probability space.
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Exercise 10. Let (A, ϕ) be a ∗-probability space. Suppose that a = a∗ ∈ A is a
standard semicircular element, and that e ∈ A is a selfadjoint projection (that is, e∗ = e =
e2), such that a and e are freely independent. We denote ϕ(e) =: α. Consider the new
selfadjoint element b := aea ∈ A. Prove that

Rb(z) =
αz

1− z
.

[Comments: It is easy to see, by invoking the Exercise 3, that Mb = Ma2e, and hence that
Rb = Ra2e; the reason for prefering b to a2e in the statement of the exercise is that b = b∗.
On the other hand, a quick solution can be given by applying Theorem 4.3 to the product
a2 · e, and by observing that Ra2 = Zeta.]

4.5 Remark (the S-transform). An efficient method for computing the moments of a
product of two freely independent random variables is via the S-transform. Let (A, ϕ) be
a ∗-probability space, and let a ∈ A be such that ϕ(a) 6= 0. In [7], Voiculescu introduced
the S-transform of a by the formula

Sa(w) =
1 + w

w
M<−1>
a (w), (4.7)

where (same as in Section 3) the superscript “< −1 >” indicates inverse under composition
(Sa(w) is thus a power series in w, with constant term equal to 1/ϕ(a)). The main result
of [7] is that one has the equation

Sbc = Sb · Sc, (4.8)

holding in exactly the same framework as in Theorem 4.3. (Hence if we know the moment
series Mb, Mc and we want to compute Mbc, then the most efficient way of doing that can
be – at least in some examples – via the S-transforms Sb, Sc.) The formula (4.8) is proved
in [7] with an argument of analytic inspiration.

The way how the S-transform fits in the framework of the boxed convolution operation
? (and in particular what is the connection between the equations (4.4) and (4.8)) was
explained by Nica and Speicher in [2]. For a series f(z) =

∑∞
n=1 αnz

n ∈ Co[[z]] which
has α1 6= 0, let us denote by F(f) the series 1

wf
<−1>(w). The main result of [2] is that

F(·) converts the boxed convolution into plain multiplication of series; that is, we have the
equality

F( f ? g ) = F(f) · F(g), (4.9)

holding for all f, g ∈ Co[[z]] with non-vanishing coefficients of degree 1. On the other hand,
let us observe that if a is an element in the ∗-probability space (A, ϕ), with ϕ(a) 6= 0, then

Sa = F(Ra); (4.10)

indeed, we have

[F(Ra) ](w) =
1
w
R<−1>
a (w) =

1 + w

w
M<−1>
a (w) = Sa(w)
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(where we also took into account the Equation (3.11) of Remark 3.6). But then the multi-
plicativity of the R-transform is an immediate consequence of (4.4), (4.9) and (4.10).

Exercise 11. Let (A, ϕ) be a ∗-probability space, and suppose that p, q ∈ A are such
that p = p∗ = p2, q = q∗ = q2, and such that p is freely independent from q. Consider
the new selfadjoint element b = pqp ∈ A. Prove that the moment series of b satisfies the
quadratic equation

(z − 1)Mb(z)2 +
(

(α+ β)z − 1
)
Mb(z) + αβz = 0,

where we denoted ϕ(p) =: α, ϕ(q) =: β.

4.6 Definition and Remarks (the multivariable version of ? ). Let s be a positive
integer, and let us consider the set Co〈〈z1, . . . , zs〉〉 of formal power series of the kind which
appeared in Equations (3.2), (3.3) of Section 3. That is, Co〈〈z1, . . . , zs〉〉 consists of the
series of the form:

f(z1, . . . , zs) =
∞∑
n=1

s∑
i1,...,in=1

α(i1,...,in)zi1 · · · zin , (4.11)

where {α(i1,...,in) | n ≥ 1, 1 ≤ i1, . . . , in ≤ s} is a family of complex coefficients. The
operation of boxed convolution ? from Definition 4.1 can be naturally generalized to a
binary operation ?s on Co〈〈z1, . . . , zs〉〉 (where ?s = ? if it happens that our s is s = 1).
In order to give the precise definition of ?s let us introduce the following notation: if
f ∈ Co〈〈z1, . . . , zs〉〉 has the coefficients denoted as in Equation (4.11), and if we are given
a partition π = {A1, . . . , Ak} ∈ NC(n) and some values i1, . . . , in ∈ {1, . . . , s}, then we will
denote

[ f ]i1,...,in;π :=
k∏
j=1

α( (i1,...,in)|Aj ). (4.12)

(For instance if π = { {1, 3}, {2}, {4} } ∈ NC(4), then [ f ]i1,i2,i3,i4;π = α(i1,i3)α(i2)α(i4).) In
terms of the notation in (4.12), the operation ?s is defined by the following formula:

coefficient of zi1 · · · zin in f ?s g =
∑

π∈NC(n)

[ f ]i1,...,in;π · [ g ]i1,...,in;Kr(π), (4.13)

for f, g in Co〈〈z1, . . . , zs〉〉, and for n ≥ 1, 1 ≤ i1, . . . , in ≤ s.
It is still true that ?s is associative, but ?s is not commutative for s ≥ 2. The unit for

?s is the series
∆s(z1, . . . , zs) = z1 + · · ·+ zs,

and a series in Co〈〈z1, . . . , zs〉〉 is invertible if and only if all its s coefficients of degree 1 are
different from zero. The multivariable Zeta series is

Zetas(z1, . . . , zs) =
∞∑
n=1

s∑
i1,...,in=1

zi1 · · · zin ,
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and its inverse with respect to ?s is

Moebs(z1, . . . , zs) =
∞∑
n=1

s∑
i1,...,in=1

(−1)n+1(2n− 2)!
(n− 1)!n!

zi1 · · · zin .

It is easily checked that Zetas and Moebs are central with respect to ?s (i.e. they ?s–
commute with every f ∈ Co〈〈z1, . . . , zs〉〉). For a more detailed discussion about this, see
[1] or the Lecture 12 in [3].

The good relations between boxed convolution and free random variables extend to the
multivariable case. On one hand, the connection between the joint moment series and joint
R-transform (appearing in the Equations (3.2) and (3.3) of Section 3) can now be stated as
follows.

4.7 Proposition. Let (A, ϕ) be a ∗-probability space, and let a1, . . . , as be elements of
A. Then the joint moment series Ma1,...,as and the R-transform Ra1,...,as are related by

Ma1,...,as = Ra1,...,as ?s Zetas, (4.14)

or equivalently by
Ra1,...,as = Ma1,...,as ?s Moebs. (4.15)

On the other hand, the Theorem 4.3 also generalizes to the multivariable case.

4.8 Theorem. Let (A, ϕ) be a ∗-probability space, and let B, C ⊆ A be two unital
∗-subalgebras which are freely independent. Then for any s-tuples b1, . . . , bs ∈ B and
c1, . . . , cs ∈ C we have

Rb1,...,bs ?s Rc1,...,cs = Rb1c1,...,bscs . (4.16)

As an illustration on how the multivariable boxed convolution can work, here is a gen-
eralization of Exercise 10.

Exercise 12. Let (A, ϕ) be a ∗-probability space. Let a = a∗ ∈ A be a standard
semicircular element, and let e1, . . . , es ∈ A be a family of mutually orthogonal selfadjoint
projections (that is, e∗i = ei = e2

i for 1 ≤ i ≤ s, and eiej = 0 for 1 ≤ i < j ≤ s), such that
the unital algebra generated by a is freely independent from the unital algebra generated by
{e1, . . . , es}. We denote ϕ(ei) =: αi, for 1 ≤ i ≤ s. Consider the new selfadjoint elements
bi := aeia ∈ A, 1 ≤ i ≤ s.

(a) Prove that
Rb1,...,bs(z1, . . . , zs) =

α1z1

1− z1
+ · · ·+ αszs

1− zs
.

(b) Conclude that the random variables b1, . . . , bs are freely independent.
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Since the considerations about ? seem to generalize so nicely to several variables, one
would hope to also have a multi-variable version of the S-transform of Voiculescu. But it is
not known how to obtain such an object.

Problem. Find a multi-variable generalization for the S-transform.

A possible way to approach this problem could go by finding a multi-variable analogue
for the operator F(·) which appeared in the Equations (4.9), (4.10) of the Remark 4.5 – or
in other words, by gaining a better understanding for what is the group of invertibles in the
semigroup

(
Co〈〈z1, . . . , zs〉〉, ?

)
.

References

[1] A. Nica, R. Speicher. On the multiplication of free n-tuples of non-commutative random
variables, with an appendix Alternative proofs for the type II free Poisson variables and
for the free compression results by D, Voiculescu, American Journal of Mathematics
118 (1996), 799-837.

[2] A. Nica, R. Speicher. A ‘Fourier transform’ for multiplicative functions on non-crossing
partitions, Journal of Algebraic Combinatorics 6 (1997), 141-160.

[3] A. Nica, R. Speicher. Notes of lectures given at the Henri Poincaré Institute in the Fall
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