
NOTES FOR SEPTEMBER 27, 2004

JON MCCAMMOND

God made the integers, and all the rest is the work of man.

Leopold Kronecker (1823-1891)

1. Set theory

You should be familiar with the basics of set theory up to and including the
Axiom of Choice. Here is a brief review of some of the highlights.

Remark 1.1 (Building the number systems). Should one choose to do so, the
integers can be constructed out of the naturals, the rationals out of the integers, and
the complex numbers out of the reals by fairly elementary algebraic constructions.
The construction of the reals from the rationals is another matter entirely. The
two most common methods are by means of Dedekind cuts and by metric space
completion. The latter is the method outlined in the appendix.

Recall that an ordered set is said to be well-ordered if every nonempty subset
has a least element.

Axiom 1.2 (Well-ordering axiom). The natural numbers with their usual ordering

is a well-ordered set.

This axiom is logically equivalent to the principle of induction. There is also a
strong version which extends this property to all sets.

Axiom 1.3 (Well-ordering principle). Every set has an ordering which is well-

ordered.

This stronger version is logically equivalent to the Axiom of Choice.

Axiom 1.4 (Axiom of Choice: classic version). If S is a collection of pairwise

disjoint nonempty sets, then there is another set T which contains exactly one

element from each of the elements of S.

Here is my favorite version.

Axiom 1.5 (Axiom of Choice: function version). If f : X → Y is an onto function,

then there exists a function g : Y → X such that f ◦ g = 1Y .

Other common versions are Zorn’s lemma and the Maximum Principle. If you
have never gone through and carefully shown that all of these versions are logically
equivalent, it is an excellent exercise. Finally, you should be quite clear on the
distinction between countable and uncountable and know the difference between ω,
ℵ0, and c.
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Definition 1.6 (Cardinals). Two sets are said to have the same cardinality if there
is a bijection between them, and A is larger than B if there is an injection from B

to A. Then Cantor-Schoeder-Bernstein theorem shows that this definition of size
is indeed an ordering (i.e. A ≤ B and B ≤ A implies A and B have the same
cardinality). Assuming the axiom of choice cardinality is a total order (i.e. for
all A and B, either A ≤ B or B ≤ A). The notations ℵ0 and c are used for the
cardinalities of N (or Z or Q) and R (or C), respectively. Sets with cardinality ℵ0

are called countable. Larger sets are uncountable. As you can see, then algebraic
constructions do not change the cardinalities, but metric completion does.

You should also be familar with Cantor’s diagonal argument (although we won’t
review it here).

Definition 1.7 (Ordinals). The ordinals are well-ordered sets. This is a finer
distinction among ordered sets in the sense that distinct well-ordered sets can have
the same cardinality. The natural numbers with their usual ordering are the ordinal
denoted by ω. Ordinal addition is unusual in the sense that it is non-commutative.
1 + ω = ω but ω + 1 is different from (and bigger than) ω, even though both have
the same cardinality (i.e. ℵ0). Ordinal arithmetic will not be needed, but I will
occasionally refer to ω.

2. Real numbers

As highlighted in the text, the key property which distinguishes the reals from the
rationals is the LUB property (rewritten here as the GLB property to emphasize its
similarity to (and difference from) the Well-Ordering Axiom and the Well-Ordering
Principle.

Axiom 2.1 (GLB property). Every nonempty subset of the reals which is bounded

below has a greatest lower bound.

The big difference here is that while least elements are greatest lower bounds,
greatest lower bounds need not be least elements for the sole reason that they may
belong to the subset for which they are the glb. This axiom quickly implies the
completeness of the reals as well as the Archimedian Ordering Priniciple.

Theorem 2.2 (Archimedian ordering principle). There is no real number which is

an upper bound for the natural numbers.

As we shall see later, there are other distance functions on the natural numbers
which fail to have this property. These are derived from p-adic absolute values.

3. Functions

As an early motivation for the transition from real analysis to metric spaces,
I briefly reviewed some of the major ideas behind Fourier analysis and tried to
encourage you to think of functions as “vectors” in the following sense.

The collection {f : {1} → R} is clearly in one-to-one correspondence with R

itself. The collection {f : {1, 2} → R} is in one-to-one correspondence with R2,
where the image of 1 corresponds to the first coordinate and the image of 2 corre-
sponds to the second coordinate. Similarly, The collection {f : {1, 2, . . . , n} → R}
can be thought of as Rn.
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Remark 3.1 (Notation). Combinatorialists use [n] to denote the set {1, 2, . . . , n}
and I will use this notation where convenient, even though the text does not. An-
other general notation, if A and B are sets, we use AB to mean the collection of
functions from B to A. This notation matches our expectations about size. The
size of AB is the |A||B|.

Notice that we can use this bijection to define a natural vector space structure
on R[n] which matches that of Rn. In particular, if f and g are two functions in
R[n] then the image of i under f + g is f(i) + g(i) and the image of i under αf is
α · f(i). Using this definition, the collection {f : X → R} is a real vector space for
any set X. In particular, the collection of real sequences (i.e. {s : N → R} which
the book denotes (sn)) and real-valued functions (the collection {f : R → R}) are
both vector spaces in a natural way.

If we try to extend the standard inner product structure on Rn to Rω or RR we get
an “angle” measure which is not always defined. Cutting RN down to the subspace
where the sum

∑
N

anbn is always finite leads to the notion of a Hilbert space. The

natural analog for real valued functions is something like
∫ ∞

−∞
f(x)g(x)dx. I’ll say

more about this analogy as the course continues.


