
CHAPTER 1

Combinatorial Group Theory

Every group is the fundamental group of a cell complex and, not surprisingly,
the topological properties of a cell complex X have algebraic significance for its
fundamental group G. If X is compact, then G is finitely presented; if X is 1-
dimensional, then G is free; and if X has a cut point, then G has a free product
decomposition. This chapter examines each of these implications with an emphasis
on the way these topological properties motivate the algebraic definitions. Other
basic tools from combinatorial group theory, such as generating sets and Cayley
graphs, are discussed along the way.

1.1. Manifolds and cell complexes

The fundamental groups of compact manifolds and compact cell complexes
lie at heart of geometric group theory and the goal of this section is to establish
various equivalent descriptions for this natural class of groups. We begin with the
fundamental groups of arbitrary cell complexes before insisting on compactness.
Because every group is the fundamental group of some cell complex (Exercise 1)
this class of groups is completely unrestricted.

Theorem 1.1.1 (Arbitrary groups). The following classes of groups are equal:
G1 = {π1 of cell complexes},
G2 = {π1 of combinatorial cell complexes},
G3 = {π1 of simplicial complexes},
G4 = {π1 of 2-complexes},
G5 = {π1 of combinatorial 2-complexes}, and
G6 = {π1 of simplicial 2-complexes}.

The definitions of the various types of complexes are reviewed in the appendix.
By van Kampen’s theorem the fundamental group of a cell complex is carried by its
2-skeleton (Corollary A.2.9). Thus, G1 = G4, G2 = G5 and G3 = G6. Moreover,
since the descriptions are increasingly strict, G4 ⊃ G5 ⊃ G6, so it suffices to prove
G4 ⊂ G5 ⊂ G6. The inclusion G5 ⊂ G6, or more generally G2 ⊂ G3, follows from
the fact that the second barycentric subdivision of a combinatorial cell complex is
a homeomorphic simplicial complex. For the final inclusion, G4 ⊂ G5, it suffices to
show that every map from a circle to a graph is either null-homotopic or homotopic
to an immersion. Since a variation on this argument is needed in Chapter 3, we
include a complete proof.

Proposition 1.1.2 (Simplifying loops and arcs). Every map from a circle to
a graph is homotopic to an immersion or a constant map. Similarly, every map
from a closed interval to a graph is homotopic to an immersion or a constant map
keeping the endpoints fixed throughout.
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2 1. COMBINATORIAL GROUP THEORY

Proof. Let X be a graph and let f : S1 → X be a map. The graph X,
by definition, can be given the structure of a 1-complex, and, by subdividing if
necessary, we may assume that every edge in X is attached to distinct 0-cells.
Next, consider the open cover U of X containing two types of open sets: (1) each
individual (open) 1-cell and (2) a small open neighborhood around each 0-cell. To
define the latter, imagine turning the graph into a metric space where each edge
has unit length and then taking an ε-neighborhood of a vertex v with ε < 1

2 . To
minimize notation, let (v) denote this small open neighborhood of v.

If the image of f lies inside a single element of U then f is null-homotopic
because every set in U is contractible. Otherwise, we can cover S1 by the maximal
open subintervals of S1 whose image is contained in a single element of U . Since S1 is
compact, we can pass to a minimal finite subcover. Minimality of the cover implies
that the intervals are not nested and thus they have a canonical cyclic ordering as
we proceed around the circle. Maximality of the intervals further implies that each
open interval can be labeled by the unique element of U that contains its image. Fi-
nally, the finite cover must strictly alternate between “edge” intervals and “vertex”
intervals since the open sets of each type in U are pairwise disjoint. In other words,
the covering of S1 can be summarized by a sequence (v0)e1(v1)e2(v2) · · · en(vn)
where the subscripts are considered mod n and (v0) = (vn) denotes an open vertex
interval in which we start and end.

If at any point in the cyclic ordering (vi) and (vi+1) or ei and ei+1 refer to
the same open set in X, then f can be replaced with a homotopic map f ′ that is
covered by strictly fewer open sets. This is because (v) ∪ e is contractible for any
overlapping (v) and e. Continuing in this way either produces a null-homotopy or
it stops at a map that can easily be locally smoothed out to an immersion. With
minor modifications the same proof applies to arcs. �

Proposition 1.1.2 can be used to show that every group is the fundamental
group of a 2-complex all of whose attaching maps are non-trivial immersions. We
call such a 2-complex a taut 2-complex since its attaching maps have been pulled
as tight as possible.

Corollary 1.1.3 (Taut 2-complexes). Every 2-complex has a subcomplex, with
the same fundamental group, that is homotopy equivalent to a taut 2-complex with-
out altering its 1-skeleton.

Proof. Let X be an arbitrary 2-complex and let X ′ be the subcomplex of X
obtained by removing all 2-cells whose attaching maps are null-homotopic in the
1-skeleton of X. Van Kampen’s theorem shows their removal does not change the
fundamental group. After replacing each remaining attaching map with an immer-
sion homotopic to it (Proposition 1.1.2), the result is a taut 2-complex homotopy
equivalent to X ′ (Theorem A.4.6). �

Since every taut 2-complex is combinatorial, Corollary 1.1.3 shows that G4 is
a subset of G5, completing the proof of Theorem 1.1.1. There is a similar set of
equivalences for fundamental groups of compact cell complexes. Since this class of
groups contains exactly the fundamental groups of compact manifolds (including
those with non-empty boundary), we call these compact manifold groups for now,
even though they are better known as finitely presented groups. The equivalence
will be clear once group presentations are discussed in §1.3.
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Theorem 1.1.4 (Compact manifold groups). The following classes are equal:

C0 = {π1 of compact manifolds},
C1 = {π1 of compact cell complexes},
C2 = {π1 of compact combinatorial cell complexes},
C3 = {π1 of finite simplicial complexes},
C4 = {π1 of compact 2-complexes},
C5 = {π1 of compact combinatorial 2-complexes}, and
C6 = {π1 of finite simplicial 2-complexes}.

Since taking barycentric subdivisions, passing to subcomplexes, and modifying
attaching maps preserve compactness and finiteness, the equivalence of C1 through
C6 follows immediately from Theorem 1.1.1. To complete the proof it suffices to
show C0 ⊂ C1 and C2 ⊂ C0. The former is a consequence of the fact that every
compact manifold has the homotopy type of a compact cell complex. Because the
techniques would lead us too far afield, we refer the interested reader to the elegant
proof in the appendix of Hatcher’s book [16] that uses Euclidean neighborhood
retracts. The final inclusion can be derived from a combinatorial version of a
Whitney-type embedding theorem.
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Figure 1. The projection of the embedded subdivided k-skeleton
onto the coordinates x2k and x2k+1. The subdivided (k − 1)-
skeleton is sent to the origin and the distinct subdivided k-cells
project to distinct line segments.

Theorem 1.1.5 (Embeddings). If X is a simplicial n-complex with countably
many cells, then its barycentric subdivision X ′ can be linearly embedded into R2n+1.
As a consequence, every compact combinatorial n-complex is homotopy equivalent
to a compact topological (2n+ 1)-manifold with boundary.

Proof. Because the embedding f : X ′ → R2n+1 we are constructing is sup-
posed to be linear on each simplex of X ′, f is completely determined by the images
of vertices. We send the vertices of X ′ that corresponds to the 0-cells of X to any
discrete subset of points along the x1-axis. This embeds the 0-skeleton of X into
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R1. If an explicit map is desired, then one option would be to well-order the 0-cells
of X and send the i-th 0-cell to the point on the x1-axis with x1 = i.

Next, suppose by induction that the barycentric subdivision of the (k − 1)-
skeleton of X has been embedded into the R2k−1 subspace of R2n+1 with xj = 0
for all j ≥ 2k. To extend this embedding to the subdivided k-skeleton, send the
barycenters of the k-cells of X to any discrete subset of the line parallel to the
x2k+1-axis defined by the equations x2k = 1 and xj = 0 for all j not equal to 2k or
2k + 1 and then extend f linearly over the subdivided k-cells of X. By projecting
onto the plane spanned by x2k and x2k+1 (Figure 1) we see that the images of the
subdivided (open) k-cells do not intersect each other or the (k − 1)-skeleton.

The reader can verify that f is one-to-one on each subdivided k-cell and that
this injection of the subdivided k-skeleton into R2n+1 is indeed a homeomorphism
onto its image. The second assertion is now immediate since every compact combi-
natorial n-complex is homeomorphic to a finite simplicial complex and the closure
of a sufficiently small ε-neighborhood of a finite simplicial complex linearly embed-
ded into Rm is a topological m-manifold with boundary that deformation retracts
back down to the original complex. �

1.2. Trees, graphs and free groups

We now shift our attention from compact complexes to those that are 1-
dimensional. The main result is a classification of graphs up to homotopy and
of their fundamental groups up to isomorphism. The remainder of the section is
devoted to establishing the key properties that these ‘free groups’ possess.

1.2.1. Trees. The first step in classifying graphs up to homotopy is being
able to recognize when a graph is contractible. Several equivalent conditions are
recorded in Theorem 1.2.1. The graphs satisfying these conditions are called trees.

Theorem 1.2.1 (Trees). For a connected graph X, the following are equivalent:
1. X is contractible,
2. X is simply-connected,
3. X is minimally connected,
4. X does not contain an embedded circle, and
5. X does not contain a closed immersed path.

Finally, for finite connected graphs, a sixth equivalent condition is χ(X) = 1.

Most of these are self-explanatory, but condition 3 requires a definition. We
call a graph X minimally connected if X is connected, but the removal of any 1-cell
disconnects it. Theorem 1.2.1 is proved in stages. We begin by proving that the
middle four conditions are equivalent.

Lemma 1.2.2. Let X be a connected graph. If X is not simply-connected then
it contains a closed immersed path; if it contains a closed immersed path then
it contains an embedded circle; if it contains an embedded circle, then it is not
minimally connected; and if it is not minimally connected then it is not simply-
connected. Thus conditions 2 through 5 in Theorem 1.2.1 are equivalent.

Proof. If X is not simply-connected and f : [0, 1]→ X is a closed path that
represents a non-trivial element of π1(X), then by Proposition 1.1.2, f is homotopic
to a closed immersed path. If g is a closed immersed path that is not an embedding
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of a circle then there is a proper subinterval whose endpoints are sent to the same
vertex, and any minimal subinterval with this property can be used to construct
an embedding of a circle into X. If e is an edge of an embedded circle in X, then
X \ {e} remains connected since any path connecting points u and v that uses e
can be modified to use the remainder of the circle instead. Finally, if e is a 1-cell
in X whose removal does not disconnect X, then we proceed as follows. Because,
X \{e} is connected, the attaching map of e is homotopic to a constant map where
both endpoints are sent to the same 0-cell v. Let X ′ be the complex where this
altered attaching map is used for e, and note that X ′ is homotopy equivalent to X
(Theorem A.4.6) and the union of v and e in X ′ is a subcomplex A homeomorphic
to S1. Moreover, the map r : X → A that fixes A and sends every other cell to v
is a continuous retraction, so the induced map r∗ is surjective (Proposition A.2.4).
Since π1(A) ∼= Z, the group π1(X ′) ∼= π1(X) is non-trivial. �

For finite connected graphs conditions 3 and 6 are equivalent.

Lemma 1.2.3. If X is a finite connected graph, then χ(X) ≤ 1. Moreover,
χ(X) = 1 if and only if X is minimally connected.

Proof. Linearly order the 1-cells of X and attach them to the 0-skeleton one
at a time. If ci denotes the number of i-cells in X, then c1 ≥ c0 − 1 because the 0-
skeleton has c0 connected components, the final result has one and attaching a 1-cell
reduces the number of components by at most one. Thus, χ(X) ≤ 1 and χ(X) = 1
if and only if each edge reduces the number of components. If χ(X) < 1 then there
is an edge e whose attachment does not reduce the number of components, and
X \{e} remains connected since any path using e can be rewritten only using edges
that occur earlier in the list. Conversely, if e is an edge whose removal does not
disconnect X, then the edges can be ordered so that e occurs last. As shown above,
at least c0 − 1 edges were attached before e, so that c1 ≥ c0 and χ(X) < 1. �

The proof of Theorem 1.2.1 is nearly complete: since contractible graphs are
simply-connected, it suffices to show that minimally connected graphs are con-
tractible. For finite graphs this fact is easy to prove.1 To prove this for arbitrary
graphs, we introduce a combinatorial notion of distance.

Definition 1.2.4 (Combinatorial Distance). Let u and v be vertices in a cell
complex X. The length of a combinatorial path from u to v is the number of 1-cells
it traverses, and the combinatorial distance between u to v is the minimum length
of a combinatorial path connecting them. Denote this value by dX(u, v) or simply
d(u, v) when X is implicitly understood and note that d(u, u) is 0 since the constant
path is considered a combinatorial path of length 0. When u and v lie in the same
connected component of X, at least one such combinatorial path exists since any
path from u to v is homotopic to a path in the 1-skeleton (Theorem A.1.5) that we
can assume is an immersion (Proposition 1.1.2) and immersions are combinatorial.
Thus, in a connected cell complex this distance d is defined for all pairs of vertices
and it is easy to show that it defines a metric on the 0-skeleton of X (Exercise 3).

1Recall that the number of ends of edges attached to a vertex v is its degree and that a

vertex of degree 1 is called a free vertex. If X contains a free vertex v, then there is a deformation

retraction from X to X \ {v, e} where e is the unique edge attached to v. A counting argument
shows that every connected non-trivial graph with Euler characteristic 1 must have a free vertex

and thus it deforms onto a proper subcomplex. Iterating this process contracts X to a point.
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For later use we record the fact that minimum length paths are embedded.

Proposition 1.2.5 (Embedded Paths). If u and v are distinct vertices in the
same connected component of a cell complex, then every minimum length combinato-
rial path from u to v is embedded. In particular, at least one embedded combinatorial
path from u to v exists.

Proof. If a non-trivial combinatorial path is not embedded then it passes
through the same vertex twice, and excising the subpath between these two oc-
curences strictly shortens its length. �

The combinatorial distance function can be used to construct maximal con-
tractible subgraphs of connected cell complexes better known as spanning trees.

Proposition 1.2.6 (Spanning trees). Every connected cell complex contains a
contractible subgraph with the same vertex set. As a consequence, every connected
cell complex is homotopy equivalent to a cell complex with one vertex.

Proof. Let v be a fixed vertex in a connected complex X. The sphere of
radius n around v is the set of vertices u with d(u, v) = n and the ball of radius
n around v is the set of vertices u with d(u, v) ≤ n. Denote these sets by Sn
and Bn, respectively. Next, let Xn be the largest subgraph of X(1) with vertex
set Bn. Since X is connected, the union of the graphs Xn is all of X(1). Inside
the graphs Xn we inductively define subgraphs Tn. We start with T0 = X0 which
is just v itself. The graph Tn is constructed from Tn−1 by adding the vertices
in Sn, and for each u ∈ Sn adding a single edge connecting u to a vertex closer
to v. The first edge of a path of length n connecting u to v shows that such an
edge exists. Since there is an obvious deformation retraction from Tn to Tn−1,
each Tn is contractible by induction. Finally, the subgraph T =

⋃
n∈N Tn is a

contractible subgraph (Proposition A.4.9) that contains every vertex of X. The
second assertion is now immediate since the cell complex X/T has only one vertex
and by Theorem A.4.5 it is homotopy equivalent to X. �

We now complete the proof of Theorem 1.2.1.

Lemma 1.2.7. Minimally connected graphs are contractible.

Proof. Let X be a minimally connected graph and let T be a contractible
subgraph of X with the same vertex set (Proposition 1.2.6). If there is an edge e of
X that is not in T , then the connected graph T is a subgraph of the disconnected
graph X \ {e} on the same vertex set, contradiction. Thus X = T and X is
contractible. �

The name spanning tree should now make sense. When X is a connected cell
complex, a subgraph of X is contractible on the same vertex set iff it is a tree that
spans the vertex set of X. A final characterization of trees is that they have unique
embedded paths connecting distinct points.

Theorem 1.2.8 (Unique paths). A connected graph is a tree iff there is a unique
embedded path connecting every pair of distinct points.

Proof. Let X be a connected graph. If X is not a tree then it contains an
embedded circle and distinct points on this circle can be connected by distinct
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Figure 2. A rose with 7 edges.

embedded paths. Conversely, suppose X is tree and let x and y be distinct points
of X. Since some of the equivalent conditions defining a tree are insensitive to cell
structure, we may assume that x and y are 0-cells of X. At least one embedded path
from x to y exists by Proposition 1.2.5. Because X is minimally connected, every
edge traversed by this path would need to occur in every other path connecting x
and y. Thus the only embedded interval containing these edges starting at x and
ending at y is the one already considered, making it unique. �

1.2.2. Graphs. These chacterizations of trees quickly lead to a classification
of connected graphs up to homotopy equivalence. Before establishing the classifica-
tion, we note that connected graphs are classifying spaces and that the non-trivial
elements of their fundamental groups are indexed by based immersed paths.

Proposition 1.2.9 (Graphs as classifying spaces). The universal cover of a
connected graph is a tree. As a consequence, every connected graph is a classi-
fying space and two connected graphs have the same homotopy type iff they have
isomorphic fundamental groups.

Proof. The universal cover of a connected graph is both connected and simply-
connected and thus a tree by Theorem 1.2.1. Since this implies it is contractible,
the original graph is a classifying space for its fundamental group. The rest now
follows from Theorem A.5.1. �

Proposition 1.2.10 (Group elements and immersed paths). For any connected
graph X there is a natural bijection between the immersed paths in X based at x
and the non-trivial elements of G = π1(X,x). In particular, every based immersed
path in a graph represents a non-trivial element of its fundamental group.

Proof. Consider the function that sends each immersed path in X based at x
to the element of G = π1(X,x) it represents. By Proposition 1.1.2 every non-trivial
element of G is represented by some immersed path. On the other hand, no based
immersed path represents the identity in G since it would lift to a closed immersed
path in the universal cover contradicting the fact that X̃ is a tree. And finally,
if two distinct closed immersed paths represented the same non-trivial element
g ∈ G, then they would lift to immersed paths in X̃ starting at one vertex u and
both ending at a different vertex v, contradicting Theorem 1.2.8. �

The simplest graphs are those with only one vertex (Figure 2). Such a graph
is callled a rose, and its unique vertex is denoted ∗. Since the only variable in the
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construction of a rose is the number of edges it contains, we let RA denote the rose
whose edges are indexed by a set A and we let FA denote the group π1(RA, ∗).
Since every connected graph is homotopy equivalent to a rose (Proposition 1.2.6),
classifying connected graphs up to homotopy type is the same as classifying roses.

Theorem 1.2.11 (Roses). For sets A and B, the following are equivalent:
1. the sets A and B have the same cardinality,
2. the roses RA and RB are homeomorphic,
3. the roses RA and RB have the same homotopy type, and
4. the groups FA and FB are isomorphic.

Proof. Certainly 1 ⇒ 2 ⇒ 3 and 3 ⇔ 4 by Proposition 1.2.9, so we only
need to prove 3 or 4 implies 1. The first observation is that compact roses and
noncompact roses cannot be homotopy equivalent (Exercise 4). Thus there are
two cases to consider: both RA and RB are compact or both RA and RB are
noncompact. When RA and RB are homotopy equivalent and compact, the integers
χ̃(RA) = −|A| and χ̃(RB) = −|B| must be equal by the homotopy invariance of
Euler characteristics, implying |A| = |B|. Finally, when A is infinite, |FA| = |A|
(Exercise 5), so that RA and RB homotopy equivalent and noncompact implies
FA ∼= FB which means |A| = |FA| = |FB | = |B|. �

1.2.3. Free groups. The fundamental group of a graph is called a free group.
By Proposition 1.2.6 every free group is isomorphic to the fundamental group of a
rose RA and by Theorem 1.2.11 the cardinality of A is an invariant of the group
that we call its rank. In fact, one way to restate Theorem 1.2.11 is that free groups
are classified up to isomorphism by their rank.

Corollary 1.2.12 (Free groups classified). Two free groups are isomorphic iff
they have the same rank which is true iff they are fundamental groups of homotopy
equivalent graphs.

Let A be a set of cardinality κ. We use different notations for the free group
of rank κ depending on the context. We continue to write FA for the fundamental
group of the rose RA. On the other hand, we might write Fκ when we are only
interested in the group up to isomorphism, or simply as F when we merely wish to
indicate that the group is free. For example, if X is the 1-skeleton of a cube and x
is one of its vertices, we say that π1(X,x) = F5 since |χ̃(X)| = |8 − 12 − 1| = 5 is
its rank. Several properties of free groups follow easily from their definition. The
first one is known as the Nielsen-Schreier theorem.

Theorem 1.2.13 (Free subgroups). Subgroups of free groups are free.

Proof. Let G be a free group and let X be a graph with fundamental group G.
Every subgroup H ⊂ G is the fundamental group of a cover of X (Theorem A.3.10),
but covers of graphs are graphs, so H is also a free group. �

Theorem 1.2.14 (Free quotients). Every group is a quotient of a free group.
In particular, if (X,x) is a based connnected cell complex with G = π1(X,x) and F
is the free group π1(X(1), x), then the group homomorphism F→ G induced by the
inclusion map X(1) ↪→ X is onto.

Proof. That the induced map is onto follows from the easy fact that paths
starting and ending in the 1-skeleton of a cell complex are homotopic to paths
entirely contained in the 1-skeleton keeping their endpoints fixed throughout. �
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Theorem 1.2.15 (Finite rank calculations). If X is a finite connected graph,
then the rank of π1(X) is |χ̃(X)| = −χ̃(X). As a consequence, if G is a free group
of rank k and H is an index d subgroup of rank l where k, d, and l are finite, then
l − 1 = d(k − 1).

Proof. The first part was established during the proof of Theorem 1.2.11. Let
X be a finite graph with π1(X) ∼= G and let Y be the cover of X corresponding to
H. Since Y is a d-fold cover of X, χ(Y ) = d · χ(X). The fact that χ̃(Y ) = −l and
χ̃(X) = −k completes the proof. �

Every free group is the fundamental group of a rose, and in these groups the
elements generated by traveling along a single edge deserve special consideration.

Definition 1.2.16 (Symmetric bases). Let RA be a rose with FA = π1(RA, ∗).
Since each edge can be traversed in one of two directions, there are exactly 2|A|
closed paths of length 1 in RA and each path represents a distinct element in
FA (Proposition 1.2.10). The collection of these elements inside FA is called the
symmetric basis for FA and denoted SA.

Our use of the word ‘symmetric’ is one we wish to formalize. Definition 1.2.17
is not standard, but we find that including these definitions makes it easier to
highlight certain aspects that would otherwise remain obscure.

Definition 1.2.17 (Symmetric sets). A symmetric set is a set S with an im-
plied involution ( )−1 : S → S, or alternatively, a set with an implied partition
into blocks of size at most 2. The partition can be derived from the involution
by recording the orbits of elements, and the involution can be recovered from the
partition by sending each element to an element in the same block and to a distinct
element whenever possible. If the involution is fixed-point free, or, equivalently,
every block has size 2, we say the symmetric set is free. A symmetric subset is
a subset T of a symmetric set S satisfying T = T−1, and a symmetry-preserving
function between symmetric sets is one that is compatible with their involutions:
that is, a function f : S → T such that t = f(s) implies t−1 = f(s−1).

Groups are symmetric sets using the involution sending g to g−1 but they are
never free since the identity is its own inverse. Paths in a cell complex form a sym-
metric set with an involution that reverses the parameterization. The symmetric
basis SA of the free group FA is a free symmetric subset, and, in fact, it can be
thought of as the canonical free symmetric set with blocks indexed by elements of
A. Returning to Definition 1.2.16, notice that these basic paths and elements can
be used to describe arbitrary paths and elements: every combinatorial path in RA
is a concatentation of these basic paths, and thus every element in FA is a product
of elements in SA. The symmetric basis is easier to work with when its elements
have been given explicit names. The tradition is to break symmetry by selecting a
basis.

Definition 1.2.18 (Bases and orientations). A subset of the symmetric basis
SA of the free group FA is called a basis if it contains one element from each block
of SA. Topologically, selecting a basis is equivalent to orienting the edges of the
rose RA: the path of length 1 that crosses the edge ea in the preferred direction
represents the selected element and the path that travels in the opposite direction
represents the unselected element. We call the selected element a and the other
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element a−1. In this way the choice of a basis (or equivalently an orientation of the
rose) lets us identify SA with the set A∪A−1 where A denotes the selected elements
and A−1 = {a−1 | a ∈ A} collects the unselected elements. Although the free group
FA has many different bases inside SA, its symmetric basis can be recovered from
any one of these by simply adding in the inverses of the basis elements.

The most commonly used free groups with bases are those of finite rank and
for these we introduce a simplified notation.

Remark 1.2.19 (Finite rank). When the size of A is very small we might write
something like F{a,b,c} to mean the free group FA with basis A = {a, b, c}. More
typically we use sets such as A = {ai | i ∈ [n]} = {a1, a2, . . . , an} and we simplify
the notation in this case, by writing ei instead of eai

and F[n] instead of F{ai|i∈[n]}.
Thus F[5] denotes the free group of rank 5 with basis A = {a1, a2, a3, a4, a5}.

When a free group arises as the fundamental group of a complicated graph, a
basis can be selected by collapsing a spanning tree.

Proposition 1.2.20 (Selecting a basis). Let T be a spanning tree in a based
connected graph (X,x). Once the edges not in T are indexed by a set A, there is a
natural isomorphism π1(X,x) ∼= FA. The elements in the symmetric basis SA are
represented by paths in X that cross over exactly one of the edges ea concatenated,
if necessary, with paths in T connecting the basepoint x with the endpoints of ea.

Proof. When T is collapsed to a point, the labeling identifies the quotient
with the rose RA. The homomorphism induced by the quotient map q : X →
X/T is thus a map q∗ : π1(X,x) → FA. Because trees do not contain closed
immersed paths (Theorem 1.2.1), the image of a non-trivial immersed path based
at x under the quotient map q is a path based at ∗ that remains non-trivial and
immersed (Exercise 7). When combined with Proposition 1.2.10, this shows that
q∗ is injective. The surjectivity of q∗ and the description of paths representing
the symmetric basis elements follow from the statement and proof of the next
proposition, a general result that we record for later use. �

Proposition 1.2.21 (Lifting paths). Let {Uα} be a collection of pairwise dis-
joint connected subcomplexes of a connected complex U . If V is the cell complex
obtained from U by collapsing each Uα to a point and q : U → V denotes the
quotient map, then for every immersed path f : I → V (1) there is an immersed
path g : I → U (1) such that q(g) traces the same path as f . As a consequence, the
induced map q∗ : π1(U)→ π1(V ) is onto.

Proof. Let uα denote the point in V to which Uα collapses. Because the
quotient map establishes a homeomorphism between U \ {Uα} and V \ {uα}, the
portions of f that avoid the vertices uα can be lifted to U . Moreover, we can extend
these lifted portions to paths (i.e. to images of closed intervals) by including the
vertices in the various Uα at which they start and/or end. The required path g is
then patched together out of these lifted portions. See Figure 3 for an illustration.
For each t in the interior of I where f(t) is equal to one of the uα, we insert, if
necessary, an immersed path in U

(1)
α that connects the end point of the previous

portion to the start point of next portion; if these two points are the same, we
simply concatenate without inserting a path. Such connecting paths exist because
each Uα is connected. Concatenating these paths produces a path g : I → U (1)
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Figure 3. Lifting a path from V to U .

whose image under q traces out the original path in V , and the path g is immersed
because (1) its image is immersed and (2) when non-trivial paths are inserted, at
the transitions one edge lies in Uα and the other does not. To prove the final
assertion, let u be a vertex not in any of the Uα and let v be its image in V (1).
The induced map q∗ : π1(U, u)→ π1(V, v) is onto since every non-trivial element in
π1(V, v) can be represented by an immersed loop f : I → V (1) based at v and this
loop is the image under q of a loop g based at u in U . A similar argument works
when u is contained in one of the Uα, but paths inside Uα might need to be added
at either end of the lifted path. �

The reader should note that when one spanning tree in X is replaced with
another, Proposition 1.2.20 produces a different isomorphism and a different sym-
metric basis is identified (Exercise 11). In fact, the situation is even more compli-
cated. For any set A of cardinality κ > 1, the group F = Fκ is isomorphic to FA in
an infinite number of distinct ways (Exercise 12) so that there are infinitely many
distinct symmetric subsets of F that can play the role of its symmetric basis and
a correspondingly infinite set of subsets that can be a basis for F. We refer to any
such subset or symmetric subset as a basis or symmetric basis for F.

1.2.4. Alternative definitions. There are two alternative definitions of free
groups that involve constructing them algebraically or defining them abstractly via
their universal properties. We introduce both alternatives and prove they describe
the same class of groups (Theorem 1.2.27). In order to distinguish among the
different definitions, we refer to the free groups already defined as topological free
groups. One major difference we should note is that both alternative definitions
require the specification of a basis or symmetric basis.2 We begin with the algebraic
construction.

2This makes the topological version easier to apply in situations like the proof of the Nielsen-
Schreier theorem. To prove Theorem 1.2.13 using one of the other definitions would have required
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Definition 1.2.22 (Free groups; algebraic version). The algebraic free group
with symmetric basis SA is the group constructed as follows. Start with the free
symmetric set SA and consider finite sequences of elements from SA. The collection
of all such finite sequences (including the empty sequence) is denoted (SA)∗. The
elements of SA are called letters and the finite sequences are called words. (More
generally, for any set B we use B∗ to denote the set of all ‘words’ built out of
the ‘letters’ in B.) Equivalence classes are constructed based on the repeated
insertion or deletion of subwords of the form aa−1 and the multiplication of two
equivalence classes is the equivalence class of the concatenation of representatives.
It is straightforward to show that this multiplication is well-defined and that the
result is a group (Exercise 9). If a basis is chosen for SA so that its elements are
identified with the set A ∪ A−1, then the group we construct is the algebraic free
group with basis A.

A non-empty word equivalent to the empty sequence is called a Dyck word, and
one with no subwords of the form aa−1 is said to be reduced. Under the natural
bijection between words in (SA)∗ and combinatorial paths in the rose RA, the
reduced words correspond to the immersed paths. Thus, by Proposition 1.2.10, we
can think of the reduced words in (SA)∗ as parameterizing the non-trivial elements
of FA. This bijection quickly leads to an isomorphism.

Proposition 1.2.23 (Algebraic free groups). The algebraic free group with
symmetric basis SA is isomorphic to the fundamental group of the rose RA. Thus,
a group is free in the algebraic sense iff it is free in the topological sense.

Proof. Let G be the algebraic free group with symmetric basis SA and let
f : G → FA be the natural homomorphism defined by identifying SA with the
symmetric basis of RA and then interpreting the words in (SA)∗ as combinatorial
paths in the rose RA that represent elements of FA. Since the insertion and deletion
operations on words correspond to elementary homotopies on based loops, and
concatenation of words corresponds to concatenation of based loops, the map f is
a well-defined group homomorphism. Moreover, the canonical bijections between
reduced words in (SA)∗, immersed paths in RA, and the non-trivial elements of
FA show that f is onto. Finally, suppose g is any non-trivial element of G. Start
with any word representing g and iteratively remove subwords of the form aa−1.
This process must stop before it reaches the empty word since g is non-trivial. The
word at which it stops is a reduced word representing g and this means that f(g)
is represented by a closed immersed path in RA. By Proposition 1.2.10, f(g) is a
non-trivial element of FA, showing that f is one-to-one. �

Notice that, as a consequence of our identifications, the set A∗ can be viewed
as a subset of the free group FA with basis A since every non-empty word in A∗

is automatically reduced. The non-trivial elements in A∗ are called positive words.
Our third and final definition of a free group focuses on their universal properties.

Definition 1.2.24 (Free groups; categorical version). A group G with a dis-
tinguished subset A is called a categorical free group with basis A if for any group
H and for any function f : A→ H, there exists a unique extension of f to a group
homomorphism G→ H. Similarly, a group G with a distinguished free symmetric

us to first find a potential basis or symmetric basis for the subgroup H and then to establish that
it had the right algebraic or categorical properties.
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subset S is called a categorical free group with symmetric basis S if for any group
H and for any symmetry-preserving function f : S → H, there exists a unique
extension of f to a group homomorphism G→ H.

Categorical free groups are unique, in the appropriate sense, almost by defini-
tion, and topological free groups are used to show they exist.

Proposition 1.2.25 (Uniqueness). There is at most one categorical free group
up to isomorphism for each size basis or symmetric basis. In particular, if G is
a categorical free group with basis A, H is a categorical free group with basis B,
and f : A → B is a bijection, then the unique homomorphism G → H extending
f is an isomorphism. Similarly, if G is a categorical free group with symmetric
basis S, H is a categorical free group with symmetric basis T , and f : S → T is a
symmetry-preserving bijection, then the unique homomorphism G → H extending
f is an isomorphism.

Proof. For simplicity we prove the basis version and leave the other as an
exercise. Let i : A → G and j : B → H be the given inclusions. Applying the
defining property of a categorical free group to the function i shows that the identity
map on G is the unique homomorphism G → G fixing A pointwise. Similarly,
the identity map on H is the unique homomorphism H → H fixing B pointwise.
Applying the defining property to the composition j ◦ f shows that there is a
unique homomorphism g : G → H that extends the bijection f . Similarly, using
the composition i ◦ f−1 shows that there is a unique homomorphism h : H → G
extending the bijection f−1. Since g ◦ h is a homomorphism G → G fixing A
pointwise, it must be the identity map on G and the composition h ◦ g, being a
homomorphism H → H fixing B pointwise, must be the identity map on H. Thus,
g is injective and surjective and this unique homomorphism is an isomorphism. �

Proposition 1.2.26 (Existence). The topological free group FA = π1(RA, ∗)
with symmetric basis SA is a categorical free group. In other words, for any group
H and any symmetry-preserving function f : SA → H there exists a unique group
homomorphism FA → H extending f .

Proof. If X is any cell complex with H = π1(X,x) then we can define a map
from RA to X that sends ∗ to x and the oriented edge ea in RA to a based loop
in X that represents the appropriate element in H. The induced homomorphism
FA → H clearly extends f . It only remains to prove that this map is unique. Let
g, h : FA → H be two homomorphisms that agree with f when restricted to SA and
consider the subset of FA on which they agree. This set includes SA and is closed
under composition, but since every non-trivial element of FA is represented by a
word in (SA)∗, g and h must agree on all of FA. �

The last three propositions taken together establish the following.

Theorem 1.2.27 (Free groups). A group is free in the topological sense iff it is
free in the categorical sense iff it is free in the algebraic sense. Thus, the topological,
algebraic, and categorical definitions define the same collection of groups.

1.2.5. Maps and automorphisms. Bases are powerful tools that are par-
ticularly useful when describing homomorphisms from free groups to other groups.
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Proposition 1.2.28 (Maps from free groups). Let FA = π1(RA, ∗) be a free
group with basis A. For any based cell complex (X,x) with G = π1(X,x), the
following collections are in natural bijection:

1. equivalence classes of based maps (RA, ∗)→ (X,x),
2. group homomorphisms FA → G,
3. symmetry-preserving functions SA → G, and
4. functions A→ G.

Proof. There are easy conversions among the collections that we call restrict,
construct, and induce. Any group homomorphism FA → G can be restricted to its
symmetric basis SA and then further restricted to its basis A. Given any function
A → G, a based map (RA, ∗) → (X,x) can be constructed by sending ∗ to x and
each oriented edge ea to a loop in X based at x that represents f(a). Different
choices for the image of ea are equivalent up to basepoint preserving homotopy,
so the map is well-defined up to equivalence. Finally, given a representative based
map we can look at the induced homomorphism between their fundamental groups,
which is well-defined since different representatives induce the same homomorphism.
The consistency of the bijections connecting collections 2, 3, and 4 is an immediate
consequence of the uniqueness part of the categorical definition of a free group, and
the consistency of the bijections between collections 1 and 4 is clear: elements in
G are sent to based loops in X that represent them and based loops in X are sent
back to the elements in G they represent. �

As a corollary, the automorphisms of a free group can be indexed by bijections
between its various bases.

Corollary 1.2.29 (Automorphisms of free groups). If F is a free group with
basis A ⊂ F then a group endomorphism f : F → F is a group automorphism iff f
restricted to A is a bijection between two bases for F. Thus, for free groups of finite
rank, the automorphisms in Aut(F) can be indexed by the collection of ordered
bases inside F.

Proof. If f restricted to A is a bijection between two bases for F, then f
is an isomorphism by Proposition 1.2.25. Conversely, suppose f : F → F is an
automorphism and let B = f(A). Because isomorphisms are injective, f restricted
to A is a bijection and it is easy to show that B is a basis for F in the categorical
sense (Exercise 13). For the final assertion, the orderings are an artifact used to
implicitly describe the bijections between bases. First choose a standard basis A
and linearly order it. A bijection A → B between bases can be used to induce a
linear ordering of B and distinct bijections induce distinct orderings. Conversely,
if B is any ordered basis of F we can reconstruct a bijection A→ B by sending the
first element of A to the first element of B, the second to the second, etc. �

The final assertion of Corollary 1.2.29 immediately extends to free groups of
infinite rank (Exercise 14) once we correct for the fact that distinct infinite ordinals
(such as ω, ω + ω, and ωω) can have the same cardinality.

One unfortunate aspect of using a rose, or in fact any graph, as a model space
for a free group F is that it does not treat all of its bases or symmetric bases,
on an equal footing. Let F = FA be a non-abelian finite rank free group. By
Proposition 1.2.28 every automorphism F→ F can be represented by an equivalence
class of based maps (RA, ∗)→ (RA, ∗) but only finitely many of these classes contain
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a representative map that is a homeomorphism of the rose (Exercise 18). The images
of A under these maps are the bases of FA inside its symmetric basis SA and this
illustrates how they are qualitatively different from the others bases of F. There are
better models in higher dimensions as we briefly indicate. For further information
on this topic see our discussion of free group automorphisms in the Epilogue.

Remark 1.2.30 (Other model spaces for free groups). Let A be a finite set
with more than one element and pick a relatively nice embedding of RA into R2 or
R3. If we replace RA with a regular neighborhood of its image, then the resulting
manifold with boundary is homotopy equivalent to the original rose. The result
in R2 is called a planar surface and the manifold in R3 is known as a handlebody.
If we call the resulting planar surface P and the handlebody H then by Propo-
sition 1.2.28 every automorphism FA → FA corresponds to an equivalence class
of based maps (RA, ∗) → (P, p) or (RA, ∗) → (H,h), respectively. In the planar
surface case infinitely many but not all automorphisms can be represented by maps
that embed RA into P (Exercise 19), and for handlebodies, every automorphism
can be represented by a map that embeds RA into H (Exercise 20). In fact, each
of these embeddings can be chosen so that there is a deformation retraction from
P or H onto the image of RA. As a result, there is a precise sense in which the
planar surface model treats infinitely many but not all bases on an equal footing
and the handlebody model treats all bases equally.

1.3. Complexes and presentations

The geometric group theorist Martin Bridson began his address to the 2006
International Congress of Mathematicians as follows: “When viewed through the
eyes of a topologist, a finite group-presentation Γ = 〈A|R〉 is a concise description
of a compact, connected 2-dimensional CW-complex K with one vertex: the gen-
erators a ∈ A index the (oriented) 1-cells and the defining relations r ∈ R describe
the loops along which the boundaries of the 2-cells are attached. Γ emerges as
the group of deck transformations of the universal cover K̃ and the Cayley graph
CA(Γ) is the 1-skeleton of K̃.” This succinctly summarizes the ideas discussed in
this section. The traditional algebraic machinery of presentations with generators
and relations is introduced, but with an emphasis on the topological structures to
which these concepts correspond.

1.3.1. Generating sets. A generating set for a group G is, essentially, a
surjection onto G from a free group with a specified basis. They arise whenever
G is viewed as the fundamental group of cell complex and there is a certain rough
equivalence between generating sets for G, cell complexes with fundamental group
G, and G-actions on graphs (Theorem 1.3.9). The first claim is easy to illustrate.
Let G be the fundamental group of a connected cell complex X. If T is a spanning
tree for X(1) and the edges not in T are indexed by A, then by Theorem 1.2.14 and
Proposition 1.2.21 the inclusion map X(1) ↪→ X induces a surjection f : FA � G.

Definition 1.3.1 (Generating sets). Let FA be a free group with basis A and
recall that A∗ can be viewed as a subset of FA. If f : FA → G is onto, then the
function f (or, equivalently, its restriction A → G) is said to generate G since we
can generate every element of G from the image of SA = A∪A−1. With the typical
abuse of notation, the map to G often goes unmentioned. We say instead that A
generates G and is a generating set. Similarly, SA symmetrically generates G and is
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a symmetric generating set. And when f restricted to A∗ remains onto, A generates
G as a monoid and is a monoid generating set.

These conditions have several easily established reformulations (Exercise 23).

Proposition 1.3.2 (Detecting generating sets). If FA is a free group with basis
A and f : FA → G is a map with B = f(A) and T = B ∪ B−1 = f(SA), then the
map f is onto iff no proper subgroup contains B iff no proper submonoid contains T
which is true iff every element of G is represented by some word in T ∗ = (B∪B−1)∗.
Similarly, f restricted to A∗ remains onto iff no proper submonoid contains B which
is true iff every element of G is represented by some word in B∗.

Remark 1.3.3 (Generating sets as subsets). If A → G generates G and B is
the image of A, then the inclusion B ↪→ G also generates G: the corresponding
homomorphism FB → G must be onto since no proper subgroup of G contains B.
Thus, in principle at least, generating sets for G can be replaced with generating
subsets ofG and it is tempting to make this assumption part of the definition. We do
not do so precisely because closed paths in complicated spaces can be unexpectedly
null-homotopic, making it difficult to determine whether the map F → G derived
from the inclusion X(1) ↪→ X is injective on a basis of the free group F.

The different types of generating sets can be illustrated using the integers.

Example 1.3.4 (Generating sets for Z). Consider the subsets A = {1}, B =
{−1}, C = {2, 3}, and D = {−2,−3} in Z. Each of the four is a generating set for
Z. None of the four is a symmetric generating set or a monoid generating set. The
combinations A∪B and C ∪D symmetrically generate Z, and a set such as A∪D
is a monoid generating set that is not symmetric.

A group with a finite generating set is said to be finitely generated, and it should
be clear from our earlier construction that the fundamental group of a cell complex
with a finite 1-skeleton is an example of such a group. We have highlighted how
cell complexes create generating sets for their fundamental groups; this process can
also be reversed.

Lemma 1.3.5 (Complexes from generating sets). For each map f : FA � G
there is connected cell complex X with RA as its 1-skeleton, G as its fundamental
group, and with f as the homomorphism induced by the inclusion X(1) ↪→ X. As
a consequence, every finitely generated group is the fundamental group of a cell
complex with a finite 1-skeleton.

Proof. Let K be the kernel of f and construct X as follows. Start with the
rose RA and for each non-trivial k ∈ K attach a 2-cell to RA. The element k, being
a non-trivial element of FA, corresponds to a reduced word in (SA)∗, and thus to a
closed immersed path in RA. This is the loop we use as the attaching map for the
2-cell indexed by k. Let g : FA � π1(X, ∗) be the group homomorphism induced
by the inclusion (RA, ∗) ↪→ (X, ∗). By van Kampen’s theorem (Theorem A.2.8) the
kernel of g is the normal subgroup generated by K, but since K is already normal,
the kernel of g is the kernel of f , and consequently π1(X, ∗) ∼= G. �

Generating sets also arise from free actions on cell complexes and we prove
two different versions of this result. The first is more general and produces a
generating set simply from a fundamental domain for the action. The second gives
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an alternative proof using the theory of covering spaces in the special case where
the complex is a graph and the quotient by the group action is a rose.

Lemma 1.3.6 (Generating sets from actions, I). If a group G acts on a connected
cell complex X and F is both a subcomplex and a fundamental domain for the action,
then the set {g ∈ G | F ∩ (g · F) 6= ∅} is a symmetric monoid generating set for G.
More specifically, when the action of G on X is proper and cocompact, G is finitely
generated.

Proof. Let S = {g ∈ G | F ∩ (g · F) 6= ∅} and let x be a vertex in the
subcomplex F . Because X is connected, for each non-trivial g ∈ G there is an
immersed path in the 1-skeleton of X connecting x and g · x. Using this path we
can find a finite sequence {(g0 · F), (g1 · F), (g2 · F), . . . , (gn · F)} of translates of F ,
such that g0 is the identity of G, gn is g, and for each i ∈ [n], (gi−1 · F) ∩ (gi · F)
is non-empty. Because of the G-action, for each i ∈ [n], F ∩ (ai · F) is non-empty
where ai = (gi−1)−1gi. Thus each ai is in S and the factorization g = a1a2 · · · an
shows that g is represented by a word in S∗. Since g was arbitrary, S is a monoid
generating set for G. The G-action also shows that S is symmetric since F ∩ (a ·F)
is non-empty iff (a−1 · F)∩F is non-empty. For the second assertion, note that the
implicit assumption that the action of G on X is cellular means that S is precisely
the subset of G that sends some vertex of F to another vertex in F . Because the
action is cocompact, our fundamental domain is a subcomplex with a finite set of
vertices, and because the action is proper, for any pair of vertices u and v there are
only a finite number of group elements that send u to v. The set S is thus a finite
union of finite sets. �

Lemma 1.3.7 (Generating sets from actions, II). When a group G acts freely on
a connected graph Γ with the rose RA as its quotient, this induces a map FA � G.

Proof. Because the action of G on Γ is free, the quotient map p : Γ→ RA is a
covering map and the group G can be identified as the group of deck transformations
of p. Moreover, the transitivity of the action on vertices means that Γ is a regular
cover of RA. If we pick a vertex v ∈ Γ and define K = π1(Γ, v), then, by the
theory of covering spaces, the induced homomorphism p∗ embeds K as a normal
subgroup of FA = π1(RA, ∗). The quotient of FA by p∗(K) is isomorphic to G
(Proposition A.3.9) and the required map is FA � FA/p∗(K) ∼= G. �

Using these lemmas, it is easy to establish that several natural topological
conditions are equivalent to being finitely generated.

Theorem 1.3.8 (Finitely generated). For each G the following are equivalent:

1. G is finitely generated;
2. G is the fundamental group of a cell complex with a finite 1-skeleton.
3. G acts freely and cocompactly on a connected graph;
4. G acts properly and cocompactly on a connected cell complex;

Proof. Lemmas 1.3.6 and 1.3.5 show 4 ⇒ 1 ⇒ 2. If G ∼= π1(X,x) with X(1)

finite, then the action of G on the 1-skeleton of X̃ is both free and cocompact, so
2⇒ 3. Finally, free actions are proper and graphs are cell complexes, so 3⇒ 4. �

We can also clarify when a set A can generate a group G.
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Theorem 1.3.9 (Generating sets). For each set A and group G consider the
following three collections.

1. homomorphisms FA � G;
2. cell complexes X with π1(X, ∗) = G and X(1) = RA;
3. free G-actions on connected graphs Γ with quotient RA.

A homomorphism in collection 1 converts to a cell complex in collection 2, which
converts to a action on a graph in collection 3 which converts to a homomorphism in
collection 1. Thus, one collection is non-empty iff they are all non-empty. In fact,
up to the appropriate notions of equivalence, these three collections are in natural
bijection.

Proof. The conversions from 3 to 1 and from 1 to 2 use Lemma 1.3.7 and
Lemma 1.3.5, respectively, and to convert from 2 to 3 let G act on the 1-skeleton of
the universal cover of X. We leave the proof that they are in natural bijection up to
equivalence as an exercise. For the record, the appropriate notions of equivalence
are as follows:

1. Two functions fA : FA � G and fB : FB � G that generate G are
considered equivalent if there is a symmetry-preserving bijection SA → SB between
their symmetric bases that extends to an isomorphism i : FA → FB with fB◦i = fA.

2. Let XA and XB be cell complexes with 1-skeletons RA and RB , π1(XA, ∗) =
G = π1(XB , ∗), and induced homomorphisms fA : FA → G and fB : FB → G,
respectively. These complexes are considered (very roughly) equivalent if there is a
homeomorphism RA → RB between their 1-skeletons that induces an isomorphism
i : FA → FB with fB ◦ i = fA.

3. Let G act freely on two graphs Γ and Γ′. These are considered equivalent
if there is an isomorphism of the underlying graphs that is compatible with the
G-action. In other words, there is an isomorphism f : Γ → Γ′ such that for all
g ∈ G and for every cell σ ∈ Γ, f(g · σ) = g · f(σ). �

1.3.2. Cayley graphs. The graphs with group actions that occur in the state-
ment of Theorem 1.3.9 are called Cayley graphs.

Definition 1.3.10 (Cayley graphs). Let G be a group. A connected graph
Γ with a free and vertex-transitive G-action is called a Cayley graph for G. The
quotient of Γ by the action of G is a rose. If we index its edges by a set A, then by
Theorem 1.3.9 there is a corresponding map f : FA � G that generates G, and Γ is
called the Cayley graph for G with respect to f . Finally, if an orientation is added
to the edges of RA, then this defines a basis A for the free group FA and we call Γ
the Cayley graph for G with respect to A.

According to Theorem 1.3.9 a Cayley graph for G can be constructed from a
map FA � G or from a one vertex cell complex with G as its fundamental group.

Example 1.3.11 (Free groups). Since the rose RA is a one vertex complex with
fundamental group FA, its universal cover is a Cayley graph for the free group FA.
The universal cover is, of course, a tree and each vertex has valence 2|A|. A portion
of a Cayley graph for F3

∼= F{a,b,c} is sketched on the lefthand side of Figure 4. The
drawing conventions are as follows: the edges with negative slope represent a (when
moving up and to the left) or a−1 (when moving down and to the right). Those
with positive slope similarly represent b or b−1 and the vertical edges represent c



1.3. COMPLEXES AND PRESENTATIONS 19

or c−1. The length of each edge has been scaled according to its distance from the
base vertex, to enable the graph to be drawn without self-intersections.

Figure 4. Portions of Cayley graphs for F3 (left) and Z3 (right).

Example 1.3.12 (Free abelian groups). The vector space Rn can be given a cell
structure where it looks like unit n-dimensional cubes stacked up in all directions
with a vertex at every point with integer coordinates and edges in the coordinate
directions connecting points distance 1 apart. Moreover, there is a free cellular
Zn-action on Rn where the action is by rigid translation. The action is transitive
on vertices so the quotient of Rn by action of Zn is a one vertex complex called
an n-torus and denoted Tn. The cell complex Tn has

(
n
i

)
i-cells for each i ∈

{0, 1, 2 . . . , n}. Since the space Rn is simply-connected and the Zn-action is free,
(1) π1(Tn, ∗) = Zn, (2) the quotient map is a covering projection, (3) Rn is the
universal cover of Tn and (4) its 1-skeleton is a Cayley graph for Zn. A portion of
this Cayley graph for Z3 is sketched on the righthand side of Figure 4.

Given a map f : FA � G there is a direct construction of the corresponding
graph Γ with a free G-action that eliminates the need for the intermediate complex
X, but to make the construction precise we need the notion of a symmetric edge
labeling of a graph.

Definition 1.3.13 (Edge labelings). In any graph Γ, the edges of Γ form a
set and the oriented edges of Γ (i.e. the combinatorial paths of length 1) form a
symmetric set using the involution that reverses orientation. An edge labeling of Γ
by A is a bijection between the set A and the edges of Γ. Similarly, a symmetric
edge labeling of Γ by S is a symmetry-preserving bijection between the symmetric
set S and the oriented edges of Γ.

Definition 1.3.14 (Labeling the 1-skeleton of X̃). Let X be a cell complex
with X(1) = RA and π1(X, ∗) = G, let X̃ be its universal cover, and let x̃ be one
of its vertices. The group G acts on X̃ as the group of deck transformations of
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the projection map p : X̃ → X and this action can be used to induce a vertex
labeling and a symmetric edge labeling on the 1-skeleton of X̃. Since the action of
G on X̃ is free and vertex-transitive, for each vertex v in X̃ there exists a unique
element g ∈ G with v = g · x̃. We call this vertex vg and the action of G on the
vertex set is described by g · vh = vgh. Similarly, every path of length 1 in X̃ is
uniquely determined by its starting point and the path of length 1 in RA to which it
projects. Since the vertices of X̃ are indexed by G and the paths of length 1 in RA
are indexed by the symmetric basis SA, the paths of length 1 in X̃ are indexed by
G×SA. If we use [a] to denote the image of a under the induced map f : FA → G,
then the oriented edge e(1,a), almost by definition, starts at x̃ = v1 and ends at v[a].
More generally, using the G-action, the oriented edge e(g,a) starts at vg and ends at
vg·[a] and the G-action on oriented edges is described by g · e(h,a) = e(gh,a). From
this we can see that the appropriate involution to define on G× SA to turn it into
a symmetric set is the one sending (g, a) to (g · [a], a−1).

The key observation is that the vertex labeling and the symmetric edge labeling
describe the structure of the graph X̃(1) in a way that only depends on the map
f : FA → G and the multiplication in G. In particular, it and its G-action can be
completely reconstructed with no mention of cell complex X.

Definition 1.3.15 (Cayley graphs from generating sets). The previous discus-
sion shows that if A → G generates G and [a] denotes the image of a ∈ A under
this map, then the corresponding Cayley graph of G with respect to A can be
constructed as follows. Start with a vertex vg for each g ∈ G, then add an edge
connecting vg to vg·[a] for each (g, a) ∈ G × A, and call the resulting graph Γ. To
recover the symmetric labeling of the oriented edges of Γ, we let e(g,a) label the
path of length 1 that travels along the edge indexed by (g, a) from vg to vg·[a] and
label the same edge with the opposite orientation by e(g·[a],a−1). This gives a sym-
metric edge labeling of Γ by G× SA, where the latter is a symmetric set under the
involution with (g, a)−1 = (g · [a], a−1). Finally, there is a natural (left) action of G
on this graph Γ that is defined on vertices and edges by the equations g · vh = vgh
and g · e(h,a) = e(gh,a).

Remark 1.3.16 (Left and right). The Cayley graph constructed above is some-
times called the right Cayley graph of G with respect to f : FA → G since the edges
record what happens when you right multply by [a] ∈ G. The switch between a
right multiplication (·[a]) that defines the edges and a left multiplication (g·) that
defines the G-action is crucial for their compatibility. One could define a left Cayley
graph for G generated by A, but it would only have a natural right G-action.

Remark 1.3.17 (Covers, Cayley graphs and groups). Let X be a one vertex cell
complex with π1(X, ∗) = G. Because X is a cell complex, we know that a universal
cover X̃ exists, but that does not mean that we know how to construct it. The main
difficulty is being able to construct the 1-skeleton of X̃, i.e. the Cayley graph of G
with respect to the generating set that arises from the 1-skeleton of X. In a way that
we make precise in Chapter 3, arbitrarily large portions of X̃ can be constructed iff
arbitrarily large portions of its Cayley graph can be constructed, which can be done
iff we truly understand how to multiply elements inside its fundamental group. In
particular, whenever we know something about the structure of X̃, it can usually
be translated into algebraic information about the group G.
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Remark 1.3.18 (Encoding the group action). If A→ G generates G and Γ is
the Cayley graph for G with respect to A as constucted above, then a few simple
decorations can be added to Γ that encode the group action. For example, it is
sufficient to indicate which vertex v corresponds to the identity in G and to label
each oriented edge e(g,a) by its second coordinate a. For each a ∈ A ∪ A−1, the
action of [a] on Γ is then the unique label-preserving motion that sends v to the
other end of the unique oriented edge starting at v and labeled by a. The fact that
A generates G means that the motions corresponding to the other group elements
are compositions of these basic motions.

Before leaving the subject of group actions on graphs, we briefly indicate how
close an arbitrary free action on a graph is to being a true Cayley graph.

Definition 1.3.19 (Partial and non-standard Cayley graphs). If Γ is a graph
with a free G-action, then Γ can be viewed as a Cayley graph that is partial and
non-standard. The word ‘partial’ indicates that Γ need not be connected and ‘non-
standard’ indicates that the G-action need not be vertex transitive. When a dis-
tinction needs to be drawn, ordinary Cayley graphs are said to be full and standard.

Figure 5. A portion of a non-standard Cayley graph for the fun-
damental group of the complement of the trefoil knot.

Many of the earlier results on Cayley graphs immediately extend to the partial
and non-standard ones, and the places where they do not extend only serve to
highlight how the additional assumptions were used. For example, every full non-
standard Cayley graph corresponds to the 1-skeleton of the universal cover of a
connected cell complex with more than one vertex. Thus, the 1-skeleton of the
complex D̃ that we examined in the prologue is a non-standard Cayley graph for
the fundamental group of the complement of the trefoil knot. We can convert a
full non-standard Cayley graph into standard one by either contracting a spanning
tree in the complex X before we construct its universal cover and restrict to the 1-
skeleton, or, more directly, we can simply contract all preimages of this tree inside
X̃(1). This extra flexibility is particularly useful when the non-standard Cayley
graph is easier to visualize, as in the case of the trefoil knot. Next, partial standard
Cayley graphs arise when we consider arbitrary maps FA → G that need not be
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onto, and they can be converted to full Cayley graphs by enlarging the set A to a
generating set. Finally, in complete generality, let X be a connected complex with
π1(X,x) = G and covering projection p : X̃ → X. The action of G on the preimage
under p of a portion of the 1-skeleton of X is a partial non-standard Cayley graph,
and, up to disjoint union, every partial non-standard Cayley graph (i.e. every free
G-action on a graph) arises in this way.

1.3.3. Presentations. Group presentations, like generating sets and Cayley
graphs, have a topological definition, a corresponding algebraic formalism, and a
group action interpretation.

Definition 1.3.20 (Topological presentations). Let G be a group and let (X,x)
be a based connected combinatorial 2-complex with π1(X,x) = G. When X has
only one vertex, it is called a (topological) presentation of G, and when X has only
a finite number of cells (i.e. when X is compact), we say X is a finite topological
presentation of G and G is finitely presented by X.

Note that Theorem 1.1.4 and Proposition 1.2.6 prove that the class of groups
with finite topological presentations is the same as the class of compact manifold
groups. Echoing the distinctions for Cayley graphs, we add the adjective non-
standard when X has more than vertex. The Dehn complex of a knot diagram,
for example, is a non-standard presentation for the fundamental group of the knot
complement since it has, by construction, 2 distinct vertices.

Example 1.3.21 (Finite groups). If G is a finite group then G has a finite
presentation. In particular, the complex described in Exercise 1 is a finite non-
standard three vertex 2-complex with fundamental group G.

Before turning to the algebraic version, we note that the correspondence be-
tween the definitions is much closer when relators can be listed more than once.
The notion of a multiset in introduced to make this precise.

Definition 1.3.22 (Multisets). Let S be a set. A multiset selected from S is
a function m : S → N, where the value m(s) indicates the number of times that
s ∈ S is selected. Intuitively, a multiset is a cross between a list and set: repetition
is allowed but the ordering is irrelevant. Subsets of S corresponds to multisets
with range in {0, 1} ⊂ N. In the other direction, every multiset m : S → N has
an associated subset formed by collecting together all elements of S selected at
least once. This is equivalent to removing any redundancies. For more on the
combinatorics of multisets, see [28].

Definition 1.3.23 (Algebraic presentations). Let A be a set and let R be a
multiset selected from (A ∪A−1)∗. Since each r in R represents an element of FA,
R implicitly describes a subset of FA. Let N be the smallest normal subgroup of FA
containing this subset and let G be the quotient group FA/N . The pair P = 〈A|R〉
is called an algebraic presentation of G, the elements of R are called relators, and
R itself is a set of defining relators. The quotient map FA � G shows that A
generates G. When both A and R are finite, we say that P is a finite algebraic
presentation of G.

Converting from an algebraic to a topological presentation is straightforward.

Definition 1.3.24 (Relators to 2-cells). If P = 〈A|R〉 is an algebraic presen-
tation of a group G, then we construct a 2-complex X starting with the oriented
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rose RA and attaching one 2-cell to RA for each r ∈ R, attaching it along the
closed combinatorial path in RA to which the word r corresponds. As in the proof
of Lemma 1.3.5, by van Kampen’s theorem (Theorem A.2.8) the kernel of the
map g : FA → π1(X, ∗) is the normal subgroup N generated by the subset of FA
that R implicitly represents. Because 〈A | R〉 is an algebraic presentation of G,
π1(X, ∗) = FA/N = G and X is a topological presentation of G.

Remark 1.3.25 (Redundant 2-cells). When the multiset R is not a subset
of (A ∪ A−1)∗, the corresponding 2-complex has redundant 2-cells (distinct 2-cells
attached along the same closed path). Redundant 2-cells can be removed without
changing the fundamental group, but they are not easy to avoid completely since
covers of complexes with no redundant 2-cells can have redundant 2-cells. The
classic example is the complex for 〈a|an〉. Its single 2-cell is not redundant, but its
universal cover has n distinct 2-cells attached to the same closed path.

Definition 1.3.26 (Useful conventions). When giving explicit examples it is
convenient to use uppercase roman letters, such as ‘A’, ‘B’, ‘C’, to denote the
inverse of their lowercase equivalents, ‘a’, ‘b’, ‘c’. We write, for example, abcABC
instead of abca−1b−1c−1 because the first form is significantly easier to parse and
absorb. The fact that we use ‘A’ to denote both the alphabet of symbols and the
inverse of a ∈ A should not cause any problem since the context makes clear which
is meant. A second convenient convention is to allow relators such as abAB to be
given implicitly via relations such as ab = ba. A relation is an equation of the form
r = s where r and s are words in (A ∪ A−1)∗, and the implicit relator is the word
rs−1. The extra flexibility can be used to highlight aspects that would otherwise be
opaque. In our example, the relation ab = ba makes clear that (the group elements
represented by) a and b commute. This is less clear from the relator abAB.

The conversion in the other direction is similarly straightforward.

Definition 1.3.27 (2-cells to relators). If X is a standard topological presen-
tation of G, we can index and oriented its edges to identify X(1) with an oriented
rose RA. Next, for each 2-cell, its attaching map is a combinatorial map from a
subdivided circle to RA. If we pick an orientation of the circle and a preimage
of the vertex ∗ as our basepoint, then the attaching map can described using the
closed combinatorial path that starts at the lifted basepoint and travels around the
circle in the chosen direction. This combinatorial path is associated with a word
r ∈ (A ∪ A−1)∗. If R collects the multiset of such words, one for each 2-cell of X,
then P = 〈A|R〉 is an algebraic presentation of G.

It should be clear that these conversions are compatible in the following sense.

Proposition 1.3.28 (Presentations). Every standard topological presentation
of a group G can be can be converted into a algebraic presentation of G, from which
the topological presentation can be recovered. Under these conversions, the num-
ber of 1-cells and 2-cells in the topological presentation correspond to |A| and |R|,
respectively, in the algebraic presentation. In particular, G has a finite topological
presentation iff it has a finite algebraic presentation.

Algebraic presentations produce standard topological presentations with only
one vertex. At the end of the chapter we introduce an alternative procedure that
efficiently constructs a large and important class of non-standard complexes. We
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conclude our discussion of presentations with the observation that finitely presented
groups can be characterized via their actions on cell complexes.

Theorem 1.3.29 (Presentations as actions). For each group G, there is a nat-
ural bijection between connected cell complexes with fundamental group G and 1-
connected cell complexes with free G-actions. Moreover, the complexes with one
vertex correspond to the G-actions that are vertex-transitive and the complexes that
are compact correspond to the actions that are cocompact. As a consequence, a
group G has a finite presentation iff it acts freely and cocompactly on a 1-connected
cell complex.

Proof. If G is the fundamental group of a cell complex X then G acts freely on
its 1-connected universal cover Y = X̃. Conversely, if G acts freely on a 1-connected
cell complex Y then by Proposition A.3.9 the quotient of Y by its G-action is a
cell complex X with G as its fundamental group and Y as its universal cover. The
remaining assertions are immediate. �

Remark 1.3.30 (Proper actions). There is a more expansive characterization of
finitely presented groups as those groups capable of acting properly and cocompactly
on a 1-connected cell complex. The easy direction is clear from Theorem 1.3.29 and
in Chapter 7 we establish the more difficult implication.

The reformulation of a presentation as an action naturally leads to the notion
of a Cayley complex. The name highlights the fact that Cayley complexes are to
presentations as Cayley graphs are to generating sets.

Definition 1.3.31 (Cayley complexes). A Cayley complex for a group G is a
1-connected 2-complex Y with a free and vertex-transitive G-action. The 1-skeleton
of a Cayley complex is a Cayley graph and they are created in similar ways. In
particular, when X is a topological presentation of G, the universal cover of X with
its natural free G-action is a Cayley complex for G.

Indexed to here

1.4. Cut points and free products

In this section we focus on a third topological feature of a space that impacts
the structure of its fundamental group: the existence of a cut point. A cell complex
with a cut point can be viewed as a collection of simpler pieces that have been
wedged together and the goal of this section is to show that the fundamental group
of such a wedge product is built out of the fundamental groups of its pieces in an
understandable way.

1.4.1. Wedge products. The wedge product of a collection of based spaces
is usually defined as the quotient of their disjoint union in which their base points
are identified (§A.2), but the key results are easier to prove and easier to visualize
when this standard construction is replaced with a non-standard variation.

Definition 1.4.1 (Non-Standard wedge products). The non-standard wedge
product of based connected spaces (Xα, xα) is a based space (Y, y) created by adding
a new vertex y to the disjoint union of the Xα and adding a new edge eα for each
α that connects y to xα. The non-standard wedge product of three copies of RP 2

is schematically shown in Figure 6. The subcomplex formed by the xα, eα and the
vertex y is a subtree of Y that we call its backbone.
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Figure 6. A non-standard wedge product of three projective planes

Collapsing the backbone of a non-standard wedge product to a point produces
the standard wedge product. So long as each Xα is a cell complex, the two wedge
products are homotopy equivalent (Theorem A.4.5), but this need not be the case
in general (Exercise 24). Assume from here on that each Xα is a cell complex and
let G denote the group π1(X,x) ∼= π1(Y, y). To better understand the group G, we
build the universal cover of Y . A portion of the universal cover of the non-standard
wedge product of three projective planes is shown in Figure 7. In this example it
should be clear that when each 2-sphere is collapsed to a point, the result is a tree.
In fact, the universal cover of a non-standard wedge product always collapses to a
tree in exactly this fashion. The first step is to inductively construct the universal
cover of Y .

Let Y1 be a copy of the backbone of Y and let p1 : Y1 ↪→ Y be the natural
inclusion map. The map p1 is an immersion and it is a local homeomorphism
except at the vertices xα in Y1. To remedy this we attach a copy of the universal
cover X̃α (which exists since Xα is a cell complex) to each deficient vertex xα in
Y1 and we extend p1 using the covering maps X̃α → Xα. Call the resulting space
Y2 and the map p2 : Y2 → Y . The new map remains an immersion and it is a
local homeomorphism except at preimages of xα in the newly attached copies of
the X̃α not already attached to a copy of the backbone. To remedy this we attach
copies of the backbone to each of these vertices and extend the projection to Y in
the obvious way. The result is a local immersion p3 : Y3 → Y that is now a local
homeomorphism except at the preimages of xα in the recently attached copies of
the backbone that are not already attached to a copy of the appropriate X̃α. At
each such vertex we attach a copy of the appropriate X̃α and extend the projection
to Y as before. Continuing in this way forever (alternately attaching copies of the
backbone and copies of the universal covers of the cell complexes used to produce
the wedge product) eventually constructs a space Y ′ and a map p : Y ′ → Y that is
a local homeomorphism everywhere and thus a cover (Proposition A.3.6). Figure 7
shows the intermediate space Y5 in this example; backbones have been attached to
the spheres that were attached to the backbones attached to the spheres attached to
the initial backbone. If final result Y ′ is simply-connected then it is the universal
cover of Y (Proposition A.3.11). The next lemma shows that the intermediate
stages, at least, are simply-connected.
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Figure 7. A portion of the universal cover of the non-standard
wedge product of three projective planes.

Proposition 1.4.2 (Attaching simply-connected spaces). If V is a simply-
connected cell complex, {(Uα, uα)}α∈A is a collection of based simply-connected cell
complexes, and {vα}α∈A is a collection of distinct points in V , then the space U ,
formed by attaching each Uα to V by identifying uα with vα, is simply-connected.

Proof. Pick a vertex u ∈ V ⊂ U and consider an element g ∈ π1(U, u). It
can be represented by an immersed loop f : I → U (1) based at u. See Figure 8.
Since Uα ∩ V = uα and the various subcomplexes Uα are pairwise disjoint, the
maximal subpaths of f in Uα start and end at uα. But each π1(Uα, uα) is trivial,
so these subpaths are null-homotopic and can be excised without changing the
fact that the loop represents g. After excising all of these subpaths, the result is
a loop that remains in V . Because V is simply-connected, g is trivial, and U is
simply-connected. �

By Proposition 1.4.2 the intermediate stages in the construction are simply-
connected, and thus by Proposition A.4.9 the end result is simply-connected. This
means that Y ′ is indeed the universal cover of Y and, as a consequence, we now
know the local structure of Ỹ .
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Figure 8. Attaching simply-connected spaces.

Lemma 1.4.3 (Structure of Ỹ ). Let (Y, y) be the non-standard wedge product of
a collection of based connected cell complexes (Xα, xα) and let S be its backbone. If
p : Ỹ → Y is its universal cover, then each component of p−1(Xα) is a subcomplex
homeomorphic to X̃α and each component of p−1(S) is homeomorphic to S.

The universal cover of the standard wedge product X is, of course, closely
related to Ỹ . In fact, X̃ can be obtained from Ỹ by collapsing each component
of the preimage of the backbone to a point, just as X can be obtained from Y
by collapsing the backbone to a point. If we let X ′ denote the space obtained by
quotienting Ỹ in this way, it is easy to see that the composition Ỹ → Y → X factors
through X ′ to produce a map X ′ → X that is a local homeomorphism and thus a
cover. Finally, by Proposition 1.2.21 the trivial fundamental group of Ỹ maps onto
the fundamental group of X ′ making X ′ simply-connected and the universal cover
of X. This establishes the local structure of X̃.

Corollary 1.4.4 (Structure of X̃). Let (X,x) be the wedge product of based
connected cell complexes (Xα, xα), let (Y, y) be the non-standard wedge product of
this collection with backbone S, and let p : Ỹ → Y be its universal cover. If each
component of p−1(S) is collapsed to a point then the resulting complex is X̃. As a
consequence, the inclusion map Xα ↪→ X lifts to an inclusion X̃α ↪→ X̃.

The fact that we can construct the universal cover of X from the universal
covers of the spaces Xα means that the fundamental group of a wedge product can
be understood once we understand the fundamental groups of the individual spaces
(Remark 1.3.17). In particular, the fact that X̃α embeds in X̃ immediately proves
the following basic result.

Theorem 1.4.5 (Fundamental groups inject). If (X,x) is a wedge product of
based connected cell complexes (Xα, xα), then the homomorphism iα : π1(Xα, xα)→
π1(X,x) induced by the inclusion map is injective for each α.

Proof. Each non-trivial g ∈ π1(Xα, xα) is represented by a loop in X that
lifts to an open path in a copy of X̃α inside X̃ proving that iα(g) is nontrivial. �

In addition to collapsing onto X̃, the space Ỹ also collapses onto a tree.

Corollary 1.4.6 (Tree-like). Let (Y, y) be the non-standard wedge product of
a collection of based connected cell complexes (Xα, xα) and let p : Ỹ → Y be its
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universal cover. If for each α each component of p−1(Xα) is collapsed to a point,
then the resulting graph is a tree.

Proof. The result is a graph since the high dimensional cells have disappeared
and it is a simply-connected since its fundamental group is a quotient of the trivial
group π1(Ỹ ) (Proposition 1.2.21). By Theorem 1.2.1 the quotient is a tree. �

Let T denote the tree obtained from Ỹ in this way. When similar collapsing are
carried out in Y itself, the result looks like its backbone S. The relations among
the spaces and maps constructed so far are best illuminated by a diagram.

X̃ ← Ỹ → T
↓ ↓ ↓
X ← Y → S

Each of these arrows represents a quotient map that has already been described with
the exception of the vertical arrow from T to S. The group G ∼= π1(X,x) ∼= π1(Y, y)
acts freely on Ỹ by the fundamental theorem of covering spaces and it acts on X̃

and T because the horizontal quotient maps commute with the G-action on Ỹ .
In addition, each space in the bottom row can be viewed as the quotient of the
space directly above it by this G-action. Because the action of G on X̃ is free, the
map X̃ → X is a cover; the map from T → S is not since the G-action on T has
non-trivial stabilizers. We return to this picture in Chapter 7 since T is a simple
example of a Bass-Serre tree and S, with the addition of the stabilizer information,
is a simple example of a graph of groups.

1.4.2. Normal forms. Now that the tree-like nature of Ỹ has been firmly es-
tablished, we use this structure to create a canonical factorization of each nontrivial
element in G = π1(Y, y). To facilitate the proof, we introduce additional notation.

Definition 1.4.7 (Backbone vertices and their labels). Every vertex in the
nonstandard wedge product Y belongs to exactly one of the cell complexes Xα

except for the vertex y at the center of the backbone. We call y the backbone vertex,
and the others we call cell complex vertices. Using the covering map p : Ỹ → Y

and the quotient map q : Ỹ → T we can extend this partitioning of vertices to
Ỹ and then to T : preimages and images of backbone / cell complex vertices are
backbone / cell complex vertices. These distinctions are particularly striking in T
where every edge connects a backbone vertex to a cell complex vertex. Finally,
we pick a backbone vertex ỹ ∈ Ỹ as our base point, and, as in Definition 1.3.14,
we then use the G-action to label each backbone vertex of Ỹ as yg where g is the
unique element in G with yg = g · ỹ. The image of yg under the quotient map q is
called tg.

Lemma 1.4.8 (Paths to factors). Each immersed path of length 2 connecting
backbone vertices in T corresponds in a canonical way to a non-trivial element
g ∈ iα(π1(Xα, xα)) for some particular α.

Proof. Let tg and tg′ be the backbone vertices in T at either end of the path
and let vα be the cell complex vertex it passes through. As in Proposition 1.2.21
we lift this path to Ỹ by inserting a path in q−1(vα) connecting the appropriate
endpoints. The lifted path projects to a loop in Y and then to a loop in Xα ⊂ X
using the quotient maps already described and thus corresponds to an element
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g ∈ iα(π1(Xα, xα)). See Figure 9. Although the lifting process involves a choice,
any two such insertion paths are homotopic relative to their endpoints precisely
because q−1(vα) is a copy of X̃α (Lemma 1.4.3) and thus simply-connected. �
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Figure 9. The correspondence betweeen paths in T and loops in X.

Corollary 1.4.9 (Existence). If (X,x) is a wedge product of based complexes
(Xα, xα) and iα is the group homomorphism induced by the inclusion Xα ↪→ X,
then for each non-trivial element g ∈ π1(X,x) there is a canonical factorization of
g as g1g2 · · · gk where each gi is a non-trivial element of iα(π1(Xα, xα)) for some
α and consecutive gi’s belong to distinct subgroups of this form.

Proof. Start with the unique immersed path in T from t1 to tg. Because it
is immersed as it passes through cell complex vertices, Lemma 1.4.8 can be used
to convert it step by step into a factorization; because it is immersed as it passes
through backbone vertices, the α’s involved in consecutive factors are distinct;
and because the lifted path connects y1 to yg, the factorization produced is a
factorization of g. �

Uniqueness follows from the reversibility of this process.

Lemma 1.4.10 (Factors to paths). Every non-trivial element g ∈ iα(π1(Xα, xα))
corresponds in a canonical way to an immersed path of length 2 in T from the base
point t1 to the backbone vertex tg.

Proof. For the appropriate α, pick an immersed path f : I → X
(1)
α ⊂ X

based at x representing g. Lift f to a loop based at y in Y by adding the edge
eα both before and after the loop f in Xα ⊂ Y . There is unique lift of this new
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loop to Ỹ starting at ỹ = y1 (Theorem A.3.7) and that lift projects to a path in
T starting at t1. Since the loop in Ỹ only crosses two edges in the backbone, the
projected path to T has length 2. Because g is non-trivial, the lift to Ỹ is not
closed and the two edges in the projection to T are distinct. Finally, the end result
is independent of the path chosen to represent g since the possible lifts to Ỹ have
the same endpoints and project to the same path in T . �

We now complete the proof of the main result.

Theorem 1.4.11 (Wedge product normal form). If (X,x) is a wedge product
of based connected cell complexes (Xα, xα), then for every non-trivial element g ∈
π1(X,x) there is one and only one way to write it in the form g = g1g2 · · · gk where
each gi is a non-trivial element in iα(π1(Xα, xα)) for some α and consecutive gi’s
belong to distinct subgroups of this type.

Proof. Corollary 1.4.9 proves the existence of such factorizations, so we only
need to show uniqueness. Let g = g1g2 · · · gk be a factorization where each gi is
a non-trivial element in iα(π1(Xα, xα)) for some α and consecutive gi’s belong to
distinct subgroups of this type. Because each gi is non-trivial, Lemma 1.4.10 can
be used to produce an immersed length 2 path in T starting at any particular
backbone vertex. If we rechoose the base point in Ỹ and T at each step to be
the endpoint of the previous lift, then these lifted paths can be concatenated and
the result is immersed as it passes through each cell complex vertex. The fact
that consecutive gi’s belong to distinct subgroups ensures that the concatenated
path is also immersed as it passes through each backbone vertex. The result is an
immersed path from in T from t1 to tg. Since the conversion process is deterministic
in both directions, there must be a one-to-one correspondence between immersed
paths from t1 to tg and factorizations of g of the desired type. But there is only
one such path in a tree, so there is only one such factorization. �

Since the rose RA can be viewed as a wedge product of A circles, Theorem 1.4.11
immediately implies the following normal form for elements of free groups.

Corollary 1.4.12 (Free group normal form). If RA is an oriented rose with
FA = π1(RA, ∗) and A ⊂ FA, then every non-trivial element of FA can be uniquely
written in the form an1

1 an2
2 · · · ank

k where each ai is in A, each ni is a nonzero
integer, and adjacent ai’s are distinct.

This corollary should not be surprising since the free group normal form given
above is just a way of writing reduced words so that the transitions between let-
ters are highlighted. The subwords ani

i highlighted in the corollary are known as
syllables. Wedge products now can be used to define a product operation on groups.

Definition 1.4.13 (Free products). Given an arbitrary collection {Gα} of
groups, we can select a collection of based, connected cell complexes {(Xα, xα)}
with π1(Xα, xα) ∼= Gα for each α, and then define the free product of the collection,
denoted G = ∗αGα, as π1(X,x) where (X,x) = ∨α(Xα, xα). By Theorem 1.4.11
the group that results is independent of the cell complexes chosen to represent each
Gα, so the group G is well defined. In this notation the free group FA is a free prod-
uct of the form ∗α∈AZ, and the fundamental group of the space shown in Figure 6
is the group (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z).

Reversing this construction leads to the notion of a free decomposition.
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Definition 1.4.14 (Free decompositions). A group G is freely decomposable if
it can be written as a free product of non-trivial groups and any particular way
of writing G as ∗αGα is called a free decomposition of G. The groups Gα are
called free factors of G. Topologically, a group is freely decomposable iff it can be
represented as the fundamental group of a wedge product of two connected but not
simply-connected spaces. A group that cannot be freely decomposed is said to be
freely indecomposable.

1.4.3. Vertex links. We have seen that cell complexes with cut points are
wedge products and that their fundamental groups are free products of the funda-
mental groups of the pieces. A similar result holds when a cell complex has a local
cut point (Theorem 1.4.19).

Definition 1.4.15 (Local cut points). A point x in a topological space X is
called a cut point if X is connected but X \ {x} is disconnected, and x is called
a local cut point if there is a neighborhood U of x such that U is connected but
U \ {x} is disconnected.

When X is a combinatorial cell complex, it can be subdivided so that x is a
vertex, and the structure of X near x is encoded in a lower dimensional complex
called its link. Although the link of a vertex is slightly tricky to define, the idea is
easy to explain, at least in the presence of a reasonable metric.

Definition 1.4.16 (Vertex links; metric intuition). Let X be a combinatorial
cell complex with a metric compatible with its topology and let v be a vertex in
X. The link of v is the set of points in X at distance exactly ε from v (ε being
a small positive number) with the induced topology and cell structure. It should
be intuitively clear that so long as the metric on X remains reasonably nice and ε
sufficiently small, the link, denoted Link(v,X), is a cell complex whose structure is
independent of ε and independent of the metric on X.

The idea behind Definition 1.4.16 can be made rigorous when X is a simplicial
complex. An extended technical definition that applies to arbitary combinatorial
cell complexes is also sketched.

Definition 1.4.17 (Vertex links; technical version). If σ is a single simplex
with the regular Euclidean metric and v is one of its vertices, then Link(v, σ) is
a simplex of one lower dimension cannonically homeomorphic (via the projection
using straight lines through v) to the simplex spanned by the remaining vertices
of σ. As a consequence, the link of a vertex v in a simplicial complex X can
be idenitified with (or defined as) the set of simplices not containing v that are
nonetheless contained in simplices that do contain v. The set of simplices containing
v is called the star of v and it is homeomorphic to the ball of radius ε around v.

Vertex links in arbitrary combinatorial cell complexes can be defined using sub-
division. If X is a combinatorial cell complex, then its second barycentric subdivi-
sion is a simplicial complex, and the link of v in the second barycentric subdivision
of X is the second barycentric subdivision of the combinatorial cell complex one
would want to call the link of v. The details of this procedure are left as an exercise.

Figure 10 illustrates the correspondence between the two definitions.

Example 1.4.18 (Vertex links in 2-complexes). In combinatorial 2-complexes,
vertex links have a very simple description: Link(v,X) is a graph with a vertex
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Figure 10. The top row shows a simple cell complex and its sec-
ond barycentric subdivision; the second row shades the ball of ra-
dius ε around its central vertex and its star in the second barycen-
tric subdivision, respectively.

for each end of a 1-cell attached to v and an edge for each occurrence of v in the
boundary cycle of a 2-cell of X.

Since the link of v can be thought of as the sphere of radius ε around v and its
structure is independent of ε as ε shrinks to 0, the ball of radius ε around v can be
identified with the topological cone over its link. As a result, v is a local cut point iff
the link of v is disconnected. We call a combinatorial cell complex X link-connected
when all of its vertex links are connected cell complexes, and we note that this is
true iff X has no local cut points. Using this characterization Theorem 1.4.19
converts local cut points into wedge products. A concrete illustration of the proof
is given in Example 1.4.20 and shown in Figure 11.

Theorem 1.4.19 (Splitting 2-complexes). Every group is the fundamental group
of a wedge product of circles and link-connected 2-complexes.

Proof. For every group G there is a taut, connected, one vertex 2-complex
X with π1(X, ∗) = G (Proposition 1.2.6 and Corollary 1.1.3). Let L = Link(∗, X).
If L is connected then we are done. Otherwise, let A and B be sets that index
the connected components of L and X \ {∗}, respectively, and note that since L
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can be viewed as the boundary of an ε-neighborhood of ∗ in X, there is a well-
defined map f : A� B. We construct a new 2-complex Y by pulling the connected
components of L in different directions. More specifically, start with a tree T that
has 0-cells indexed by A t {∗} and an edge eα from v∗ to vα for each α ∈ A. The
rest of Y is built by adding a 1-cell or 2-cell to T for each 1-cell and 2-cell in X
in such a way that the complex obtained by contracting T to a point is equal to
X. Concretely, for each 1-cell of X we add a 1-cell to T with each end attached to
the vertex vα in T where α ∈ A indexes the component of L through which this
end approaches ∗ in X. This completes the 1-skeleton of Y . For each 2-cell of X
we attach a 2-cell to Y (1) along the lift of its attaching map in X as constructed
by Proposition 1.2.21. Because paths of length 2 in the boundary cycles of 2-cells
create edges in L, the ends of these adjacent edges belong to the same component α,
their lifts are attached to the same vertex vα, and thus these lifts are concatenated
without inserting additional edges. The quotient map from Y to X is a homotopy
equivalence by Theorem A.4.5.

The remaining steps are straightforward. Since Y \T is homeomorphic toX\{∗}
under the quotient map, its connected components are also indexed by B. For each
β ∈ B select an edge eα with f(α) = β and then reattach all unselected edges
in T so that both of their endpoints are at v∗. See the lower righthand corner of
Figure 11. The result is homotopy equivalent to Y by Theorem A.4.6 since there is
a path from the other endpoint to v∗ that travels through a component of Y \T and
then back to v∗ along a selected edge. The last step is to contract the tree formed
by the selected edges to a point and to note that the result is a wedge product of
circles and complexes indexed by B. Every vertex link in a complex indexed by B is
connected since, by construction, it can be identified with a connected component of
the original link L. Finally, if desired, simply-connected complexes can be removed
from the wedge product without changing its fundamental group. �

Example 1.4.20 (Splitting 2-complexes). Let X be the quotient of S2tS2 that
identifies two distinct points in the first 2-sphere and three distinct points in the
second 2-sphere to a single point. The quotient X can be given a cell structure
so that it is a taut connected one vertex 2-complex, but the exact cell structure
is irrelevant. The link of the unique vertex ∗ in X has 5 connected components
and X \ {∗} has 2. In other words |A| = 5 and |B| = 2. Figure 11 illustrates the
sequence of steps used to show that X is homotopy equivalent to S2∨S2∨S1∨S1∨S1

and that π1(X, ∗) = π1(S1 ∨ S1 ∨ S1, ∗) = F3.

One corollary of Theorem 1.4.19 is that every freely indecomposable group is
either infinite cyclic or the fundamental group of a link-connected 2-complex. The
converse, however, is false (Exercise 27).

1.5. Constructions and examples

This final section contains a way to easily describe many 2-complexes with mul-
tiple vertices, and discusses examples of groups that arise from simple topological
constructions.

1.5.1. Presentations revisited. Some cell complexes are easy to describe:
a rose corresponds to a set A, and a standard topological presentation can be
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Figure 11. An illustration of the homotopy equivalences used to
convert an arbitrary 2-complex into a wedge product of circles and
link-connected 2-complexes.

constructed from an algebraic presentation 〈A|R〉. When we try to describe 2-
complexes with multiple vertices using similar techniques, there are two issues that
arise. First, there is no standard way to quickly describe a complicated 1-complex
with edges oriented and labeled by a set A, and second, even once such a 1-skeleton
is given, not all words in (A∪A−1)∗ can be used to describe closed paths, making it
easy to list collections of words that are incompatible with the given graph. In the
absence of local cut points, however, there is a simple procedure that avoids both
of these difficulties. It constructs a multi-vertex link-connected combinatorial 2-
complex from any multiset of words, and every such complex can be constructed in
this way. Such a process is sufficient for most purposes since by Theorem 1.4.19 the
only 2-complexes excluded are those that are homotopy equivalent to a non-trivial
wedge product in an obvious way. The construction begins with polygons.

Definition 1.5.1 (Polygons). A polygon is a 2-disc whose boundary cycle has
been given the structure of a graph. When its boundary cycle has combinatorial
length n it is called an n-gon, and traditional names, such as monogon, bigon,
triangle, square, pentagon and hexagon, are used when n is small.

Polygons arise naturally in the construction of combinatorial 2-complexes.

Remark 1.5.2 (Polygons and 2-complexes). Let X be an arbitrary 2-complex
and recall that X is defined as X(1) tF E where X(1) is a 1-complex, E = t D2

is a disjoint union of 2-discs, one for each 2-cell of X, and E is attached to X(1)

along the induced map F : ∂E → X(1) that collects together all of the individual
attaching maps (Definition A.1.3). When X is combinatorial the boundaries of the
2-discs in E can be subdivided into vertices and edges so that F : ∂E → X is
a cellular map. Under this subdivision, E is a disjoint union of polygons and a
combinatorial 2-complex in its own right. Moreover, the induced map E → X is



1.5. CONSTRUCTIONS AND EXAMPLES 35

cellular and a quotient map. Note also that there is a natural bijection between
vertices in E and the edges in the vertex links of X.

There is an intermediate complex constructed from the edges identifications.

Definition 1.5.3 (Edge identifications). Let X be a combinatorial 2-complex
and let E be the disjoint union of polygons used to construct X. There is a third
cell complex Y , between E and X, defined as follows. Identify pairs of 1-cells in E
iff they are sent to the same 1-cell in X, and identify them in the same fashion. For
Y to be a cell complex certain vertex identifications must also be made, but only
make those that are forced by the edge identifications. The quotient map E � X
factors into quotient maps E � Y � X, and we say that Y is constructed from X
by edge identifications. Notice that since E → Y is a factor of E → X, the only
vertices in E that can be identified in Y are those with the same image in X.

The key observation is the following.

Lemma 1.5.4 (Vertex identifications). If X, E, F and Y are defined as above
and v and v′ are vertices in E with F (v) = F (v′) = u in X, then v and v′ are
identified in Y iff the edges of Link(u,X) corresponding to v and v′ belong to the
same connected component.

Proof. Both directions are straightforward. If the corresponding edges belong
to the same connected component then there is a finite length path connecting them
in the link. This path encodes a finite sequence of individual edge identifications
that force v and v′ to be identified in Y . Conversely, identifying vertices iff the
corresponding edges belong to the same connected component of the link produces
a cell complex in which all the edge identifications can be performed with no further
vertex identifications. Thus, no additional vertex identifications are forced. �

The following properties follow immediately from Lemma 1.5.4.

Proposition 1.5.5 (Edge identifications). If X is a combinatorial 2-complex
and Y is constructed from X by edge identifications, then Y is always link-connected
and the quotient map Y → X is a homeomorphism iff X is link-connected.

We are now ready for the general construction.

Definition 1.5.6 (Combinatorial descriptions). Let A be a set and let R be
a multiset selected from (A ∪ A−1)∗. First, let E be a disjoint union of polygons
indexed by the words in R so that the polygon corresponding to a word of length n
is an n-gon. Next, choose a vertex and a direction for each polygon in E and then
use the corresponding word to orient and label the edges of this polygon so that
starting at the chosen vertex and proceeding in the chosen direction, the labels and
orientations encountered represent the associated word. Finally, define Y as the
quotient of E that identifies edges according to label and orientation, and identifies
vertices only when this is needed to make the quotient a cell complex. We call
Y the complex constructed from [R] and [R] is a combinatorial description of Y .
Square brackets are used in place of angled ones to highlight the distinction between
combinatorial descriptions and algebraic presentations, and it is “combinatorial”
rather than “algebraic” since the letters used do not correspond to the generators
of a group.
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Theorem 1.5.7 (Words and 2-complexes). Every combinatorial description
[R] constructs a link-connected combinatorial 2-complex X and every such X can
be converted into a multiset of words from which X can be recovered. Under these
conversions, the number of 2-cells in X corresponds to |R|. In particular, X is
compact iff R is a finite list.

Proof. The main assertions have similar proofs. Either let X be the complex
constructed from a given combinatorial description [R], or let [R] be the combina-
torial description derived from a given link-connected combinatorial 2-complex X
as follows. Let E be the disjoint union of polygons used to construct X. Orient
and index the 1-cells of X by a set A, and then induce an orientation and labeling
of the 1-cells in E by pulling these features back through the quotient map E � X.
Next, for each polygon in E, select a vertex and a direction and then reduce the
oriented labeling of its boundary cycle to a word in (A ∪ A−1)∗. Let R denote
the multiset of words produced in this way. Under either scenario, we claim that
the complex described by [R] is identical to the complex constructed from X by
edge identifications since they both make the same identifications. Moreover, this
common complex is link-connected and equal to X by Proposition 1.5.5. �

The useful conventions for algebraic presentations listed in Definition 1.3.26 also
apply to combinatorial descriptions. The main distinction between combinatorial
descriptions and algebraic presentations is highlighted by the following example.

Example 1.5.8 (Combinatorial descriptions vs. algebraic presentations). The
complex constructed by [abcABC] is a non-standard torus with two vertices and
its fundamental group is Z2. The algebraic presentation 〈a, b, c | abcABC〉, on the
other hand, constructs the quotient of this torus with its vertices identified. Using
Theorem 1.4.19, the latter complex is homotopy equivalent to a wedge product of
a torus and a circle and its fundamental group is Z2 ∗ Z. See Exercise 33 for a
generalization.

1.5.2. Simple examples. The only groups that are fundamental groups of
1-complexes are, by definition, the free groups, and their algebraic structure is
reasonably well understood. On the other hand, every group is the fundamental
group of a 2-complex, and, in a very precise sense, many of them are difficult
or impossible to understand. See Chapter 3. As a first step into the world of 2-
complexes, we consider 2-complexes that have combinatorial descriptions consisting
of a single word and their corresponding one-relator fundamental groups. We begin
with surfaces.

Figure 12. A surface of genus 2.

say more about surfaces
topologically, universal cov-
ers, classification, etc Example 1.5.9 (Compact surfaces). Classification, genus, orientation, distinc-

tions between universal covers
The ones with boundary deformation retract to graphs and thus their funda-

mental groups are free.
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Let R be a finite list of words. If every letter that occurs, occurs at most twice
(in either orientation), then R describes a compact surface, possibly disconnected,
with a nonempty boundary iff there is a letter that only occurs once (Exercise 35).
Simple examples such as [a], [aa], [aA], [aab], [abAB], [abaB], [abcABC], and [abcB]
produce a disc, a real projective plane, a 2-sphere, a Möbius strip, a torus, a Klein
bottle, another torus, and another Möbius strip, respectively.

Our next examples take a surface with boundary and wrap each boundary
cycle multiple times around a circle. These attaching maps are determined, up to
homotopy, by an integer called its degree.

Definition 1.5.10 (Maps between circles). If we view S1 as the set of unit
complex numbers, then for each n ∈ Z we can define a map fn : S1 → S1 that sends
z 7→ zn. Topologically this is just a map that wraps one circle |n| times around
the other with no backtracking where the sign of n indicates which way to proceed.
The number n is called its degree and if f : S1 → S1 is any map homotopic to fn,
then f is called a degree n map. It is easy to show that every map S1 → S1 is
homotopic to exactly one such fn (Exercise XXX), so every map between circles
has a unique degree.

The simplest surface with boundary is a disc.

Example 1.5.11 (Discs and finite cyclic groups). Let X be the space that re-
sults when a disc is attached to a circle by an attaching map of degree n (Figure 13).
A combinatorial description of X is [an] and an algebraic presentation is 〈a|an〉.
These are derived by giving the circle the simplest possible graph structure with
one vertex and one edge. The fundamental group of X is Z/nZ, the finite cyclic
group of order n, and its universal cover looks like n distinct n-gons with their
boundary cycles identified.
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Figure 13. A disc attached to a circle.

Example 1.5.12 (Annuli and torus knot groups). The one vertex version
[am = bn] is hard to understand (but not /that/ hard really) but the two-vertex
presentation [amt = tbn] is trivial since its universal cover is a tree cross the reals.

Example 1.5.13 (Möbius bands and one-relator Artin groups). If a Möbius
strip is attached to a circle along its boundary cycle then the fundamental group
of the resulting space is called a one-relator Artin group. The name, of course, is
derived from the theory of a larger class of groups. Topologically these groups are
very simple, and there should probably be a better name and notation for them.

(explain the presentation) 〈a, b | ababa... = babab...〉
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Figure 14. An annulus attached to two different circles.
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Figure 15. A Möbius band attached to a circle.

Example 1.5.14 (Annuli and Baumslag-Solitar groups). The Baumslag-Solitar
group, BS(m,n) is the group defined by the single relation [amb = ban]. Topolog-
ically they are the fundament groups of the spaces constructed by attaching both
ends of an annulus to the same circle, one attaching map with degree m and the
other with degree n. Despite their elementary definition, these groups have a num-
ber of surprising properties.

These groups were first systematically studied by Gilbert Baumslag and Donald
Solitar in 1969 (check this and add some history / refs, quote John’s book).

They have a number of quite interesting properties, and their analysis is not
nearly so elementary as one might think.

PSfrag replacements

Ann

m

n

S1

Figure 16. An annulus attached to a single circle.

They have proved an interesting object of study, even after 30 years. For
example, it was only recently that it was completely determined which pairs of
Baumslag-Solitar groups were quasi-isometric to one another (and the answer was
slightly surprising). [Amenable ones by Benson Farb and Lee Mosher in 1998 [11]
and the non-amenable ones by Kevin Whyte in 2001 [30]]

Remark 1.5.15 (3-manifolds groups). Every group is the fundamental group
of a combinatorial 2-complex, but not every group is the fundamental group of a
1-complex or of a manifold with dimension at most 3.Add remarks about 3-

manifolds being special
somewhere
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Notes

Historical notes and other comments will eventually go here.
Exercise 1 is a baby version of Milnor’s construction of Eilenberg-Maclane

spaces for groups.
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Exercises

Cell complexes

1. (Groups as fundamental groups) Let G be a group and let Y be the simpli-
cial complex with vertices indexed by G×{1, 2, 3} and a simplex spanning
every subset of vertices with pairwise distinct second coordinates. Let X
be the quotient of Y by the natural G-action defined by g · v(h,a) = v(gh,a).
a. Show that when |G| = 2, Y is the boundary of an octahedron, the
G-action is antipodal, and X is homeomorphic to RP 2.

b. Prove that for every group G, Y is connected and simply-connected,
the G-action is free and cellular, and thus X is a cell complex with
fundamental group G.

2. (Whitney embeddings) Find explicit embeddings of (subdivisions of) the
graphs K5 and K3,3 into R3 using the proof of Theorem 1.1.5. Similarly,
choose a cell structure for RP 2 and linearly embed a subdivision into R5.

Graphs and trees

3. (Metrics on graphs) Prove that the combinatorial distance function dX(u, v)
defines a metric on the 0-skeleton of any connected graph X. Next, show
that there is a natural extension of the combinatorial distance function that
defines a metric on all of X.

4. (Finite versus infinite rank) Prove that when A is finite and B is infinite,
RA and RB are not homotopy equivalent, and conclude by the theory of
Eilenberg-Maclane spaces that FA and FB are not isomorphic groups.

5. (Free group cardinality) Recall from cardinal arithmetic that if at least one
of κ and λ is an infinite cardinal, then κ·λ = max{κ, λ}. In particular, if ℵ0

denotes the cardinality of the natural numbers, n denotes a finite cardinal
(any cardinal n < ℵ0) and κ denotes an infinite cardinal (any cardinal
κ ≥ ℵ0), then n · κ = ℵ0 · κ = κ · κ = κ.
a. Prove that in a uniformly κ-branching tree there are exactly κ(κ− 1)n

vertices distance n+ 1 from a given vertex v, κ arbitrary.
b. Prove that |FA| = ℵ0 · |A| = max{ℵ0, |A|}, and conclude that |FA| = ℵ0

when A is finite and |FA| = |A| when A is infinite.
6. (Maps between roses) A map f : X → Y is called a π1-injection, a π1-

surjection, or a π1-isomorphism when the induced map f∗ between funda-
mental groups is injective, surjective or an isomorphism, respectively. By
Theorem 1.2.11, ∃ a π1-isomorphism f : RA → RB iff |A| = |B|.
a. Prove ∃ a π1-surjection f : RA → RB iff |A| ≥ |B|.
b. Prove ∃ a π1-injection f : RA → RB iff |FA| ≤ |FB |.

7. (Tree removal) Let T be a tree in a graph X and let q : X → X/T be the
corresponding quotient map. Use Theorem 1.2.1 to show that every non-
trivial immersed closed path based at x ∈ X is sent by q to a non-trivial
immersed closed path based at q(x).

Free groups

8. (Basic properties) Prove that for every cardinal κ > 1, Fκ is infinite, non-
abelian and has trivial center.

9. (Algebraic definition) Prove that Definition 1.2.22 produces a group.
10. (Symmetric bases) State and prove versions of Proposition 1.2.25 and Propo-

sition 1.2.26 that hold for categorical free groups with symmetric bases. In
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particular, prove that a group G is a categorical free group with symmetric
basis S iff there is a topological free group FA = π1(RA, ∗) with symmetric
basis SA and an isomorphism f : G→ FA with f(S) = SA.

11. (Comparing bases) Let (X,x) be a based connected graph, let T and T ′ be
two different spanning trees in X, and let A and B index the edges not in T
and T ′, respectively. Determine which elements of π1(X,x) are contains in
both symmetric bases SA and SB under the isomorphisms FA ∼= π1(X,x) ∼=
FB . In particular, prove that distinct spanning trees identify distinct bases
for π1(X,x).

12. (Infinitely many bases) Prove that Fκ ∼= Inn(Fκ) ⊂ Aut(Fκ) for any car-
dinal κ > 1. Conclude that every non-abelian free group has an infinite
number of bases. What happens for κ ≤ 1?

Free group automorphisms

13. (Finite rank automorphisms) Complete the proof of Corollary 1.2.29.
14. (Infinite rank automorphisms) Let α be any ordinal of cardinality κ. Prove

that the automorphisms of Fκ are in one-to-one correspondence with the
well-orderings of the bases of Fκ that have order type α.

15. (Abelianization) Let ZA denote the direct sum of A copies of the integers
(whose elements are functions A → Z with only finitely many non-zero
values). Show that the abelianization of FA is ZA and that the abelianiza-
tion map FA → ZA sends a basis of FA to a basis of ZA viewed as a free
Z-module. Conclude that there is a group homomorphism from Aut(FA)
to Aut(ZA) and note that the latter is the group GLκ(Z) when κ = |A| is
finite.

16. (Primitive elements) An element in a free group is primitive if it belongs
to some free basis. Find an element in F2 that is not primitive (and prove
that it is not primitive).

17. (Bases and graphs) Let X be a connected graph and let T be a spanning
tree in X. Show that the edges of X not in T form a basis in the following
sense. [Fundamental groups of connected graphs are free groups but they
do not have obvious bases when there is more than one vertex. For example,
if X is the 1-skeleton of a cube and x is one of its vertices, then π1(X,x) is
isomorphic to F5 (since its rank is |χ̃(X)| = |8− 12− 1| = 5), but there is
no obvious choice for a five element basis or ten element symmetric basis.
One possibility is to contract a spanning tree in X to create a rose with 5
leaves, but doing so involves several asymmetrical choices.]

18. (Rose homeomorphisms)
19. (Planar surface model)
20. (Handlebody model)
21. (Develop some elementary automorphism of free group stuff in the exercises.

Include exercises on the various model spaces for free groups)
22. (Develop some elementary Stallings foldng exercises as well)

Generating sets and Cayley graphs

23. (Detecting Generating Sets) Complete the proof of Proposition by showing
that the three collections are in natural bijection up the listed notions of
equivalence.

Wedge products and free products
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24. (Standard and non-standard wedge products) Let (X,x) be a cone on the
Hawiian earring where x is the so-called ‘bad point’ in the base of the
cone. Let (Y, y) be another copy of the same based space. Show that theAdd a figure so its clear that

x is not the cone point standard and non-standard wedge products of (X,x) and (Y, y) are not
homotopy equivalent by showing that the non-standard wedge product is
simply-connected but that the standard wedge product has a non-trivial
fundamental group.

25. (Non-abelian) Use the normal form theorem to prove that every non-trivial
free product is non-abelian, and conclude that abelian groups are freely
indecomposable.

26. (Local Cut Points) Let x be a point in a topological space X. Show that
if U is a connected neighborhood of x such that U \ {x} is disconnected
and V ⊂ U is another connected neighborhood of x, then V \ {x} is also
disconnected. Thus being a local cut point only depends on arbitrarily
small neighborhoods of x.

27. (Decomposable and link-connected) Give an example of a combinatorial
2-complex that is link-connected but whose fundamental group can be de-
composed as a free-product of non-trivial groups.

28. (Normal form algorithm) Describe an algorithm that inputs an aribitrary
product of elements in a free product, outputs its unique normal form, and
only basic knowledge about elements in the factor groups. In particular,
your algorithm may assume (and in fact it must assume) that the algebraic
structure of the factor groups is well understood. How is your algorithm
related to the process for simplifying paths in trees?

What effect do reparsing and 1-elimination have on the corresponding
path in T .

Presentations

29. (The quick brown fox) Prove that the complex [The, quick, brown, fox,
jumped, over, a, lazy, dog] is connected and that its fundamental group is
free. Find its rank.

30. (English) Let X be the 2-complex defined by the list of the 50,000 or so
words in the English language (picking some official list of words in order
to make this precise). Prove that X is connected, simply-connected, and
has only one vertex.

31. (Your name here) Let X be the 2-complex constructed from your full name.
Find χ(X). What do you know about π1(X)? Is it free? If so, what is
its rank? Warning: for some names these later questions might be hard to
answer.

32. (Retracts and finite presentations) Prove that the retract of a finitely pre-
sented group is finitely presented (and that a presentation can be found via
the retraction map). The idea for this exercise is from the Groves-Wilton
paper/presentation.

33. (Standard versus non-standard) Let [R] be a combinatorial description, let
A be the set of letters that occur in R and let X be the complex described
by [R]. Show that if X is connected, then the group presented by 〈A|R〉 is
the free product of π1(X) and a free group F of rank |X(0)| − 1.

Simple examples
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34. (Trefoil knot Dehn complex) Prove that the complex [acbd, adbe, aebc] is
the Dehn complex of the trefoil knot described in the prologue. How do
the edges a through e listed above correspond to the edges E0 through E4

used in the prologue?
35. (Letters and surfaces) Prove that a list of words in which each letter is used

at most twice describes a surface. When is the surface closed? When is it
connected? If it is a single word, how can you detect orientability?

36. Describe in detail the universal covers of each of the following basic com-
plexes (move the simple surface-like examples here).

37. (Classification) We should outline the classification of surfaces as an exer-
cise.

Turn some of this into exercises.
〈a1, a2, . . . , an | a1a2 · · · an = an · · · a2a1〉
〈a1, a2, . . . , an | a2

1a
2
2 · · · a2

n = 1〉
In the first case, it is easy to check that these surfaces are orientable

(because the two occurences of each letter have opposite orientations in
the boundary). In the second case, these surfaces are non-orientable since
the presence of the subword a2

1 already implies that there is a Möbius strip
inside the surface. (comment about what happens when n is odd /even in
the first type: 1-vertex versus 2).

By the classification of compact surfaces, the complexes for these pre-
sentations include at least one representative of each compact surface, and
the only ones which are homeomorphic are Type I with 2n and 2n+ 1.


