
WARM-UP IN TYPE A: NONCROSSING,

NONNESTING PARTITIONS AND ASSOCIAHEDRA

VICTOR REINER

1. The goal

These exercises are intended for the first “workshop” during the AIM
conference on “Braid groups, clusters, and free probability”, January
10-14, 2005. The goal is for the participants to work (in groups or
individually) through some of the exercises in order to gain familiarity
with some of the objects that will pervade the later discussions. The
exercises are not intended to be challenging. It is hoped that people
will choose to do the set of exercises pertaining to the objects with
which they have the least prior familiarity.

An auxiliary goal of each set of exercises is to indicate how the various
objects in type A may be generalized at least to all finite Weyl groups,
and in some cases to all finite (real) reflection groups.

We have not given complete references or attributions for various
facts. All references given are available at the conference web-site:
www.math.ucsb.edu/∼mccammon/aim-conference.

Date: December 2004.
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2. Warm-up exercises on noncrossing partitions

Let W = Sn denote the symmetric group on n letters. Let T denote
the set of all transpositions t = (i j) for 1 ≤ i < j ≤ n, considered as a
generating set1 for W.

(a) Let c(w) denote the number of cycles in the cycle decomposition of
w, counting fixed points each as one cycle. Show that if t = (i j) then

c(wt) =

{

c(w) − 1 if i, j lie in different cycles of w,

c(w) + 1 if i, j lie in the same cycle of w.

(b) Show that the (absolute) length function2

`T (w) := min{` : w = t1t2 · · · t` for some ti ∈ T}

has these equivalent reformulations:

`T (w) = n− c(w) = codimR (V w)

where V = Rn carries the defining representation of W = Sn permuting
coordinates, and V w is the subspace of vectors fixed pointwise by w.

(c) Define a binary relation < on W by taking the reflexive, transitive
closure of the relation w < wt for w ∈ W, t ∈ T with `T (w) < `T (wt).
Show that ≤ is a partial order on W having the identity element e as
its unique minimum element.

(d) Show that u ≤ v if and only if

`T (u) + `T (u−1v) = `T (v).

Show that `T gives a rank function for ≤ on W in the sense that every
maximal totally ordered subset (chain) in the interval from e to w has
length `T (w).

Recall the definition of the poset of noncrossing partitions NC(n). It
is a subposet of the refinement order Πn on all partitions of the n-
element set [n] := {1, 2, . . . , n}, and consists of those partitions whose
blocks have disjoint convex hulls when [n] labels (in clockwise order)
the vertices of a convex n-gon.

1Warning: this is not a set of Coxeter generators for W , such as the set S of all
adjacent transpositions.

2And, of course, this is not the usual Coxeter group length function `S(w).
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(e) Let c be the n-cycle (123 · · ·n− 1n) in W . Show that w ≤ c in the
partial order on W if and only if the cycles of w form a noncrossing
partition of [n] in which each cycle is directed clockwise around the
n-gon.

(f) Show that NC(n) ∼= [e, c]< where [e, c]< denotes the interval from
e to w in the partial order on W described above.

The next two exercises show thatNC(n), as well as each of its intervals,
is self-dual as a poset. It is perhaps not crucial for a first pass through,
but is important both for the discussion of Garside structures and for
free probability.

Assume u ≤ w in the above partial order on W . Let v be an element
in the interval [u, w]<, so that v = ua and w = vb = uab for some a, b
such that `T (u) + `T (a) + `T (b) = `T (w). Define ϕ(v) := u · aba−1, so
that w = ϕ(v) · a.

(g) Show that ϕ maps [u, w]< into itself, bijectively, and reverses the
order: if u < v1 < v2 < w then u < ϕ(v1) < ϕ(v2) < w.

(h) In the framework of exercise (g), consider the situation when u = e

and w = c, so that [u, w]< ∼= NC(n) by exercise (f). In this case ϕ
corresponds under the isomorphism to an anti-automorphism ψ of the
lattice NC(n).

Prove that for a non-crossing partition π ∈ NC(n), the partition
ψ(π) can be described as follows: subdivide the edges of the n-gon
whose vertices are labelled 1, . . . , n, letting 1′, . . . , n′ be the midpoints
of the edges from n to 1, from 1 to 2, . . . , from n− 1 to n, respectively.
Then ψ(π) is the coarsest partition in the lattice NC({1′, . . . , n′}) such
that π and ψ(π) together form a non-crossing partition of

{1′, 1, 2′, 2, . . . , n′, n}

with respect to this labelling of a 2n-gon.

Remark 2.1. One can use the ideas in parts (a)-(f) to generalize the
definition of NC(n) from W of type An−1 to any finite Coxeter system
(W,S). Let V be the usual reflection representation of W of dimension
|S|, so that the set T of W -conjugates of S are the reflections in this
representation, and the (absolute) length `T (w) turns out to coincide
with codimR(V w).
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Let c be any Coxeter element, that is, a product of the elements
of S in some order. Finiteness of W is well-known to imply that c is
well-defined up to W -conjugacy. Finally, let NC(W,S) be the poset
[e, c]<.

It turns out that NC(W,S) is a graded, self-dual lattice of rank
|S|, with rank function `T . Furthermore the map w 7→ V w embeds
NC(W,S) as a subposet of ΠW , where ΠW is the poset (lattice) of
all intersections of reflecting hyperplanes from W , ordered by reverse
inclusion [2].

Case-by-case verifications have shown thatNC(W,S) has cardinality

1

|W |

r
∏

i=1

(ei + h+ 1)

where ei are the exponents of W , and h is the Coxeter number.

3. Warm-up exercises on nonnesting partitions

Recall the definition of the poset of nonnesting partitions NN(n).
Given a partition π of the set [n] := {1, 2, . . . , n}, a bump of π is a pair
(i, j) in the same block of π with no integers k having i < k < j in the
same block. Then NN(n) is a subposet of the refinement order Πn on
all partitions of [n], and consists of those partitions having no pair of
bumps (i, j) 6= (i′, j ′) which are nested: i ≤ i′ ≤ j ′ ≤ j.

Consider the usual crystallographic root system Φ of type An−1,
along with one of its usual choices of positive roots Φ+:

Φ := {ei − ej : 1 ≤ i 6= j ≤ n}

Φ+ := {ei − ej : 1 ≤ i < j ≤ n}

Let NΦ+ denote the set of all nonnegative integral combinations of the
positive roots.

(a) Show that a partition π of [n] is the transitive closure of the relation
determined by its collection of bumps, and hence that π is uniquely
determined by its bumps. Show that the collection of bumps (i, j) of
a partition π always corresponds to a linearly independent set of roots
ei − ej in Φ+.

(b) Show that the relation on Φ+ defined by

α′ ≤ α if α− α′ ∈ NΦ+

defines a partial order on Φ+. We will call this the (positive) root poset.
Draw this poset for n = 2, 3, 4, 5.
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(c) Show that two bumps (i, j), (i′, j ′) are nested if and only if their
corresponding roots α = ei − ej, α

′ = ei′ − ej′ satisfy α′ < α.

Consequently, the map that sends a nonnesting partition π to the roots
corresponding to its bumps gives a bijection between NN(n) and the
set of all antichains (= collections of pairwise incomparable elements)
in the positive root poset.

Recall that an order filter in a poset P is a subset F ⊆ P with the
property that x ∈ F and y > x in P implies y ∈ F .

(d) For any poset P show that the map sending an antichain A to the
set F := {x ∈ P : x ≥ a for some a ∈ A} gives a bijection between the
antichains in P and the filters in P .

Let g be the Lie algebra sln of all n× n matrices over C, with a choice
of Borel subalgebra b consisting of all upper triangular matrices, and its
nilradical n consisting of all strictly upper triangular matrices. Recall
the decomposition

n =
⊕

α∈Φ+

gα

where gα for a root α = ei − ej is its root subspace, consisting of all
matrices that contain at most one non-zero entry in row i and column
j. Recall that an ideal a of a Lie algebra g is a linear subspace satisfying
a ⊆ g satisfying [g, a] ⊆ a.

(e) Show that the ideals of b contained in n are exactly those of the
form

⊕

α∈F gα where F is some filter in the positive root order on Φ+.
Explain how to biject such ideals with antichains in Φ+ and nonnesting
partitions.

Consider the Shi arrangement of hyperplanes in V = Rn, namely the
hyperplanes of the form 〈x, α〉 = 0, 1 as α ranges through Φ+. Re-
moving these hyperplanes from V leaves open connected components
called regions. This arrangement is depicted for n = 3 in Figure 3,
after modding out by the 1-dimensional subspace x1 = · · ·xn which is
parallel to all of the hyperplanes. Here the positive cone containing the
regions where 〈x, α〉 > 0 is shown shaded.

(f) Given a region R of the Shi arrangement lying in the positive cone,
let F be the collection of positive roots α ∈ Φ+ satisfying 〈x, α〉 > 1



6 VICTOR REINER

Figure 1. The Shi arrangement for n = 3 (or type A2),
with the positive cone shaded. Figure taken from [4]

for every x ∈ R. Show that F is a filter in the positive root order.
Explain how this gives an injective map from the set of such regions
to antichains in Φ+ and nonnesting partitions. (This map turns out to
be bijective, but this is not obvious.)

Remark 3.1. One can use this idea to generalize the definition ofNN(n)
from the root system Φ of type An−1 to any finite crystallographic root
system Φ, along with a choice of positive roots Φ+. Let NN(Φ) be
the set of all antichains A in the positive root order on Φ+, and order
these antichains by reverse inclusion of their corresponding intersection
subspace

⋂

α∈A α
⊥.

It turns out that this map A 7→
⋂

α∈A α
⊥ embeds NN(Φ) as a sub-

poset of the poset (lattice) of intersections of the reflecting hyperplanes
for Φ. It can also be shown that an antichain A of positive roots is
always linearly independent, and hence the cardinality |A| is the codi-
mension of the corresponding intersection subspace

⋂

α∈A α
⊥.

As above, one can biject these antichains A to filters F in the positive
root order, and then to ideals a in the nilradical n of a Borel subalgebra
b for the associated semisimple Lie algebra g. One can also biject the
regions of the Shi arrangement lying in the positive (dominant) cone
with such filters. The latter can be used to prove uniformly (see [1, 3])
that the number of antichains in the positive root poset obeys the
formula

1

|W |

r
∏

i=1

(ei + h+ 1)

where W is the Weyl group associated to Φ, the ei are the exponents
of W , and h is the Coxeter number.
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4. Warm-up exercises on associahedra and clusters

Recall that the (n−1)-dimensional associahedron is a simple convex
polytope whose vertices correspond to triangulations of an (n+2)-gon,
and whose edges correspond to pairs of triangulations that differ by
a diagonal flip within a quadrilateral common to both triangulations.
The goal here will be to think about its dual polytope, the (n − 1)-
dimensional (simplicial) associahedron in a different way: we will define
its boundary complex in a fairly natural way as an abstract simplicial
complex.

Consider a vertex set V indexed by the interior diagonals of a convex
(n + 2)-gon P . Say that two such diagonals α, α′ are compatible if
they do not cross, that is, their interiors are disjoint. Let G = (V,E)
be the graph on vertex set V whose edge set E consists of pairs of
compatible diagonals. Let ∆ be the abstract simplicial complex on
vertex V whose simplices are the subsets F ⊂ V consisting of pairwise
compatible diagonals3.

(a) Explain how the simplices of ∆ biject with polygonal subdivisions
of P that introduce no new (interior) vertices, that is, decompositions
of P into convex polygons whose vertices are a subset of the vertices of
P . Explain how facets (=maximal simplices) of ∆ biject with triangu-
lations of P .

(b) Show that every facet of ∆ has dimension (n − 2), that is, ∆ is a
pure (n− 2)-dimensional complex.

(c) Show that two facets of ∆ share an (n − 3)-face if and only if
their corresponding triangulations differ by a diagonal flip. Prove that
∆ is an (n − 2)-dimensional pseudomanifold: every (n − 3)-face lies
in exactly two facets, and for any two facets F, F ′ there exists is a
gallery F = F0, F1, . . . , Fr−1, Fr = F ′ of facets in which Fi, Fi+1 share
an (n− 3)-face for each i = 0, 1, ..., r − 1.

In fact, since ∆ happens to be the boundary complex of a simplicial
(n− 1)-dimensional polytope, it triangulates an (n− 2)-sphere, but we
won’t prove that here. Rather, we wish to rephrase the compatibility
graph G = (V,E) (and hence also its clique complex ∆) in terms of
the root system of type An−1.

3Sometimes ∆ is called the clique complex or flag complex associated with the
graph G which is its 1-skeleton.
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Consider the usual system of roots, positive roots, simple roots for
type An−1:

Φ := {ei − ej : 1 ≤ i 6= j ≤ n}

Φ+ := {αij = ei − ej : 1 ≤ i < j ≤ n}

Π := {αi = ei − ei+1 : 1 ≤ i ≤ n− 1}

and define the almost positive roots

Φ≥−1 := Φ+ t (−Π).
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Figure 2. The “snake” of interior diagonals corre-
sponding to the negative simple roots −Π for n = 6 (or
type A5). Figure taken from [4].

(d) Show that |V | = |Φ≥−1| =
(

n+1

2

)

− 1. Show that one can biject the
set of interior diagonals V with Φ≥−1 in the following way. Identify
−Π with the diagonals in the “snake” as depicted in Figure 2 below.
Then for 1 ≤ i < j ≤ n identify the positive root

αij = αi + αi+1 + · · ·+ αj−1

with the unique interior diagonal that crosses (i.e. is incompatible with)
exactly the set of snake diagonals labelled by −αi,−αi+1, . . . ,−αj−1.

(e) Show that for every interior diagonal in V , there exists at least one
rotational symmetry of P carrying it into a snake diagonal.

(f) Note that two diagonals in V are compatible if and only if their
images under any symmetry of P are compatible. Show that if a pair of
diagonals correspond to almost positive roots α, α′ with α = −αi ∈ −Π
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(i.e. α is in the snake), then the pair is compatible if and only if
the unique expansion of α′ in terms of the simple roots αj has zero
coefficient on αi.

Remark 4.1. One can use this idea to generalize the definition of ∆ from
the root system Φ of type An−1 to any finite (real) reflection group W .

The root system, positive roots, simple roots, and almost positive
roots Φ≥−1 still make sense as above. The cluster complex ∆ is again
the clique complex on vertex set Φ≥−1, having as its 1-skeleton a graph
defined by a certain compatibility relation on almost positive roots.
Subsets of Φ≥−1 whose elements are pairwise compatible are called
clusters.

The compatibility relation is easily described when one of the roots
is a negative simple root −αi: an almost positive root β is compatible
with −αi if and only if the unique expansion β =

∑

i cjαj into simple
roots αj has ci = 0. One can then extend the definition of compatiblity
to all pairs of almost simple roots using an action of a dihedral group
on Φ≥−1 (corresponding to the action of the symmetries of the polygon
P above). Every almost positive root has at least one negative simple
root in its orbit under this dihedral action.

The dihedral action comes from a deformation of the usual dihedral
action on a 2-plane arising in the theory of the Coxeter element, us-
ing the two-coloring of the Coxeter generators S that comes from the
Coxeter diagram being a tree. For a more precise description of this
dihedral action, see [4, §4.3].

Case-by-case verifications have shown that the number of clusters
has cardinality

1

|W |

r
∏

i=1

(ei + h+ 1)

where ei are the exponents of W , and h is the Coxeter number.
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