
APPENDIX A

Algebraic Topology

This appendix is a brief review of basic algebraic topology. The idea is to make
explicit the foundations on which geometric group theory is built and to establish
standard notation and terminology.

A.1. Cell complexes and Euler characteristics

The notion of a cell complex is flexible enough to construct complicated spaces,
but restrictive enough to avoid pathological examples such as the topologist’s sine
curve or the Hawaiian earring. The most basic cell complexes are the simplicial
ones.

Definition A.1.1 (Simplicial complexes). An abstract simplicial complex is a
collection S of finite subsets of a fixed set V such that τ ⊂ σ ∈ S implies τ ∈ S.
The elements of V are called vertices and the elements of S are called simplices
because of the shapes they produce in the geometric realization. Let U be a real
vector space with a basis whose elements are indexed by V . To each σ ∈ S we
associate the subset of U formed by all nonnegative linear combinations

∑

v∈σ
λvv with

∑

v∈σ
λv = 1.

If σ has n elements, then this set is an ordinary (n−1)-simplex. (For n = 0, 1, 2 and
3, an n-simplex is a point, an interval, a triangle and a tetrahedron.) The union of
the simplices associated to each σ ∈ S is the (topological) geometric realization. For
convenience we use S for both the abstract simplicial complex and for its geometric
realization, and we use σ for both a finite subset of V and the topological simplex
it contributes to S.

Because of their concrete description, simplicial complexes are nice to work
with, but there are situations where they are unnaturally restrictive. A more flexible
construction involves iteratively attaching cells.

Definition A.1.2 (Attaching spaces along subspaces). If X0 and X1 are topo-
logical spaces, A is a subspace of X1 and f : A → X0 is a continuous map, then
we can form a quotient of X0 tX1 by identifying each point a ∈ A with its image
f(a) ∈ X0. The resulting space X is denoted X0 tf X1 and it is described as the
space X0 with X1 attached along A via f . See Figure 1.

Definition A.1.3 (Cell complexes). The notion of a cell complex or CW com-
plex (terms we use interchangeably) is defined inductively, dimension by dimension.
A 0-dimensional cell complex is an arbitrary set of points called 0-cells with the
discrete topology. An n-dimensional cell complex or n-complex X is constructed by
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Figure 1. A schematic representation of spaces and maps used to
construct X = X0 tf X1.

attaching a disjoint union of n-discs along their boundary spheres to an already con-
structed (n−1)-dimensional cell complex Xn−1. In particular, let En =

∐
Dn be a

disjoint union of n-discs and for each n-disc fix a continuous map f : ∂Dn → Xn−1,
called the attaching map. There is then an induced map F : ∂En → Xn−1 and
the complex X = Xn−1 tF En is an n-dimensional cell complex. For any j < n,
the space Xj embeds into X and thus Xj can be viewed as a subspace of X; it is
called the j-skeleton of X. Since unadorned superscripts often indicate dimension,
we use X(j) to denote the j-skeleton of a cell complex X.

The interiors of the n-discs map homeomorphically into X and these images
are called the n-cells of X. Since the points of X can be partitioned into X(n−1)

and the n-cells of X, by induction, the set X can be viewed as a disjoint union
of its j-cells, 0 ≤ j ≤ n. For convenience, we often refer to 0-cells and 1-cells as
vertices and edges respectively, and 1-complexes as graphs. A cell complex is finite
if it has only finitely many cells.

Infinite dimensional cell complexes can also be constructed. Given cell com-
plexes X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · where each Xk is a k-dimensional cell complex
constructed by attaching k-discs along their boundary to the previous complex in
the list, we let X denote the union of these nested spaces and declare U ⊂ X to be
an open subset of X iff U ∩Xk is open in Xk for all k ≥ 0.

Remark A.1.4 (Dimension −1). The inductive construction described above
could actually have started one step earlier by declaring the empty topological space
to be a (−1)-dimensional cell complex X−1. The 0-dimensional cell complexes are
constructed by attaching a disjoint union of 0-discs along their boundary spheres
to this (−1)-dimensional cell complex. Because D0 is the entire space R0, it is open
in the topology of R0 and thus its boundary is empty. This is completely consistent
with the idea that ∂D0 = S−1 since S−1, by definition, is the set of vectors in R0

of length 1, which is, once again, empty. As a consequence, E0 =
∐

D0 is a set of
points with the discrete topology, ∂E0 is the empty set, and the only choice we have
for F : ∂E0 → X−1 is the empty map between empty spaces. The resulting space
X = X−1 tF E0 is then a set of points with the discrete topology. This convention
is often useful. For example, one can define the k-cells of X as the images of the
interiors of the k-discs under their attaching maps with no need to single out the
0-cells of X for separate treatment.

A subcomplex of a cell complex X is a union of j-cells that is closed in the
topology of X. The various skeleta are obvious examples of subcomplexes, but
there are many others. The fact that cell complexes are well-behaved is illustrated
by the following theorem:
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Theorem A.1.5 (Cell complex properties). Every cell complex X is normal
and Hausdorff. It is connected iff it is path-connected iff its 1-skeleton is connected.
It is compact iff it has only finitely many cells. And every compact subspace of X
is contained in some finite subcomplex.

As a consequence of Theorem A.1.5, the image of any k-disc, being compact, is
contained in some finite subcomplex. Historically, this property was called closure-
finite since the finite subcomplex contains the closure of the corresponding k-cell.
Cell complexes were originally defined in a way that relied heavily on the closure-
finite property and the use of the weak topology on the union. Hence the name CW
complex.

Definition A.1.6 (Euler characteristics). Let X be a finite cell complex and let
ci denote the number of i-cells that X contains. The (ordinary) Euler characteristic
of X is equal to

∑
i≥0(−1)ici and it is denoted χ(X). The reduced Euler charac-

teristic of X is a slight modification of the Euler characteristic where we consider
the empty set as a (−1)-dimensional cell of X. When viewed in this way c−1 = 1
and the alternating sum over the cells of X yields

∑
i≥−1(−1)ici = χ(X) − 1.

The reduced Euler characteristic is denoted χ̃(X). Despite the redundancy, it is
useful to have both χ(X) and χ̃(X) available. For example, χ̃(Sn) = (−1)n and
χ(X × Y ) = χ(X) × χ(Y ). Neither pattern can be stated as cleanly in the other
notation.

There is great freedom in the definition of a cell complex, as the nature of
the attaching maps is not very restrictive. In particular, it is not the case that
every cell complex is homeomorphic to a simplicial complex (Exercise 5). In this
book we often restrict ourselves to a simpler situation where the spaces are always
homeomorphic to simplicial complexes (Exercise 6).

Definition A.1.7 (Cellular maps and combinatorial complexes). A map Y →
X between cell complexes is cellular if its restriction to each cell of Y is a home-
omorphism onto a cell of X. A cell complex X is combinatorial if a cell structure
can be imposed on the domain of each attaching map of each k-cell of X so that
the result is a cellular map between cell complexes. In the literature, combinatorial
cell complexes are also known as regular cell complexes.

A.2. Fundamental groups and van Kampen’s theorem

Next we shift our attention from spaces to maps.

Definition A.2.1 (Homotopic maps). Two maps g, h : X → Y are homotopic
if there is a map F : X × I → Y (a homotopy) such that g = f0 and h = f1 where
ft : X → Y is the map defined by the equation ft(x) = F (x, t). We write g ∼= h
when g and h are homotopic maps. When g : X → Y is homotopic to a constant
map (i.e. a map whose image is a single point of Y ), then g is null-homotopic. If A is
a subspace of X and there is a homotopy F : X×I → Y such that F (a, s) = F (a, t)
for all s, t ∈ I, then g and h are homotopic relative to A.

Recall that a based space is a pair (X,x) where X is a topological space and x
is a point of X and a based map is a map from (Y, y) to (X,x) is a map f : Y → X
with f(y) = x. Such a map is denoted f : (Y, y)→ (X,x).
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Definition A.2.2 (Fundamental groups). The fundamental group of a cell
complex X based at a point x is the set of equivalence classes of paths in X that
start and end at x where two paths are considered equivalent if they are homotopic
relative to their endpoints. The multiplication of two such classes is defined by
taking the equivalence class of the concatenation of representatives. If x and x̂
are two points in the same connected component of X, then any path connecting
them induces an isomorphism π1(X,x) ≈ π1(X, x̂). We should note, however, that
the exact isomorphism usually depends on the choice of a connecting path. Since
fundamental groups of connected cell complexes are well-defined up to isomorphism,
basepoints are occasionally suppressed.

One of the key properties of this construction is its functoriality.

Proposition A.2.3 (Functorality). There is a functor from the category of
based topological spaces to the category of groups such that the image of (X,x) is
π1(X,x) and the image of the map f : (X,x)→ (Y, y) is the group homomorphism
f∗ : π1(X,x) → π1(Y, y). In particular, if f = gh as based maps, then the cor-
responding group homomorphisms satisfy f∗ = g∗h∗, and if f is the identity map
then f∗ is the identity group homomorphism.

To illustrate the benefits of functoriality, consider a retraction onto a subspace.
Let A be a subspace of X and let i : A → X be the inclusion map. Recall that a
map r : X → A is called a retraction if ri = 1A and it is a deformation retraction
if, in addition, ir is homotopic to 1X relative to the subspace A.

Proposition A.2.4 (Retractions and fundamental groups). If A is a connected
subspace of a connected space X, i : A→ X is the inclusion map and r : X → A is
a retraction, then r∗ is surjective and i∗ is injective. In particular, π1(A, a) can be
viewed as a subgroup of π1(X, i(a)).

Proof. Pick a ∈ A. By Proposition A.2.3, r∗i∗ = 1G where G = π1(A, a).
The rest follows from the fact that 1G is a bijection. �

add connecting text

Proposition A.2.5. For every subcomplex A of a cell complex X there is
a small open neighborhood N of A such that N deformation retracts to A. In
particular, N is homotopy equivalent to A.

Proposition A.2.6. Let X be a cell complex. Then every map f : S1 → X

can be homotoped to a map f̂ : S1 → X(1). In particular, if ι : X(1) ↪→ X is the
inclusion of the 1-skeleton into X, then the induced map ι∗ : π1(X(1))→ π1(X) is
a surjection.

Definition A.2.7 (Wedge products). Let {(Xα, xα)} be a collection of based
spaces. The wedge product of this collection is the quotient of their disjoint union
in which all of the base points have been identified:

∨
Xα =

∐

α

Xα/{xα ∼ xβ}.

The resulting space is denoted ∨αXα or X ∨ Y when only two spaces are involved.

If X is a cell complex with basepoint x, and X can be expressed as a union of
subcomplexes Aα, each of which contains x, then there is a map

φ :
∨
Ai → X
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Figure 2. A decomposition into subcomplexes induces a map
from the wedge product of the subcomplexes

defined by making φ an isomorphism when restricted to any Ai.

Theorem A.2.8 (van Kampen’s Theorem). Let X be a cell complex that can
be expressed as a union of path-connected subcomplexes X =

⋃
Aα, where for all

pairs of distinct indices Aα ∩ Aβ = C, for a fixed, path-connected subcomplex C.
The resulting map from the wedge product of the pieces, φ :

∨
Aα → X induces a

surjection on the level of fundamental groups: φ∗ : π1(
∨
Aα) � π1(X). Further,

if for each index α we let ια denote the induced map π1(C) → π1(Aα), then the
kernel of φ∗ is the normal subgroup generated by {ια(c)ιβ(c−1) | c ∈ π1(C)}.

Corollary A.2.9. Let X be a cell complex and let ι : X(2) ↪→ X be the
inclusion of its 2-skeleton. Then the induced map ι∗ : π1(X(2)) → π1(X) is an
isomorphism.

Proof. In higher dimensions, when you attach cells it is along 1-connected
subspaces, so the kernel is trivial. �

A.3. Group actions and covering spaces

In the prologue we began our study of the fundamental group of the complement
of the trefoil knot, G ≈ π1(S3 \K), by forming a cell complex D with G ≈ π1(D).
In order to study the structure of G we needed to understand not just the structure
of D, but how G acts on D̃.

Definition A.3.1 (Group actions). A left action of a group G on a mathe-
matical structure X is a group homomorphism from G to Aut(X), the group of
all invertible structure preserving maps under function composition. Thus, if X is
a topological space, Aut(X) is the group of all homeomorphisms from X to itself.
More explicitly, a left group action of G on X is a function a : G×X → X such that
(1) for each g ∈ G, the restriction g· : X → X defined by g · (x) = a(g, x) is a home-
omorphism from X to itself, (2) g · (h · (x)) = (gh) · (x) for all g, h ∈ G and for all
x ∈ X, and (3) the identity element of G restricts to the identity homeomorphism.

Left group actions are denoted G y X, which is read as “G acts on X”. The
word “left” is usually suppressed since the sidedness of the action is implied by the
way that functions are denoted. In order to define a right action of G on X we
would need to use algebraist notation (i.e. we would have to write (x)f instead of
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f(x) to describe the function f applied to the point x). The few occasions where
algebraist notation for functions and right group actions are needed are clearly
indicated.

Definition A.3.2 (Proper group actions). Let G y X, where X is a topolog-
ical space. The group G is acting properly discontinuously on X if for every point
x ∈ X there is a neighborhood U of x such that {g ∈ G | g(U) ∩ U 6= ∅} is finite.
The action is free if the open set U can always be chosen so that this set contains
only the identity element of G. The stabilizer of a point x ∈ X is the subgroup
Stab(x) = {g ∈ G | g(x) = x}, and a group action is proper if all of the point
stabilizers are finite.

Remark A.3.3 (Group actions and categories). The notion of a group action
depends on the category used to define Aut(X). Consider the group Aut(S1).
When S1 is viewed as a cell complex, the natural maps are cellular maps and
Aut(S1) is either a cyclic group of order 2 (in the one 0-cell case) or a finite
dihedral group whose order depends on the number of 0-cells in S1; when S1 is
viewed as a metric space, the natural maps to are isometries and Aut(S1) becomes
the Lie group O(2); and when S1 is viewed purely as a topological space, Aut(S1)
contains all homeomorphisms from S1 to itself, which is quite a large group.Cite Caligari?

Suppose · : G × X → X is a left group action of a group G on a space X.
Because group elements are invertible, every map g· : X → X is necessarily one-
to-one and onto. Moreover, when X has any additional structure (such as a cell
structure, or an orientation on its 1-skeleton, etc.), we shall assume that the action
of G preserves this additional structure. In the case of a cell structure, this means
that each map g· induces a bijection from the i-cells of X to the i-cells of X.

Definition A.3.4 (Quotients). Given an action G y X, the quotient of the
action is the quotient space formed by identifying g · x with x for each x ∈ X
and g ∈ G. It is denoted G\X. A fundamental domain for an action G y X
is a path connected, closed subset F ⊂ X such that G · F = X with no proper
subset of F satisfying these conditions. When X is a cell complex one can always
find a fundamental domain that is a subcomplex, but this is not required. Note
that given a fundamental domain F there is an induced surjection F � G\X. A
group action G y X is cocompact if G\X is compact, or equivalently, if there is a
compact fundamental domain.

Proposition A.3.5 (Free actions have quotients). If G y X is a free left
action of a group G on a cell complex X where, by convention, the action respects
the cell structure, then there is a well-defined cell structure on its quotient G\X.

A.3.1. Covering spaces. A map f : Y → X between path-connected topo-
logical spaces X and Y is called a covering map when for every x ∈ X there
exists an open set U containing x such that f−1(U) can be written as a disjoint
union of open sets Uα where f restricted to each Uα is a homeomorphism. When
f : Y → X is a covering map then Y is called a cover of X. A covering map must
be a local homeomorphism, but in general this is not sufficient (Exercise 9). For
cell complexes, however, the two concepts are equivalent.

Proposition A.3.6 (Recognizing covers). If X and Y are connected cell com-
plexes, then f : Y → X is a covering map if and only if f is a local homeomorphism.
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If f : Y → X, g : Z → X, and h : Z → Y are maps such that f ◦ h = g, then h
is called a lift of g through f . When f and g are based maps, then we additionally
require h to be a based map taking the base point of Z to the basepoint of Y . The
definition of a cover is designed to facilitate the creation of lifts.

Theorem A.3.7 (Map lifting). Let (X,x), (Y, y) and (Z, z) be path connected
based spaces, let f : (Y, y) → (X,x) be a cover and let g : (Z, z) → (X,x) be an
arbitrary map. When Z is a cell complex there exists a based map h : (Z, z)→ (Y, y)
such that f ◦ h = g iff g∗(π1(Z, z)) ⊂ f∗(π1(Y, y)). Moreover, when such a map
exists, it is unique.

Special cases of Theorem A.3.7 have their own names. When Z is a 1-cell, it
is called path lifting and when Z is a 2-cell it is called homotopy lifting. In both
cases the condition is trivially satisfied since g∗(π1(Z, z)) is the trivial subgroup of
π1(X,x). Homotopy lifting is used to show that if f is cover then f∗ is injective.

Proposition A.3.8 (Covers and subgroups). If f : Y → X is a covering
with f(y) = x, then f∗ : π1(Y, y) → π1(X,x) is an injection. In particular, the
fundamental group of Y at y can be viewed as a subgroup of the fundamental group
of X at x.

Let f : Y → X be a covering and let f(y) = x. The right stabilizers of f (i.e.
the maps g : Y → Y such that f ◦ g = f), are called deck transformations and
they form a group of deck transformations under composition. When the group of
deck transformations of f acts transitively on the preimages of x, then f is called
a regular covering and Y is a regular cover of X. Regular covers correspond to
normal subgroups.

Proposition A.3.9 (Regular covers and normal subgroups). If f : Y → X is
a covering with f(y) = x, then Y is a regular cover of X iff f∗(π1(Y, y)) is a normal
subgroup of π1(X,x). Moreover, when Y is a regular cover of X the quotient of
π1(X,x) by f∗(π1(Y, y)) is isomorphic to the group of deck transformations.

If f : Y → X is a covering, X and Y are connected spaces, and Y is sim-
ply connected, then Y is called the universal cover of X. An easy application of
Theorem A.3.7 shows that universal covers are unique (up to the natural notion
of equivalence defined by lifts in both directions whose compositions are identity
maps).

Theorem A.3.10 (Fundamental theorem of covering spaces). If X is connected
topological space that has a universal cover X̃, then there is a natural bijection
between the connected covers of X and the subgroups of π1(X,x).

(indicate the proof since this uses the quotient by the H-action defined earlier)
Cell complexes, as usual, are extremely well behaved.

Proposition A.3.11 (Recognizing universal covers). Every connected cell com-
plex has a universal cover. Moreover, if X and Y are connected cell complexes,
then Y is the universal cover of X iff Y is simply connected and there exists a local
homeomorphism f : Y → X.

A.4. Homotopy invariants and Whitehead’s theorem

(homotopy type, contractibility, n-connected)
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Definition A.4.1 (Homotopy equivalences). A map f : X → Y is a homotopy
equivalence if there exists a map g : Y → X such that both compositions are
homotopic to the appropriate identity map. In symbols this requires fg ∼= 1Y
and gf ∼= 1X . Two spaces X and Y are homotopy equivalent and have the same
homotopy type if there exists a homotopy equivalence f : X → Y . A homotopy
invariant of a space X is something defined using X where the resulting answer or
object depends only on the homotopy type of X.

Proposition A.4.2 (Fundamental groups are homotopy invariants). If f :
X → Y is a homotopy equivalence and f(x) = y, then f∗ : π1(X,x) → π1(Y, y) is
an isomorphism. In particular, connected spaces with the same homotopy type have
isomorphic fundamental groups.

Remark A.4.3. It is a basic result from algebraic topology that the Euler
characteristic of a finite cell complex only depends on its topology and not on
details of its cellular structure. Using cellular homology the alternating sum of the
ci is easily seen to be equal to the alternating sum of the betti numbers of X. But
since all homology theories agree on finite cell complexes, and singular homology is
insensitive to the cell structure of X, the Euler characteristic only depends on the
topology of X.

Theorem A.4.4 (Invariance of χ(X)). Euler characteristic is a homotopy in-
variant. If X and Y are homotopy equivalent spaces and χ(X) and χ(Y ) can be
defined, then χ(X) = χ(Y ).

Homology and cohomology are also homotopy invariants, and we will on oc-
casion make use of them. However we do not review their definitions and basic
properties as topics such as group cohomology are not a central focus of this book.

There are two common ways to modify a cell complex without changing its
homotopy type. One is to collapse a contractible subcomplex and the other is to
replace an attaching map with an alternate map homotopic to it. This section is
devoted to an application of the first; discussion of the second is postponed until
Section 1.1. For a proof of the following results see Chapter 0 in [16].

Theorem A.4.5 (Collapsing contractible subcomplexes). If A is a contractible
subcomplex of a cell complex X, then the quotient map X → X/A is a homotopy
equivalence.

Theorem A.4.6 (Modifying the attaching maps). If A is a subcomplex of a
cell complex X1 and f, g : A→ X0 are homotopic maps, then the spaces X0 tf X1

and X0 tg X1 are homotopy equivalent.

Theorem A.4.7 (Contractibility). If X is a connected topological space, then
the following conditions are equivalent.

1. X has the homotopy type of a point (i.e. X is contractible)
2. the identity map 1 : X → X is null-homotopic
3. every map Y → X is null-homotopic

A space satisfying these conditions is said to be contractible, and contractibility is
a homotopy invariant.

Proof. Exercise 14. �



A.5. CLASSIFYING SPACES AND HUREWICZ’S THEOREM 97

Theorem A.4.7 is true for arbitrary topological spaces. For connected cell
complexes, it is sufficient to show that every map Y → X where Y is compact is null-
homotopic. In fact, it is sufficient to show that for every n ≥ 0 and each map Sn →
X is null-homotopic. That this is implied by the above is clear. That it is sufficient
to show contractibility is a part of a nontrivial theorem due to J.H.C. Whitehead.

Theorem A.4.8 (Whitehead’s theorem). A cell complex X is contractible iff
for every n ≥ 0, each map Sn → X is null-homotopic.

Proposition A.4.9. The nested union of n-connected cell complexes is n-
connected. More specifically, if A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ · · · is a nested sequence of
n-connected subcomplexes of a cell complex X and A = ∪k≥0Ak, then A itself is
n-connected. As a consequence, the nested union of contractible cell complexes is
contracible.

Proof. Any map f : Sm → A with m ≤ n is contained in a finite subcomplex
B. Since each cell of B is contained in some Ai and there are only finitely many cells
in B, all of B is contained in some Ai. The fact that Ai in n-connected now implies
that f is homotopic to a constant map inside Ai ⊂ A. Thus A is n-connected. The
final assertion follows by Theorem A.4.8. �

There is a family of homotopy invariant properties that sits between being
connected and being contractible. The most common is being simply connected,
that is being path connected and having trivial fundamental group (although some
do not require simply connected spaces to be path connected).

Definition A.4.10 (Connectivity). A topological space X is n-connected if for
all k ≤ n, each map Sk → X is null-homotopic. Being 0-connected is the same as
path connected, and 1-connected is the same as simply connected.

Remark A.4.11 (πn(X,x)). For those familiar with the definition of the higher
homotopy groups, πn(X,x), it is easy to prove that our definition of n-connectivity
is equivalent to the condition that πi(X,x) is trivial for i ≤ n. See Exercise XXX.
(add an exercise where we hint how to make a tail and let it wiggle.

A.5. Classifying spaces and Hurewicz’s theorem

In the prologue we illustrated how one can understand certain facts about
certain groups G via their actions on contractible complexes X̃. In that particular
case it was helpful that the action was free and the complex was contractible. An
Eilenberg-MacLane space for a group G is a cell complex whose fundamental group
is G and whose universal cover is contractible. Such a space is also referred to as a
K(G, 1) and as a classifying space for G.

Theorem A.5.1 (Eilenberg-MacLane spaces). For every group G there exists
a connected cell complex X whose universal cover is contractible and whose funda-
mental group is G. Moreover, if X and Y have contractible universal covers and
isomorphic fundamental groups, then X and Y are homotopy equivalent.

The proof that any two K(G, 1)s are homotopy equivalent (Hurewicz’s Theo-
rem) is a bit too long of a distraction for us. (See Theorem 1B.8 in [16].) The
existence claim can be viewed as a topological variation of Cayley’s Theorem. Cay-
ley’s Theorem states that every group can be faithfully represented as a group of
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permutations. The proof constructs an action of G on its own elements via left
multiplication. The proof we use below extends this action of G on its own el-
ements, and in the end yields a faithful representation of G as a group of deck
transformations of a contractible topological space.

proof of existence. To prove the existence of K(π, 1)s, start with a vertex
set of the form G×N and think of the second coordinate as describing the “column”
to which the vertex belongs. Extend this vertex set to a simplicial complex by
declaring that any finite set of vertices drawn from distinct columns forms the
vertex set of a simplex. Call this complex X and notice that it is just the countable
join of discrete sets of vertices, each of cardinality |G|. In particular, if |G| = |H|,
then the simplicial complexes built from G and H are the same. Standard tools
from algebraic topology, like the Künneth formulas, prove that X is contractible.

Since G acts on itself by left multiplication (Cayley’s Theorem), it also acts on
G × N by left multiplication applied to the first coordinate. This action preserves
columns and any n-tuple of vertices coming from distinct columns will be taken to
another n-tuple of vertices coming from (the same) distinct columns. As the action
is free when restricted to any column, the action of G on X is also free. Thus the
quotient G\X is a K(G, 1). �

These facts enable one to apply homotopy invariants in the study of groups.
We say that a homotopy invariant assertion is true of a group G iff it is true of any
(and thus every) Eilenberg-MacLane space for G. In particular, one can declare the
homology and cohomology groups of a group to be the homology and cohomology
groups of any K(G, 1).

Definition A.5.2 (Finite type). A group G is of finite type if it admits a
finite K(G, 1)-complex. Equivalently, a group G is of finite type if there is a free,
cocompact action of G on a finite dimensional, contractible cell complex.

Definition A.5.3 (Euler characteristics of groups). If G is a group of finite
type, then the Euler characteristic of G is Euler characteristic of any finite K(G, 1).
(If you happen to have a non-finite K(G, 1), when G is in fact of finite type, then the
Euler characteristic can still be computed by taking the alternatinig sum of the betti
numbers, which are homotopy invariants.) For example, the fundamental group G
of the complement of the trefoil knot has a K(G, 1) described in the prologue. This
complex has two vertices, five edges, and three faces, hence χ(G) = 0.

Proposition A.5.4. Let G be a group with a finite K(G, 1), X. If H is a finite
index subgroup of G, then χ(H) exists, and

χ(H) = [G : H] · χ(G)

Proof. The cover X of X whose fundamental group is H is a K(H, 1). Since
it is a [G : H]-fold cover, if X contains ci i-cells, then X contains ci = [G : H] · ci
i-cells. Thus

χ(X) =
∑

(−1)ici = [G : H]
∑

(−1)ici = [G : H]χ(X).

�

We leave the following corollary as a (fun) exercise.
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Corollary A.5.5. Let Sg be the closed orientable surface of genus g, and fix
two integers g and h, both greater than 1. Then π1(Sg) is a finite index subgroup
of π1(Sh) if and only if g − 1 is a multiple of h− 1.

Proposition A.5.6. Let G be a group of finite type. Then G contains no
non-trivial finite subgroup.

Proof. Let X be a finite K(G, 1), of dimension d, and let X̃ be its univer-
sal cover. Assume to the contrary that G has a non-trivial finite subgroup, and
therefore that G has a subgroup isomorphic to a finite cyclic group Zn. Since G
acts freely on X̃, Zp y X̃. It follows that Hi(Zn) = Hi(Zn\X̃) and in particular,
Hi(Zn) = 0 for all i > d. But H2j+1(Zn) ≈ Zn for all j ≥ 0. �

Avoiding groups with torsion is often overly restrictive. For example, consider
the group G of isometries of the Euclidean plane, generated by reflections in the
sides of an equilateral triangle. The This action is not free, but it is cocompact and
proper. As we will see, such actions are often more than sufficient for one to derive
deep facts about the group.
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Exercises

Cell complexes
1. Let X be a cell complex, let x and y be 0-cells of X and let A be a connected

finite subcomplex containing x and y with a minimum number of cell. Prove
that A is the image of an embedded interval f : I → X starting at x and
ending at y.

2. Let X be a 1-complex that contains a 1-disc where both endpoints are
attached to the same 0-cell. Use a retraction to show that X is not simply-
connected.

3. Let X be a 1-complex and let f : S1 → X be an embedding. Show that X
is not simply-connected by collapsing all but one 1-cell of the image of f
and applying the previous exercise.

4. Let f : [0, 1] → [0, 1] be an infinitely oscillating function like that shown
on the left in Figure 3. Use this function as part of an attaching map
(as indicated on the right in Figure 3) to create a 2-complex with three
vertices, three edges, and a single 2-cell. Show that this “shower curtain
complex” is not homeomorphic to any simplicial complex.

0
0

1

1

Figure 3. The “shower curtain complex” is not homeomorphic to
any simplicial complex.

5. Prove that every combinatorial cell complex is homeomorphic to a simpli-
cial complex.

6. (Classifying compact surfaces) (sketch out how to classify compact surfaces)
Here are the main steps.
a. show that you only need a single 2-cell.
b. make all moebius edges adjacent
c. isolate crossing annular edges
d. remove noncrossed annular edges
e. eliminate the mixed case
f. use the abelianizations to distinguish the remaining cases

7. Prove Corollary A.5.5.
8. Let Y be the image of the map g : R→ R3 defined by g(t) = (cos t, sin t, et)

and turn Y into a path connected topological space by giving it the subspace
topology. There is a map f : Y → S1 that comes from projecting onto the
first two coordinates. Prove that f is a local homeomorphism but not a
covering map.

9. Show that every one-relator Artin group is a torus knot group. Which
torus knot groups arise in this way?

Group actions and covering spaces
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10. Add an exercise that covers the Hawaiian earring.(Figure 4) (fix: do not
have universal covers. Identifying a single point in a simply connected
metric space with a single in another simply connected metric space does
not need to result in a simply connected space. This space, which is the
union of the circles centered at (0, 1/n) and tangent to the x-axis...)

Figure 4. Hawaiian earring.

11. (Normal subgroups) Let H be a subgroup of G, let A := G/H be the set
of left H-cosets, let κ := |A| be the index of H in G, and let κ! denotes the
size of SymA (the bijections A→ A under composition). Prove that there
is a normal subgroup N of G contained in H whose index in G is at most
κ!.

12. (Infinite Index) Let A be a set and let G = SymA be the group of all
permutations (i.e. bijections) f : A → A under function composition.
Choose an element a ∈ A and let H be the subgroup of permutations that
fix a. Prove that index of H in G is κ = |A| and that the only normal
subgroup of G in H is the trivial subgroup (index κ!).

Homotopy invariants and Whitehead’s theorem
13. (Contractibility) Prove that the characterizations of contractibility list in

Theorem A.4.7 are equivalent.


