NOTES FOR OCTOBER 4, 2004

JON MCCAMMOND

One must be able to say at all times - instead of points, straight lines and planes - tables, chairs, and beer mugs.

David Hilbert (1862-1930)

1. Equivalent metrics

We have now defined metrics d_p on \mathbb{R}^n for all $p \in [1, \infty]$. How different are these metrics? Can we find a function f between \mathbb{R}^n and some metric space (A, d)such that f is continuous when \mathbb{R}^n is given one metric d_p but not continuous when assigned another metric d_q ? The answer is no. First note that the composition of continuous maps is continuous (easy exercise). Next, consider the identity map from \mathbb{R}^n to itself, with the domain and range given different metrics. These maps are also continuous.

Proposition 1.1. The identity map on \mathbb{R}^n is (d_p, d_q) continuous, $\forall p, q \in [1, \infty]$.

Proof. Every d_p (or d_q) ball contains a diamond and is contained in a square. As a result, every d_p -ball of radius ϵ contains a d_q -ball (centered at the same point) of radius δ for some $\delta > 0$.

Corollary 1.2. If (A, d) is a metric space and $f : A \to \mathbb{R}^n$ is a function, then f is (d, d_p) continuous if and only if f is (d, d_q) continuous for all $p, q \in [1, \infty]$. Similarly, if (C, d') is a metric space and $g : \mathbb{R}^n \to C$ is a function, then g is (d_p, d') continuous if and only if g is (d_q, d') continuous for all $p, q \in [1, \infty]$.

Because of this, the metrics d_p on \mathbb{R}^n for all $p \in [1, \infty]$ are considered equivalent.

Remark 1.3. The same holds for the L^p metrics on $\mathcal{C}([a, b], \mathbb{R}), p \in [1, \infty]$.

Definition 1.4 (Equivalent metrics). Two metrics d_1 and d_2 on B are equivalent if and only for all functions $f: A \to B$ and $g: B \to C$ and for all metrics d and d' on A and C, f is (d, d_1) continuous if and only if f is (d, d_2) continuous and g is (d_1, d') continuous if and only if g is (d_2, d') continuous.

Lemma 1.5. d_1 and d_2 are equivalent metrics on B if and only if the identity function on B is (d_1, d_2) continuous and (d_2, d_1) continuous, which is true if and only if every d_1 -ball contains some d_2 -ball centered at the same point and every d_2 -ball contains some d_1 -ball centered at the same point.

Definition 1.6 (Homeomorphism). A bijection $f : A \to B$ (between metric spaces) is called a *topological equivalence* or *homeomorphism* if both f and f^{-1} are continuous.

The previous lemma, restated says that two metrics on B are equivalent if and only if the identity map is a homeomorphism.

Date: October 4, 2004.

2. Open sets

Lemma 2.1. Let (A, d) be a metric space. For every $y \in B_{\epsilon}(x)$ there is a δ such that $B_{\delta}(y) \subset B_{\epsilon}(x)$.

Definition 2.2 (Open sets). A set U is open if for every point $x \in U$ there is a open ball containing x and contained in U.

By the previous result, open balls are open sets. Also notice that if d and d' are equivalent metrics then balls in the d metric are open sets in the d' metric and vice versa.

Previously defined properties can be redefined in terms of open sets.

Proposition 2.3. A map $f : (A, d) \to (B, d')$ is continuous if and only if the inverse image of each open set is open.

Proposition 2.4. Two metrics are equivalent if and only if they define the same collection of open sets.

What properties do the open sets satisfy? It isn't too hard to see that the collection of open sets in a metric space are closed under fininte intersections and arbitrary unions. Trivially, the empty set and the whole space are open sets. This is now our definition of a topology.