
Geometric Group Theory

Jon McCammond

[Image by Bill Casselman: http://www.math.ubc.ca/∼cass/coxeter/rank3/cd.gif]



Contents

Introduction iii

Prologue: Trefoil Knot Group vii
Exercises xi

Chapter 1. Combinatorial Group Theory 1
1.1. Manifolds and cell complexes 1
1.2. Trees, graphs and free groups 4
1.3. Complexes and presentations 15
1.4. Cut points and free products 24
1.5. Constructions and examples 33
Notes 39
Exercises 40

Chapter 2. Metrics on Groups 45
2.1. Metrics and quasi-isometries 45
2.2. Geometries and geometric actions 46
2.3. Geometric properties of groups 52
Exercises 59

Chapter 3. Dehn’s Fundamental Problems 61
3.1. Disc diagrams and van Kampen’s lemma 61
3.2. Algorithms and decidability 62
3.3. Dehn’s algorithm for surface groups 63
3.4. Combinatorial Curvature 64
Exercises 67

Chapter 4. Hyperbolic Geometry 69
4.1. Circle-preserving maps 69
4.2. Models of hyperbolic space 73
4.3. Isometries of hyperbolic space 74
4.4. Triangles in hyperbolic space 74

Chapter 5. Gromov’s Hyperbolic Groups 77
5.1. δ-hyperbolic spaces 78
5.2. Quasi-geodesics 78
5.3. Equivalent definitions 79
5.4. Rips’ complex 80
5.5. Finite subgroups 81

Chapter 6. Ends and Boundaries 83

i



ii CONTENTS

6.1. The Space of Ends 83
6.2. The Boundary at Infinity 84
Exercises 84

Chapter 7. Splittings and Quasiconvexity 85
7.1. Actions on trees 85
7.2. Scott and Wall’s approach 85
7.3. Bass-Serre Theory 85
7.4. Amalgamations and Quasiconvexity 85

Epilogue: Where to go from here 87

Appendix A. Algebraic Topology 89
A.1. Cell complexes and Euler characteristics 89
A.2. Fundamental groups and van Kampen’s theorem 91
A.3. Group actions and covering spaces 93
A.4. Homotopy invariants and Whitehead’s theorem 95
A.5. Classifying spaces and Hurewicz’s theorem 97
Exercises 100

Appendix B. Hints 103
Chapter 1 103
Appendix A 103

Bibliography 105



Introduction

Geometric group theory classifies groups by the nature of the spaces
on which the groups act geometrically.

James W. Cannon [7]

Geometric group theory is a relatively young field, but it has deep roots in
the study of groups from combinatorial and topological perspectives. For almost
one hundred years combinatorial group theorists have viewed groups as essentially
topological objects and they have used the topological invariants of combinatorial
cell complexes to study their associated fundamental groups. Since the mid-1980s,
spurred on by the seminal ideas of Jim Cannon and Misha Gromov, group theorists
have paid increasing attention to the geometric structures these cell complexes can
carry. Finitely generated groups are now also viewed as inherently metric objects.

The addition of a geometric perspective has been tremendously successful at
solidifying previously disparate results, generating new questions for researchers to
investigate, and enabling rapid progress on many fronts. An unfortunate corollary
of this rapid expansion has been a separation between the background acquired
by graduate students in their standard courses and the conceptual tools used by
current researchers in the field. This book is my attempt to partially fill this gap.

Groups as Actions

One way to appreciate the naturalness of the geometric group theory approach
is to take a step back and consider the way in which groups arise in mathematics
more generally. Group theory comes from the study of symmetry, where a sym-
metry of an object P (or an equation, or a geometric configuration, or any other
mathematical structure) is a non-trivial invertible map f from P to P that pre-
serves the properties we wish to consider. The collection of all such maps, trivial
or not, is clearly closed under function composition (automatically an associative
operation), it includes the identity map, and it includes the inverses of these maps
by definition. These symmetry groups are where the subject began. To this day,
groups are often first introduced through a careful examination of the symmetry
groups of specific geometric objects, such as regular n-gons, regular n-simplices, or
the unit n-sphere. The resulting groups are the dihedral, symmetric, and orthogo-
nal groups in our examples, or, if we restrict our attention to only those symmetries
realizable as continuous motions inside R2, Rn, or Rn+1, respectively, we get the
cyclic, alternating, and special orthogonal groups. Geometric objects, of course, are
not the only mathematical structures that have symmetry groups. The symmetries
of a vector space V form the general linear group GL(V ) and, more generally, the
symmetries of any mathematical structure is called its automorphism group.
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iv INTRODUCTION

But if the abstractions pursued by twentieth century mathematicians have
taught us anything, it is that mathematical structures should always be considered
in conjunction with their structure-preserving homomorphisms and these maps also
have symmetry groups! If f : P → Q is any structure-preserving homomorphism,
then the collection of all invertible structure-preserving maps g : P → P such that
f ◦ g = f form a group, as do the collection of all invertible structure-preserving
maps h : Q→ Q such that h◦f = f . We can think of these groups as the right and
left stabilizer groups of the map f , respectively. These types of groups also occur
throughout mathematics. If f : k → K is a (necessarily injective) field homomor-
phism, for example, then its left stabilizer is better known as the Galois group of K
over k. A second example, and one that is particularly important in our context,
is when X is a path-connected topological space that has a universal cover X̃ and
p : X̃ → X is the natural covering projection. The right stabilizer of p is the group
of deck transformations of p, and it happens to be isomorphic to the fundamental
group of X.

In each of the situations described above, the group under consideration is
acting on some mathematical object via structure-preserving maps. The structure
of the object upon which the group is acting can then be used to extract detailed
information about the group itself. In some sense, this is the main way that groups
occur “in nature”, as mathematicians like to say, and it is primarily through such
actions, or representations, that groups are studied.

Finitely Presented Groups

Groups are investigated via representations as actions, but the type of rep-
resentation varies with the type of group under consideration. For finite groups,
group actions on finite sets (called permutation representations) or on vector spaces
(known as linear representations) are highly effective and extensively used.1 Geo-
metric group theorists, on the other hand, focus their attention on groups that can
be analyzed using actions on topological spaces—particularly cell complexes and
metric spaces—and these often have infinitely many elements.

Infinite groups remain mysterious to many mathematics majors, since the
groups encountered in a typical abstract algebra course are mostly finite. This
is partly out of necessity: the main tools used to study infinite groups require
more topology and geometry than can be presumed at that point. Moreover, when
studying infinite groups, the algebraic structure often recedes into the background
as topological, geometrical and logical considerations play a greater role.

Once infinite groups are under consideration, logical and informational issues
immediately arise. Which infinite groups should be studied? If we are too inclusive
in our scope, set theoretic issues could easily play a dominating role. On the other
hand, the scope should be broad enough to include interesting examples, such as the
fundamental groups of compact manifolds with or without boundary. One approach
would be to limit our attention to precisely these groups. The obvious follow-up
question is which groups are these? It turns out that this particular class of groups
has several equivalent characterizations. Algebraically, they are the groups G that

1These types of representations have been particularly important in the classification of the
finite simple groups. See Michael Aschbacher’s book on finite group theory [1] for an excellent

illustration of this approach and its benefits.
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can be finitely presented in the following sense: (1) there exists some finite set of
elements that generate all of G and (2) the relations that hold among the words
in these generators can be derived from a finite list of basic rules or relations.
Two other descriptions that describe the same class of groups are the fundamental
groups of compact cell complexes and the fundamental groups of finite simplicial
complexes. In other words, the following four collections of groups are identical.

{ finitely presented groups } = { π1 of compact manifolds }
= { π1 of compact cell complexes}
= { π1 of finite simplicial complexes }

This natural class of groups will be our primary focus, although it is sometimes
convenient to consider groups that are finitely generated but not finitely presented,
or even groups where no finite subset generates the whole group.

While it is certainly possible to develop the theory of finitely presented groups
using the algebraic description with only a passing mention of topology and ge-
ometry, doing so makes many of the fundamental properties of infinite groups un-
necessarily difficult to express and even harder to establish. As a geometric group
theorist, I have tried instead to highlight the geometric and topological aspects as
much as possible.

Scope and Prerequisites

As it has grown over the past twenty years, geometric group theory has devel-
oped strong connections with geometry, topology, analysis and logic and each of
these facets is currently undergoing rapid development. It would be nearly impos-
sible at this point to give a truly comprehensive introduction to geometric group
theory in a single volume and the text you have before you is not intended as one.2

I have tried instead to produce a book that thoroughly covers a cohesive subset of
fundamental ideas, focusing on a selection of elementary and intermediate topics
that I feel are absolutely essential. Such a selection is, of course, highly subjective.
While I am confident about the centrality of the included topics, the reader should
not infer that excluded ones are less important.

The foundational ideas in geometric group theory are fairly accessible and the
required prerequisites are correspondingly minimal: the algebraic topology covered
in Hatcher’s book [16] is more than sufficient. In fact, if the reader is willing to
take a few of the theorems listed in Appendix A on faith, the entire book can be
understood after completing a course on fundamental groups and covering spaces.

2In fact, extensive volumes already exist or are nearing completion on several topics that are
mentioned here only in passing. See the Epilogue for an extended discussion of these additional

resources.
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Structure of the Text

The structure of the text is relatively straightforward. After a prologue designed
to whet the reader’s appetite, there is one introductory chapter, two chapters that
present the core philosophy behind geometric group theory, two chapters that ex-
amine the special role played by hyperbolic metrics, and two chapters that cover
more advanced topics. Finally, there is an epilogue that tries to ease the transition
into the research literature, and an appendix that reviews those aspects of basic
algebraic topology that serve as a foundation for the subject.

Acknowledgements

(These acknowledgements listed below are as preliminary and incomplete as
the book itself.) Many people have had a hand in shaping this text, but foremost
among them has been John Meier. Early on John and I had many long and fruitful
conversations about structure, content, level and tone, and many of his ideas have
been incorporated into the final text. A second source of inspiration has been
(and will be) the UC Santa Barbara graduate students in the courses based on this
material in Spring 2005 and Fall 2009. And finally, the dedication (of course) will
be to my partner Mary Bucholtz.

Jon McCammond
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Prologue: Trefoil Knot Group

The simplest non-trivial knot is the trefoil knot shown in Figure 1. As a way
to introduce the flavor of geometric group theory we ask: What can we say about
the fundamental group of its complement? Our primary goal is to illustrate how
geometric arguments can be used to prove purely algebraic results. The arguments
are merely sketched, but the reader should be able to go back and fill in the details
as they work their way through the text.
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Figure 1. The trefoil knot.

To establish notation, let K denote the knot shown and let G be the group
π1(S3 \K). (For technical reasons it is cleaner and more symmetric to work in S3,
the 1-point compactification of R3, than in R3 itself.) The first thing to notice is that
G is the fundamental group of a compact two-dimensional complex. To show this
we construct a 2-complex D inside S3 \K and then deform S3 \K down to D. Since
deformation retractions do not alter fundamental groups, G = π1(S3 \K) ≈ π1(D).
There are two common constructions for retracting arbitrary knot complements
onto two-dimensional subspaces, usually attributed to Dehn and Wirtinger. Since
we are using Dehn’s procedure, the final result is known as a Dehn complex.

The Dehn complex for the trefoil knot shown in Figure 1 has two vertices,
five edges and three 2-cells. To construct it we think of K as living in a small
neighborhood of the xy-plane (or rather in a small neighborhood of its 1-point
compactification, an equatorial 2-sphere inside S3), and we place a vertex v+ above
K and a vertex v− below K. Next, we add an edge for each of the five regions of
the xy-plane determined by the projection of K. More concretely, the regions in
Figure 1 have been numbered and we add an edge Ei that connects v− and v+,
oriented from v− to v+, passing through region i. Finally, we add a 2-cell for each
of the three crossings. Each 2-cell is a square folded to look like Figure 2. The
boundary of the square is then identified with the four edges corresponding to the
four adjacent regions. The crossing at the top left of Figure 1, for example, creates

vii



viii PROLOGUE: TREFOIL KNOT GROUP
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Figure 2. The 2-cell at a crossing

a square whose boundary follows the path E−1
0 E3E

−1
1 E2. This can be interpretated

as claiming that the loop E−1
0 E3 based at v+ is homotopic to the loop E−1

2 E1. The
other two 2-cells are attached along E−1

0 E4E
−1
1 E3 and E−1

0 E2E
−1
1 E4, respectively.

See Figure 3.
The deformation retraction from S3 \K to D alluded to above expands away

from K like adding air into a long balloon. Parts of this retraction are easy to
visualize. In Figure 2, for example, the complement of K inside this tent clearly
retracts onto the folded square. Piecing together these local pictures, we find that
G is the fundamental group of D and, as a consequence, that G acts freely on its
universal cover D̃.
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Figure 3. The three 2-cells in D. The open circles represent v+

and the closed circles represent v−. To make these 2-cells look like
the one shown in Figure 2, fold up along the dashed lines and down
along the dotted ones.

The next key idea is that if we understand the geometry of D̃ and the way G
acts on it, then we gain insight into the the algebraic structure of G as a group.
The geometry of D̃ is quite elegant. Since D contains only three 2-cells, D̃ has only
three equivalence classes of 2-cells under the action of G. For convenience we refer
to these as the green, yellow and blue 2-cells, reading left to right in Figure 3. The
edges E0 and E1 are both contained in all three 2-cells, while the other three edges
only occur in two of the three 2-cells. In fact, if you fix a particular lift of the
green 2-cell in D̃, oriented as shown, then there is a unique yellow 2-cell below it,
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followed by a unique blue 2-cell, followed by a unique green 2-cell, and so on. The
two sides of this infinite strip consist of lifts of the edges E0 and E1, alternating on
both sides. With a bit more work one sees that the local structure of D̃ looks like
Figure 4 and that as a topological space D̃ is homeomorphic to the direct product
of the real line and an infinite, trivalent tree.

Actually, even more is true. We can add a metric to D̃ by making each 2-cell
isometric to a unit Euclidean square. The metric space D̃ still splits as a direct
product, this time of the real line with the standard metric and a metric trivalent
tree where each edge has length 1. In other words, if we let T3 denote the infinite,
trivalent tree with edges of unit length, then D̃ is isometric to T3 × R. The action
of G preserves the metric as well as the product structure on T3 × R so that by
projecting onto the first or the second factor, the group G acts by isometries on T3

and it acts by isometries on R.

Figure 4. The local structure in D̃.

The last bit of preparation we need is to find a presentation of the group G.
Any g ∈ G, acting on D̃, takes lifts of v+ to lifts of v+. In order to get a generating
set for G it suffices to pick enough elements of G so that any lift of v+ can be
moved to any other using some composition of the actions of these elements and
their inverses. Let v be a fixed lift of v+ in D̃, and let a, b and c represent the
unique elements of G that move v diagonally up and across the unique green, yellow
and blue squares, respectively, that have v as a bottom corner. To see that a, b and
c generate G, let V be the orbit of v under the action of the subgroup generated
by a, b and c. Suppose that u is in V , g is the element of G that sends v to u,
and u′ is a lift of v+ connected to u along the diagonal of a single square. Since
g sends the vertices connected to v by a diagonal to the vertices connected to u
by a diagonal, we can find an element h in the set {a, b, c, a−1, b−1, c−1} so that
gh sends v to u′. Notice that we are precomposing g with h which involves right
multiplication by h. This is because we always assume that our groups act on the
left. See Appendix A. In any case, this shows that the vertices in V are closed
under adjacency. Geometrically, it is now clear that every lift of v+ lies in V , and
thus a, b and c generate all of G.

Finally, suppose that v is the open circle on the bottom of Figure 4 slightly to
the right of center. The reader can check that the words ab, bc and ca all move v to
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the open circle directly above it, so these words all represent the same element in
G. When projected to D, the products ab, bc and ca are homotopic, and represent
the loop that passes through the central region of the trefoil knot and then returns
to v+ via the exterior region. With only a bit more work, one can show that the
presentation 〈a, b, c | ab = bc = ca〉 is a presentation for G.

The group G acts freely and cocompactly on a contractible complex D̃. We
understand the structure of D̃ and the action of G, and we have “words” we can
use to describe the elements of G. We can now establish the following:

Theorem. If G is the fundamental group of the trefoil knot complement then

1. We can efficiently determine whether a word in the generators represents
the identity;

2. The group G contains no nontrivial element of finite order;
3. The kernel of the map f : G � Z sending a, b and c to 1 ∈ Z is a free

group of rank two;
4. The element z = (ab)3 = (bc)3 = (ca)3 is central in G;
5. The group G contains a finite index subgroup isomorphic to F2 × Z;
6. The group G is residually finite, meaning that the intersection of all finite

index subgroups of G is the trivial subgroup {1}.
7. The element z generates the center, so that Z(G) = 〈z〉;
8. The quotient G/Z(G) is isomorphic to PSL2(Z);

How are such claims established? We outline one approach and completely
ignore the technical details.

Sketch of proof: To tell whether an element in the generators represents
the identity, simply trace out its effect on a lift of v+ inside D̃. If this lift ends
where it started then this word represents the identity; otherwise, it does not.
The reason this works is because the process of constructing the universal cover D̃
secretly encodes a solution to the “word problem” for G. See Chapter 3 for details.

To prove 2 we combine the action of G on the factors of D̃ ≈ T3 × R with the
fact that any finite order isometry of a metric tree must fix a point. (This fact is
proved in Chapter 5.) Thus, any g ∈ G of finite order fixes a point in T3 and it
fixes a point in R, so it fixes a point in D̃. But the action of G on D̃ is free so g is
the identity.

Let H be the kernel of the map f : G→ Z described in item 3. Since the action
of H on D̃ projects to a free action on the tree T3, the fundamental group of the
quotient of T3 by this action is isomorphic to H. This quotient has two vertices,
three edges and its fundamental group is F2.

The action of the element z = (ab)3 = (bc)3 = (ca)3 on D̃ is a rotationless
vertical translation. It can then be checked that pre- and post-composing any
g ∈ G with z results in the same action on D̃, hence both expressions describe the
same element of G. (Actually, it is sufficient to check that this is true for a, b, and c
since they generate G.) This proves 4. Item 5 is now immediate since the subgroup
generated by H and z is isomorphic to F2 × Z and index 6 in G.

Next, the easiest way to prove 6 is to combine item 5 with two easily proved
facts: free groups are residually finite, and the class of residually finite groups is
closed under direct product and finite extension.
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To prove 7, let v be a particular lift of v+ inside D̃ and consider the orbit of v
under the action of Z(G). Because of the symmetry of the situation with respect
to a, b and c, the orbit of Z(G) must be invariant under a 2π/3 rotation around the
vertical line through v. On the other hand, since the free group of rank 2 has trivial
center, Z(G) ∩ H only contains the identity element and thus the orbit of v can
have at most one element at each height. Combining these two ideas shows that 1)
the orbit of v under the action of Z(G) is contained in the vertical line through v,
and 2) Z(G) must be generated by the element that produces the smallest possible
positive vertical change when applied to v. By 4, z is central and it moves v up
six steps. There are exactly two elements of G, namely ab and (ab)2, that move
v to a lift of v+ that is both on the vertical line through v and between v and its
image under z. After checking that ab and (ab)2 are not central, we conclude that
Z(G) = 〈z〉.

Finally, to prove 8 we note that the action of Z(G) on the T3 factor is trivial.
Thus, we get a well-defined action of the quotient group G/Z(G) on the trivalent
tree T3. There is a well-known action of PSL2(Z) on T3, and, by comparing the two
actions, we can see that the groups are identical. �

Exercises

1. (Details) Fill in as many of the details of the proof of the theorem as you
can. Alternatively, make a list of the arguments that seem unclear to you
or imprecise at this point.

2. (Figure 8 knot) Let K be the knot shown in Figure 5.
a. Construct the Dehn complex D for K.
b. Draw a small portion of D̃ and try to understand its structure. Be

forewarned that this is more difficult than it was for the trefoil knot.
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Figure 5. The figure 8 knot





CHAPTER 1

Combinatorial Group Theory

Every group is the fundamental group of a cell complex and, not surprisingly,
the topological properties of a cell complex X have algebraic significance for its
fundamental group G. If X is compact, then G is finitely presented; if X is 1-
dimensional, then G is free; and if X has a cut point, then G has a free product
decomposition. This chapter examines each of these implications with an emphasis
on the way these topological properties motivate the algebraic definitions. Other
basic tools from combinatorial group theory, such as generating sets and Cayley
graphs, are discussed along the way.

1.1. Manifolds and cell complexes

The fundamental groups of compact manifolds and compact cell complexes
lie at heart of geometric group theory and the goal of this section is to establish
various equivalent descriptions for this natural class of groups. We begin with the
fundamental groups of arbitrary cell complexes before insisting on compactness.
Because every group is the fundamental group of some cell complex (Exercise 1)
this class of groups is completely unrestricted.

Theorem 1.1.1 (Arbitrary groups). The following classes of groups are equal:
G1 = {π1 of cell complexes},
G2 = {π1 of combinatorial cell complexes},
G3 = {π1 of simplicial complexes},
G4 = {π1 of 2-complexes},
G5 = {π1 of combinatorial 2-complexes}, and
G6 = {π1 of simplicial 2-complexes}.

The definitions of the various types of complexes are reviewed in the appendix.
By van Kampen’s theorem the fundamental group of a cell complex is carried by its
2-skeleton (Corollary A.2.9). Thus, G1 = G4, G2 = G5 and G3 = G6. Moreover,
since the descriptions are increasingly strict, G4 ⊃ G5 ⊃ G6, so it suffices to prove
G4 ⊂ G5 ⊂ G6. The inclusion G5 ⊂ G6, or more generally G2 ⊂ G3, follows from
the fact that the second barycentric subdivision of a combinatorial cell complex is
a homeomorphic simplicial complex. For the final inclusion, G4 ⊂ G5, it suffices to
show that every map from a circle to a graph is either null-homotopic or homotopic
to an immersion. Since a variation on this argument is needed in Chapter 3, we
include a complete proof.

Proposition 1.1.2 (Simplifying loops and arcs). Every map from a circle to
a graph is homotopic to an immersion or a constant map. Similarly, every map
from a closed interval to a graph is homotopic to an immersion or a constant map
keeping the endpoints fixed throughout.

1



2 1. COMBINATORIAL GROUP THEORY

Proof. Let X be a graph and let f : S1 → X be a map. The graph X,
by definition, can be given the structure of a 1-complex, and, by subdividing if
necessary, we may assume that every edge in X is attached to distinct 0-cells.
Next, consider the open cover U of X containing two types of open sets: (1) each
individual (open) 1-cell and (2) a small open neighborhood around each 0-cell. To
define the latter, imagine turning the graph into a metric space where each edge
has unit length and then taking an ε-neighborhood of a vertex v with ε < 1

2 . To
minimize notation, let (v) denote this small open neighborhood of v.

If the image of f lies inside a single element of U then f is null-homotopic
because every set in U is contractible. Otherwise, we can cover S1 by the maximal
open subintervals of S1 whose image is contained in a single element of U . Since S1 is
compact, we can pass to a minimal finite subcover. Minimality of the cover implies
that the intervals are not nested and thus they have a canonical cyclic ordering as
we proceed around the circle. Maximality of the intervals further implies that each
open interval can be labeled by the unique element of U that contains its image. Fi-
nally, the finite cover must strictly alternate between “edge” intervals and “vertex”
intervals since the open sets of each type in U are pairwise disjoint. In other words,
the covering of S1 can be summarized by a sequence (v0)e1(v1)e2(v2) · · · en(vn)
where the subscripts are considered mod n and (v0) = (vn) denotes an open vertex
interval in which we start and end.

If at any point in the cyclic ordering (vi) and (vi+1) or ei and ei+1 refer to
the same open set in X, then f can be replaced with a homotopic map f ′ that is
covered by strictly fewer open sets. This is because (v) ∪ e is contractible for any
overlapping (v) and e. Continuing in this way either produces a null-homotopy or
it stops at a map that can easily be locally smoothed out to an immersion. With
minor modifications the same proof applies to arcs. �

Proposition 1.1.2 can be used to show that every group is the fundamental
group of a 2-complex all of whose attaching maps are non-trivial immersions. We
call such a 2-complex a taut 2-complex since its attaching maps have been pulled
as tight as possible.

Corollary 1.1.3 (Taut 2-complexes). Every 2-complex has a subcomplex, with
the same fundamental group, that is homotopy equivalent to a taut 2-complex with-
out altering its 1-skeleton.

Proof. Let X be an arbitrary 2-complex and let X ′ be the subcomplex of X
obtained by removing all 2-cells whose attaching maps are null-homotopic in the
1-skeleton of X. Van Kampen’s theorem shows their removal does not change the
fundamental group. After replacing each remaining attaching map with an immer-
sion homotopic to it (Proposition 1.1.2), the result is a taut 2-complex homotopy
equivalent to X ′ (Theorem A.4.6). �

Since every taut 2-complex is combinatorial, Corollary 1.1.3 shows that G4 is
a subset of G5, completing the proof of Theorem 1.1.1. There is a similar set of
equivalences for fundamental groups of compact cell complexes. Since this class of
groups contains exactly the fundamental groups of compact manifolds (including
those with non-empty boundary), we call these compact manifold groups for now,
even though they are better known as finitely presented groups. The equivalence
will be clear once group presentations are discussed in §1.3.
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Theorem 1.1.4 (Compact manifold groups). The following classes are equal:

C0 = {π1 of compact manifolds},
C1 = {π1 of compact cell complexes},
C2 = {π1 of compact combinatorial cell complexes},
C3 = {π1 of finite simplicial complexes},
C4 = {π1 of compact 2-complexes},
C5 = {π1 of compact combinatorial 2-complexes}, and
C6 = {π1 of finite simplicial 2-complexes}.

Since taking barycentric subdivisions, passing to subcomplexes, and modifying
attaching maps preserve compactness and finiteness, the equivalence of C1 through
C6 follows immediately from Theorem 1.1.1. To complete the proof it suffices to
show C0 ⊂ C1 and C2 ⊂ C0. The former is a consequence of the fact that every
compact manifold has the homotopy type of a compact cell complex. Because the
techniques would lead us too far afield, we refer the interested reader to the elegant
proof in the appendix of Hatcher’s book [16] that uses Euclidean neighborhood
retracts. The final inclusion can be derived from a combinatorial version of a
Whitney-type embedding theorem.

PSfrag replacements
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Figure 1. The projection of the embedded subdivided k-skeleton
onto the coordinates x2k and x2k+1. The subdivided (k − 1)-
skeleton is sent to the origin and the distinct subdivided k-cells
project to distinct line segments.

Theorem 1.1.5 (Embeddings). If X is a simplicial n-complex with countably
many cells, then its barycentric subdivision X ′ can be linearly embedded into R2n+1.
As a consequence, every compact combinatorial n-complex is homotopy equivalent
to a compact topological (2n+ 1)-manifold with boundary.

Proof. Because the embedding f : X ′ → R2n+1 we are constructing is sup-
posed to be linear on each simplex of X ′, f is completely determined by the images
of vertices. We send the vertices of X ′ that corresponds to the 0-cells of X to any
discrete subset of points along the x1-axis. This embeds the 0-skeleton of X into
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R1. If an explicit map is desired, then one option would be to well-order the 0-cells
of X and send the i-th 0-cell to the point on the x1-axis with x1 = i.

Next, suppose by induction that the barycentric subdivision of the (k − 1)-
skeleton of X has been embedded into the R2k−1 subspace of R2n+1 with xj = 0
for all j ≥ 2k. To extend this embedding to the subdivided k-skeleton, send the
barycenters of the k-cells of X to any discrete subset of the line parallel to the
x2k+1-axis defined by the equations x2k = 1 and xj = 0 for all j not equal to 2k or
2k + 1 and then extend f linearly over the subdivided k-cells of X. By projecting
onto the plane spanned by x2k and x2k+1 (Figure 1) we see that the images of the
subdivided (open) k-cells do not intersect each other or the (k − 1)-skeleton.

The reader can verify that f is one-to-one on each subdivided k-cell and that
this injection of the subdivided k-skeleton into R2n+1 is indeed a homeomorphism
onto its image. The second assertion is now immediate since every compact combi-
natorial n-complex is homeomorphic to a finite simplicial complex and the closure
of a sufficiently small ε-neighborhood of a finite simplicial complex linearly embed-
ded into Rm is a topological m-manifold with boundary that deformation retracts
back down to the original complex. �

1.2. Trees, graphs and free groups

We now shift our attention from compact complexes to those that are 1-
dimensional. The main result is a classification of graphs up to homotopy and
of their fundamental groups up to isomorphism. The remainder of the section is
devoted to establishing the key properties that these ‘free groups’ possess.

1.2.1. Trees. The first step in classifying graphs up to homotopy is being
able to recognize when a graph is contractible. Several equivalent conditions are
recorded in Theorem 1.2.1. The graphs satisfying these conditions are called trees.

Theorem 1.2.1 (Trees). For a connected graph X, the following are equivalent:
1. X is contractible,
2. X is simply-connected,
3. X is minimally connected,
4. X does not contain an embedded circle, and
5. X does not contain a closed immersed path.

Finally, for finite connected graphs, a sixth equivalent condition is χ(X) = 1.

Most of these are self-explanatory, but condition 3 requires a definition. We
call a graph X minimally connected if X is connected, but the removal of any 1-cell
disconnects it. Theorem 1.2.1 is proved in stages. We begin by proving that the
middle four conditions are equivalent.

Lemma 1.2.2. Let X be a connected graph. If X is not simply-connected then
it contains a closed immersed path; if it contains a closed immersed path then
it contains an embedded circle; if it contains an embedded circle, then it is not
minimally connected; and if it is not minimally connected then it is not simply-
connected. Thus conditions 2 through 5 in Theorem 1.2.1 are equivalent.

Proof. If X is not simply-connected and f : [0, 1]→ X is a closed path that
represents a non-trivial element of π1(X), then by Proposition 1.1.2, f is homotopic
to a closed immersed path. If g is a closed immersed path that is not an embedding
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of a circle then there is a proper subinterval whose endpoints are sent to the same
vertex, and any minimal subinterval with this property can be used to construct
an embedding of a circle into X. If e is an edge of an embedded circle in X, then
X \ {e} remains connected since any path connecting points u and v that uses e
can be modified to use the remainder of the circle instead. Finally, if e is a 1-cell
in X whose removal does not disconnect X, then we proceed as follows. Because,
X \{e} is connected, the attaching map of e is homotopic to a constant map where
both endpoints are sent to the same 0-cell v. Let X ′ be the complex where this
altered attaching map is used for e, and note that X ′ is homotopy equivalent to X
(Theorem A.4.6) and the union of v and e in X ′ is a subcomplex A homeomorphic
to S1. Moreover, the map r : X → A that fixes A and sends every other cell to v
is a continuous retraction, so the induced map r∗ is surjective (Proposition A.2.4).
Since π1(A) ∼= Z, the group π1(X ′) ∼= π1(X) is non-trivial. �

For finite connected graphs conditions 3 and 6 are equivalent.

Lemma 1.2.3. If X is a finite connected graph, then χ(X) ≤ 1. Moreover,
χ(X) = 1 if and only if X is minimally connected.

Proof. Linearly order the 1-cells of X and attach them to the 0-skeleton one
at a time. If ci denotes the number of i-cells in X, then c1 ≥ c0 − 1 because the 0-
skeleton has c0 connected components, the final result has one and attaching a 1-cell
reduces the number of components by at most one. Thus, χ(X) ≤ 1 and χ(X) = 1
if and only if each edge reduces the number of components. If χ(X) < 1 then there
is an edge e whose attachment does not reduce the number of components, and
X \{e} remains connected since any path using e can be rewritten only using edges
that occur earlier in the list. Conversely, if e is an edge whose removal does not
disconnect X, then the edges can be ordered so that e occurs last. As shown above,
at least c0 − 1 edges were attached before e, so that c1 ≥ c0 and χ(X) < 1. �

The proof of Theorem 1.2.1 is nearly complete: since contractible graphs are
simply-connected, it suffices to show that minimally connected graphs are con-
tractible. For finite graphs this fact is easy to prove.1 To prove this for arbitrary
graphs, we introduce a combinatorial notion of distance.

Definition 1.2.4 (Combinatorial Distance). Let u and v be vertices in a cell
complex X. The length of a combinatorial path from u to v is the number of 1-cells
it traverses, and the combinatorial distance between u to v is the minimum length
of a combinatorial path connecting them. Denote this value by dX(u, v) or simply
d(u, v) when X is implicitly understood and note that d(u, u) is 0 since the constant
path is considered a combinatorial path of length 0. When u and v lie in the same
connected component of X, at least one such combinatorial path exists since any
path from u to v is homotopic to a path in the 1-skeleton (Theorem A.1.5) that we
can assume is an immersion (Proposition 1.1.2) and immersions are combinatorial.
Thus, in a connected cell complex this distance d is defined for all pairs of vertices
and it is easy to show that it defines a metric on the 0-skeleton of X (Exercise 3).

1Recall that the number of ends of edges attached to a vertex v is its degree and that a

vertex of degree 1 is called a free vertex. If X contains a free vertex v, then there is a deformation

retraction from X to X \ {v, e} where e is the unique edge attached to v. A counting argument
shows that every connected non-trivial graph with Euler characteristic 1 must have a free vertex

and thus it deforms onto a proper subcomplex. Iterating this process contracts X to a point.
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For later use we record the fact that minimum length paths are embedded.

Proposition 1.2.5 (Embedded Paths). If u and v are distinct vertices in the
same connected component of a cell complex, then every minimum length combinato-
rial path from u to v is embedded. In particular, at least one embedded combinatorial
path from u to v exists.

Proof. If a non-trivial combinatorial path is not embedded then it passes
through the same vertex twice, and excising the subpath between these two oc-
curences strictly shortens its length. �

The combinatorial distance function can be used to construct maximal con-
tractible subgraphs of connected cell complexes better known as spanning trees.

Proposition 1.2.6 (Spanning trees). Every connected cell complex contains a
contractible subgraph with the same vertex set. As a consequence, every connected
cell complex is homotopy equivalent to a cell complex with one vertex.

Proof. Let v be a fixed vertex in a connected complex X. The sphere of
radius n around v is the set of vertices u with d(u, v) = n and the ball of radius
n around v is the set of vertices u with d(u, v) ≤ n. Denote these sets by Sn
and Bn, respectively. Next, let Xn be the largest subgraph of X(1) with vertex
set Bn. Since X is connected, the union of the graphs Xn is all of X(1). Inside
the graphs Xn we inductively define subgraphs Tn. We start with T0 = X0 which
is just v itself. The graph Tn is constructed from Tn−1 by adding the vertices
in Sn, and for each u ∈ Sn adding a single edge connecting u to a vertex closer
to v. The first edge of a path of length n connecting u to v shows that such an
edge exists. Since there is an obvious deformation retraction from Tn to Tn−1,
each Tn is contractible by induction. Finally, the subgraph T =

⋃
n∈N Tn is a

contractible subgraph (Proposition A.4.9) that contains every vertex of X. The
second assertion is now immediate since the cell complex X/T has only one vertex
and by Theorem A.4.5 it is homotopy equivalent to X. �

We now complete the proof of Theorem 1.2.1.

Lemma 1.2.7. Minimally connected graphs are contractible.

Proof. Let X be a minimally connected graph and let T be a contractible
subgraph of X with the same vertex set (Proposition 1.2.6). If there is an edge e of
X that is not in T , then the connected graph T is a subgraph of the disconnected
graph X \ {e} on the same vertex set, contradiction. Thus X = T and X is
contractible. �

The name spanning tree should now make sense. When X is a connected cell
complex, a subgraph of X is contractible on the same vertex set iff it is a tree that
spans the vertex set of X. A final characterization of trees is that they have unique
embedded paths connecting distinct points.

Theorem 1.2.8 (Unique paths). A connected graph is a tree iff there is a unique
embedded path connecting every pair of distinct points.

Proof. Let X be a connected graph. If X is not a tree then it contains an
embedded circle and distinct points on this circle can be connected by distinct
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Figure 2. A rose with 7 edges.

embedded paths. Conversely, suppose X is tree and let x and y be distinct points
of X. Since some of the equivalent conditions defining a tree are insensitive to cell
structure, we may assume that x and y are 0-cells of X. At least one embedded path
from x to y exists by Proposition 1.2.5. Because X is minimally connected, every
edge traversed by this path would need to occur in every other path connecting x
and y. Thus the only embedded interval containing these edges starting at x and
ending at y is the one already considered, making it unique. �

1.2.2. Graphs. These chacterizations of trees quickly lead to a classification
of connected graphs up to homotopy equivalence. Before establishing the classifica-
tion, we note that connected graphs are classifying spaces and that the non-trivial
elements of their fundamental groups are indexed by based immersed paths.

Proposition 1.2.9 (Graphs as classifying spaces). The universal cover of a
connected graph is a tree. As a consequence, every connected graph is a classi-
fying space and two connected graphs have the same homotopy type iff they have
isomorphic fundamental groups.

Proof. The universal cover of a connected graph is both connected and simply-
connected and thus a tree by Theorem 1.2.1. Since this implies it is contractible,
the original graph is a classifying space for its fundamental group. The rest now
follows from Theorem A.5.1. �

Proposition 1.2.10 (Group elements and immersed paths). For any connected
graph X there is a natural bijection between the immersed paths in X based at x
and the non-trivial elements of G = π1(X,x). In particular, every based immersed
path in a graph represents a non-trivial element of its fundamental group.

Proof. Consider the function that sends each immersed path in X based at x
to the element of G = π1(X,x) it represents. By Proposition 1.1.2 every non-trivial
element of G is represented by some immersed path. On the other hand, no based
immersed path represents the identity in G since it would lift to a closed immersed
path in the universal cover contradicting the fact that X̃ is a tree. And finally,
if two distinct closed immersed paths represented the same non-trivial element
g ∈ G, then they would lift to immersed paths in X̃ starting at one vertex u and
both ending at a different vertex v, contradicting Theorem 1.2.8. �

The simplest graphs are those with only one vertex (Figure 2). Such a graph
is callled a rose, and its unique vertex is denoted ∗. Since the only variable in the
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construction of a rose is the number of edges it contains, we let RA denote the rose
whose edges are indexed by a set A and we let FA denote the group π1(RA, ∗).
Since every connected graph is homotopy equivalent to a rose (Proposition 1.2.6),
classifying connected graphs up to homotopy type is the same as classifying roses.

Theorem 1.2.11 (Roses). For sets A and B, the following are equivalent:
1. the sets A and B have the same cardinality,
2. the roses RA and RB are homeomorphic,
3. the roses RA and RB have the same homotopy type, and
4. the groups FA and FB are isomorphic.

Proof. Certainly 1 ⇒ 2 ⇒ 3 and 3 ⇔ 4 by Proposition 1.2.9, so we only
need to prove 3 or 4 implies 1. The first observation is that compact roses and
noncompact roses cannot be homotopy equivalent (Exercise 4). Thus there are
two cases to consider: both RA and RB are compact or both RA and RB are
noncompact. When RA and RB are homotopy equivalent and compact, the integers
χ̃(RA) = −|A| and χ̃(RB) = −|B| must be equal by the homotopy invariance of
Euler characteristics, implying |A| = |B|. Finally, when A is infinite, |FA| = |A|
(Exercise 5), so that RA and RB homotopy equivalent and noncompact implies
FA ∼= FB which means |A| = |FA| = |FB | = |B|. �

1.2.3. Free groups. The fundamental group of a graph is called a free group.
By Proposition 1.2.6 every free group is isomorphic to the fundamental group of a
rose RA and by Theorem 1.2.11 the cardinality of A is an invariant of the group
that we call its rank. In fact, one way to restate Theorem 1.2.11 is that free groups
are classified up to isomorphism by their rank.

Corollary 1.2.12 (Free groups classified). Two free groups are isomorphic iff
they have the same rank which is true iff they are fundamental groups of homotopy
equivalent graphs.

Let A be a set of cardinality κ. We use different notations for the free group
of rank κ depending on the context. We continue to write FA for the fundamental
group of the rose RA. On the other hand, we might write Fκ when we are only
interested in the group up to isomorphism, or simply as F when we merely wish to
indicate that the group is free. For example, if X is the 1-skeleton of a cube and x
is one of its vertices, we say that π1(X,x) = F5 since |χ̃(X)| = |8 − 12 − 1| = 5 is
its rank. Several properties of free groups follow easily from their definition. The
first one is known as the Nielsen-Schreier theorem.

Theorem 1.2.13 (Free subgroups). Subgroups of free groups are free.

Proof. Let G be a free group and let X be a graph with fundamental group G.
Every subgroup H ⊂ G is the fundamental group of a cover of X (Theorem A.3.10),
but covers of graphs are graphs, so H is also a free group. �

Theorem 1.2.14 (Free quotients). Every group is a quotient of a free group.
In particular, if (X,x) is a based connnected cell complex with G = π1(X,x) and F
is the free group π1(X(1), x), then the group homomorphism F→ G induced by the
inclusion map X(1) ↪→ X is onto.

Proof. That the induced map is onto follows from the easy fact that paths
starting and ending in the 1-skeleton of a cell complex are homotopic to paths
entirely contained in the 1-skeleton keeping their endpoints fixed throughout. �
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Theorem 1.2.15 (Finite rank calculations). If X is a finite connected graph,
then the rank of π1(X) is |χ̃(X)| = −χ̃(X). As a consequence, if G is a free group
of rank k and H is an index d subgroup of rank l where k, d, and l are finite, then
l − 1 = d(k − 1).

Proof. The first part was established during the proof of Theorem 1.2.11. Let
X be a finite graph with π1(X) ∼= G and let Y be the cover of X corresponding to
H. Since Y is a d-fold cover of X, χ(Y ) = d · χ(X). The fact that χ̃(Y ) = −l and
χ̃(X) = −k completes the proof. �

Every free group is the fundamental group of a rose, and in these groups the
elements generated by traveling along a single edge deserve special consideration.

Definition 1.2.16 (Symmetric bases). Let RA be a rose with FA = π1(RA, ∗).
Since each edge can be traversed in one of two directions, there are exactly 2|A|
closed paths of length 1 in RA and each path represents a distinct element in
FA (Proposition 1.2.10). The collection of these elements inside FA is called the
symmetric basis for FA and denoted SA.

Our use of the word ‘symmetric’ is one we wish to formalize. Definition 1.2.17
is not standard, but we find that including these definitions makes it easier to
highlight certain aspects that would otherwise remain obscure.

Definition 1.2.17 (Symmetric sets). A symmetric set is a set S with an im-
plied involution ( )−1 : S → S, or alternatively, a set with an implied partition
into blocks of size at most 2. The partition can be derived from the involution
by recording the orbits of elements, and the involution can be recovered from the
partition by sending each element to an element in the same block and to a distinct
element whenever possible. If the involution is fixed-point free, or, equivalently,
every block has size 2, we say the symmetric set is free. A symmetric subset is
a subset T of a symmetric set S satisfying T = T−1, and a symmetry-preserving
function between symmetric sets is one that is compatible with their involutions:
that is, a function f : S → T such that t = f(s) implies t−1 = f(s−1).

Groups are symmetric sets using the involution sending g to g−1 but they are
never free since the identity is its own inverse. Paths in a cell complex form a sym-
metric set with an involution that reverses the parameterization. The symmetric
basis SA of the free group FA is a free symmetric subset, and, in fact, it can be
thought of as the canonical free symmetric set with blocks indexed by elements of
A. Returning to Definition 1.2.16, notice that these basic paths and elements can
be used to describe arbitrary paths and elements: every combinatorial path in RA
is a concatentation of these basic paths, and thus every element in FA is a product
of elements in SA. The symmetric basis is easier to work with when its elements
have been given explicit names. The tradition is to break symmetry by selecting a
basis.

Definition 1.2.18 (Bases and orientations). A subset of the symmetric basis
SA of the free group FA is called a basis if it contains one element from each block
of SA. Topologically, selecting a basis is equivalent to orienting the edges of the
rose RA: the path of length 1 that crosses the edge ea in the preferred direction
represents the selected element and the path that travels in the opposite direction
represents the unselected element. We call the selected element a and the other
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element a−1. In this way the choice of a basis (or equivalently an orientation of the
rose) lets us identify SA with the set A∪A−1 where A denotes the selected elements
and A−1 = {a−1 | a ∈ A} collects the unselected elements. Although the free group
FA has many different bases inside SA, its symmetric basis can be recovered from
any one of these by simply adding in the inverses of the basis elements.

The most commonly used free groups with bases are those of finite rank and
for these we introduce a simplified notation.

Remark 1.2.19 (Finite rank). When the size of A is very small we might write
something like F{a,b,c} to mean the free group FA with basis A = {a, b, c}. More
typically we use sets such as A = {ai | i ∈ [n]} = {a1, a2, . . . , an} and we simplify
the notation in this case, by writing ei instead of eai

and F[n] instead of F{ai|i∈[n]}.
Thus F[5] denotes the free group of rank 5 with basis A = {a1, a2, a3, a4, a5}.

When a free group arises as the fundamental group of a complicated graph, a
basis can be selected by collapsing a spanning tree.

Proposition 1.2.20 (Selecting a basis). Let T be a spanning tree in a based
connected graph (X,x). Once the edges not in T are indexed by a set A, there is a
natural isomorphism π1(X,x) ∼= FA. The elements in the symmetric basis SA are
represented by paths in X that cross over exactly one of the edges ea concatenated,
if necessary, with paths in T connecting the basepoint x with the endpoints of ea.

Proof. When T is collapsed to a point, the labeling identifies the quotient
with the rose RA. The homomorphism induced by the quotient map q : X →
X/T is thus a map q∗ : π1(X,x) → FA. Because trees do not contain closed
immersed paths (Theorem 1.2.1), the image of a non-trivial immersed path based
at x under the quotient map q is a path based at ∗ that remains non-trivial and
immersed (Exercise 7). When combined with Proposition 1.2.10, this shows that
q∗ is injective. The surjectivity of q∗ and the description of paths representing
the symmetric basis elements follow from the statement and proof of the next
proposition, a general result that we record for later use. �

Proposition 1.2.21 (Lifting paths). Let {Uα} be a collection of pairwise dis-
joint connected subcomplexes of a connected complex U . If V is the cell complex
obtained from U by collapsing each Uα to a point and q : U → V denotes the
quotient map, then for every immersed path f : I → V (1) there is an immersed
path g : I → U (1) such that q(g) traces the same path as f . As a consequence, the
induced map q∗ : π1(U)→ π1(V ) is onto.

Proof. Let uα denote the point in V to which Uα collapses. Because the
quotient map establishes a homeomorphism between U \ {Uα} and V \ {uα}, the
portions of f that avoid the vertices uα can be lifted to U . Moreover, we can extend
these lifted portions to paths (i.e. to images of closed intervals) by including the
vertices in the various Uα at which they start and/or end. The required path g is
then patched together out of these lifted portions. See Figure 3 for an illustration.
For each t in the interior of I where f(t) is equal to one of the uα, we insert, if
necessary, an immersed path in U

(1)
α that connects the end point of the previous

portion to the start point of next portion; if these two points are the same, we
simply concatenate without inserting a path. Such connecting paths exist because
each Uα is connected. Concatenating these paths produces a path g : I → U (1)
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Figure 3. Lifting a path from V to U .

whose image under q traces out the original path in V , and the path g is immersed
because (1) its image is immersed and (2) when non-trivial paths are inserted, at
the transitions one edge lies in Uα and the other does not. To prove the final
assertion, let u be a vertex not in any of the Uα and let v be its image in V (1).
The induced map q∗ : π1(U, u)→ π1(V, v) is onto since every non-trivial element in
π1(V, v) can be represented by an immersed loop f : I → V (1) based at v and this
loop is the image under q of a loop g based at u in U . A similar argument works
when u is contained in one of the Uα, but paths inside Uα might need to be added
at either end of the lifted path. �

The reader should note that when one spanning tree in X is replaced with
another, Proposition 1.2.20 produces a different isomorphism and a different sym-
metric basis is identified (Exercise 11). In fact, the situation is even more compli-
cated. For any set A of cardinality κ > 1, the group F = Fκ is isomorphic to FA in
an infinite number of distinct ways (Exercise 12) so that there are infinitely many
distinct symmetric subsets of F that can play the role of its symmetric basis and
a correspondingly infinite set of subsets that can be a basis for F. We refer to any
such subset or symmetric subset as a basis or symmetric basis for F.

1.2.4. Alternative definitions. There are two alternative definitions of free
groups that involve constructing them algebraically or defining them abstractly via
their universal properties. We introduce both alternatives and prove they describe
the same class of groups (Theorem 1.2.27). In order to distinguish among the
different definitions, we refer to the free groups already defined as topological free
groups. One major difference we should note is that both alternative definitions
require the specification of a basis or symmetric basis.2 We begin with the algebraic
construction.

2This makes the topological version easier to apply in situations like the proof of the Nielsen-
Schreier theorem. To prove Theorem 1.2.13 using one of the other definitions would have required
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Definition 1.2.22 (Free groups; algebraic version). The algebraic free group
with symmetric basis SA is the group constructed as follows. Start with the free
symmetric set SA and consider finite sequences of elements from SA. The collection
of all such finite sequences (including the empty sequence) is denoted (SA)∗. The
elements of SA are called letters and the finite sequences are called words. (More
generally, for any set B we use B∗ to denote the set of all ‘words’ built out of
the ‘letters’ in B.) Equivalence classes are constructed based on the repeated
insertion or deletion of subwords of the form aa−1 and the multiplication of two
equivalence classes is the equivalence class of the concatenation of representatives.
It is straightforward to show that this multiplication is well-defined and that the
result is a group (Exercise 9). If a basis is chosen for SA so that its elements are
identified with the set A ∪ A−1, then the group we construct is the algebraic free
group with basis A.

A non-empty word equivalent to the empty sequence is called a Dyck word, and
one with no subwords of the form aa−1 is said to be reduced. Under the natural
bijection between words in (SA)∗ and combinatorial paths in the rose RA, the
reduced words correspond to the immersed paths. Thus, by Proposition 1.2.10, we
can think of the reduced words in (SA)∗ as parameterizing the non-trivial elements
of FA. This bijection quickly leads to an isomorphism.

Proposition 1.2.23 (Algebraic free groups). The algebraic free group with
symmetric basis SA is isomorphic to the fundamental group of the rose RA. Thus,
a group is free in the algebraic sense iff it is free in the topological sense.

Proof. Let G be the algebraic free group with symmetric basis SA and let
f : G → FA be the natural homomorphism defined by identifying SA with the
symmetric basis of RA and then interpreting the words in (SA)∗ as combinatorial
paths in the rose RA that represent elements of FA. Since the insertion and deletion
operations on words correspond to elementary homotopies on based loops, and
concatenation of words corresponds to concatenation of based loops, the map f is
a well-defined group homomorphism. Moreover, the canonical bijections between
reduced words in (SA)∗, immersed paths in RA, and the non-trivial elements of
FA show that f is onto. Finally, suppose g is any non-trivial element of G. Start
with any word representing g and iteratively remove subwords of the form aa−1.
This process must stop before it reaches the empty word since g is non-trivial. The
word at which it stops is a reduced word representing g and this means that f(g)
is represented by a closed immersed path in RA. By Proposition 1.2.10, f(g) is a
non-trivial element of FA, showing that f is one-to-one. �

Notice that, as a consequence of our identifications, the set A∗ can be viewed
as a subset of the free group FA with basis A since every non-empty word in A∗

is automatically reduced. The non-trivial elements in A∗ are called positive words.
Our third and final definition of a free group focuses on their universal properties.

Definition 1.2.24 (Free groups; categorical version). A group G with a dis-
tinguished subset A is called a categorical free group with basis A if for any group
H and for any function f : A→ H, there exists a unique extension of f to a group
homomorphism G→ H. Similarly, a group G with a distinguished free symmetric

us to first find a potential basis or symmetric basis for the subgroup H and then to establish that
it had the right algebraic or categorical properties.



1.2. TREES, GRAPHS AND FREE GROUPS 13

subset S is called a categorical free group with symmetric basis S if for any group
H and for any symmetry-preserving function f : S → H, there exists a unique
extension of f to a group homomorphism G→ H.

Categorical free groups are unique, in the appropriate sense, almost by defini-
tion, and topological free groups are used to show they exist.

Proposition 1.2.25 (Uniqueness). There is at most one categorical free group
up to isomorphism for each size basis or symmetric basis. In particular, if G is
a categorical free group with basis A, H is a categorical free group with basis B,
and f : A → B is a bijection, then the unique homomorphism G → H extending
f is an isomorphism. Similarly, if G is a categorical free group with symmetric
basis S, H is a categorical free group with symmetric basis T , and f : S → T is a
symmetry-preserving bijection, then the unique homomorphism G → H extending
f is an isomorphism.

Proof. For simplicity we prove the basis version and leave the other as an
exercise. Let i : A → G and j : B → H be the given inclusions. Applying the
defining property of a categorical free group to the function i shows that the identity
map on G is the unique homomorphism G → G fixing A pointwise. Similarly,
the identity map on H is the unique homomorphism H → H fixing B pointwise.
Applying the defining property to the composition j ◦ f shows that there is a
unique homomorphism g : G → H that extends the bijection f . Similarly, using
the composition i ◦ f−1 shows that there is a unique homomorphism h : H → G
extending the bijection f−1. Since g ◦ h is a homomorphism G → G fixing A
pointwise, it must be the identity map on G and the composition h ◦ g, being a
homomorphism H → H fixing B pointwise, must be the identity map on H. Thus,
g is injective and surjective and this unique homomorphism is an isomorphism. �

Proposition 1.2.26 (Existence). The topological free group FA = π1(RA, ∗)
with symmetric basis SA is a categorical free group. In other words, for any group
H and any symmetry-preserving function f : SA → H there exists a unique group
homomorphism FA → H extending f .

Proof. If X is any cell complex with H = π1(X,x) then we can define a map
from RA to X that sends ∗ to x and the oriented edge ea in RA to a based loop
in X that represents the appropriate element in H. The induced homomorphism
FA → H clearly extends f . It only remains to prove that this map is unique. Let
g, h : FA → H be two homomorphisms that agree with f when restricted to SA and
consider the subset of FA on which they agree. This set includes SA and is closed
under composition, but since every non-trivial element of FA is represented by a
word in (SA)∗, g and h must agree on all of FA. �

The last three propositions taken together establish the following.

Theorem 1.2.27 (Free groups). A group is free in the topological sense iff it is
free in the categorical sense iff it is free in the algebraic sense. Thus, the topological,
algebraic, and categorical definitions define the same collection of groups.

1.2.5. Maps and automorphisms. Bases are powerful tools that are par-
ticularly useful when describing homomorphisms from free groups to other groups.
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Proposition 1.2.28 (Maps from free groups). Let FA = π1(RA, ∗) be a free
group with basis A. For any based cell complex (X,x) with G = π1(X,x), the
following collections are in natural bijection:

1. equivalence classes of based maps (RA, ∗)→ (X,x),
2. group homomorphisms FA → G,
3. symmetry-preserving functions SA → G, and
4. functions A→ G.

Proof. There are easy conversions among the collections that we call restrict,
construct, and induce. Any group homomorphism FA → G can be restricted to its
symmetric basis SA and then further restricted to its basis A. Given any function
A → G, a based map (RA, ∗) → (X,x) can be constructed by sending ∗ to x and
each oriented edge ea to a loop in X based at x that represents f(a). Different
choices for the image of ea are equivalent up to basepoint preserving homotopy,
so the map is well-defined up to equivalence. Finally, given a representative based
map we can look at the induced homomorphism between their fundamental groups,
which is well-defined since different representatives induce the same homomorphism.
The consistency of the bijections connecting collections 2, 3, and 4 is an immediate
consequence of the uniqueness part of the categorical definition of a free group, and
the consistency of the bijections between collections 1 and 4 is clear: elements in
G are sent to based loops in X that represent them and based loops in X are sent
back to the elements in G they represent. �

As a corollary, the automorphisms of a free group can be indexed by bijections
between its various bases.

Corollary 1.2.29 (Automorphisms of free groups). If F is a free group with
basis A ⊂ F then a group endomorphism f : F → F is a group automorphism iff f
restricted to A is a bijection between two bases for F. Thus, for free groups of finite
rank, the automorphisms in Aut(F) can be indexed by the collection of ordered
bases inside F.

Proof. If f restricted to A is a bijection between two bases for F, then f
is an isomorphism by Proposition 1.2.25. Conversely, suppose f : F → F is an
automorphism and let B = f(A). Because isomorphisms are injective, f restricted
to A is a bijection and it is easy to show that B is a basis for F in the categorical
sense (Exercise 13). For the final assertion, the orderings are an artifact used to
implicitly describe the bijections between bases. First choose a standard basis A
and linearly order it. A bijection A → B between bases can be used to induce a
linear ordering of B and distinct bijections induce distinct orderings. Conversely,
if B is any ordered basis of F we can reconstruct a bijection A→ B by sending the
first element of A to the first element of B, the second to the second, etc. �

The final assertion of Corollary 1.2.29 immediately extends to free groups of
infinite rank (Exercise 14) once we correct for the fact that distinct infinite ordinals
(such as ω, ω + ω, and ωω) can have the same cardinality.

One unfortunate aspect of using a rose, or in fact any graph, as a model space
for a free group F is that it does not treat all of its bases or symmetric bases,
on an equal footing. Let F = FA be a non-abelian finite rank free group. By
Proposition 1.2.28 every automorphism F→ F can be represented by an equivalence
class of based maps (RA, ∗)→ (RA, ∗) but only finitely many of these classes contain
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a representative map that is a homeomorphism of the rose (Exercise 18). The images
of A under these maps are the bases of FA inside its symmetric basis SA and this
illustrates how they are qualitatively different from the others bases of F. There are
better models in higher dimensions as we briefly indicate. For further information
on this topic see our discussion of free group automorphisms in the Epilogue.

Remark 1.2.30 (Other model spaces for free groups). Let A be a finite set
with more than one element and pick a relatively nice embedding of RA into R2 or
R3. If we replace RA with a regular neighborhood of its image, then the resulting
manifold with boundary is homotopy equivalent to the original rose. The result
in R2 is called a planar surface and the manifold in R3 is known as a handlebody.
If we call the resulting planar surface P and the handlebody H then by Propo-
sition 1.2.28 every automorphism FA → FA corresponds to an equivalence class
of based maps (RA, ∗) → (P, p) or (RA, ∗) → (H,h), respectively. In the planar
surface case infinitely many but not all automorphisms can be represented by maps
that embed RA into P (Exercise 19), and for handlebodies, every automorphism
can be represented by a map that embeds RA into H (Exercise 20). In fact, each
of these embeddings can be chosen so that there is a deformation retraction from
P or H onto the image of RA. As a result, there is a precise sense in which the
planar surface model treats infinitely many but not all bases on an equal footing
and the handlebody model treats all bases equally.

1.3. Complexes and presentations

The geometric group theorist Martin Bridson began his address to the 2006
International Congress of Mathematicians as follows: “When viewed through the
eyes of a topologist, a finite group-presentation Γ = 〈A|R〉 is a concise description
of a compact, connected 2-dimensional CW-complex K with one vertex: the gen-
erators a ∈ A index the (oriented) 1-cells and the defining relations r ∈ R describe
the loops along which the boundaries of the 2-cells are attached. Γ emerges as
the group of deck transformations of the universal cover K̃ and the Cayley graph
CA(Γ) is the 1-skeleton of K̃.” This succinctly summarizes the ideas discussed in
this section. The traditional algebraic machinery of presentations with generators
and relations is introduced, but with an emphasis on the topological structures to
which these concepts correspond.

1.3.1. Generating sets. A generating set for a group G is, essentially, a
surjection onto G from a free group with a specified basis. They arise whenever
G is viewed as the fundamental group of cell complex and there is a certain rough
equivalence between generating sets for G, cell complexes with fundamental group
G, and G-actions on graphs (Theorem 1.3.9). The first claim is easy to illustrate.
Let G be the fundamental group of a connected cell complex X. If T is a spanning
tree for X(1) and the edges not in T are indexed by A, then by Theorem 1.2.14 and
Proposition 1.2.21 the inclusion map X(1) ↪→ X induces a surjection f : FA � G.

Definition 1.3.1 (Generating sets). Let FA be a free group with basis A and
recall that A∗ can be viewed as a subset of FA. If f : FA → G is onto, then the
function f (or, equivalently, its restriction A → G) is said to generate G since we
can generate every element of G from the image of SA = A∪A−1. With the typical
abuse of notation, the map to G often goes unmentioned. We say instead that A
generates G and is a generating set. Similarly, SA symmetrically generates G and is
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a symmetric generating set. And when f restricted to A∗ remains onto, A generates
G as a monoid and is a monoid generating set.

These conditions have several easily established reformulations (Exercise 23).

Proposition 1.3.2 (Detecting generating sets). If FA is a free group with basis
A and f : FA → G is a map with B = f(A) and T = B ∪ B−1 = f(SA), then the
map f is onto iff no proper subgroup contains B iff no proper submonoid contains T
which is true iff every element of G is represented by some word in T ∗ = (B∪B−1)∗.
Similarly, f restricted to A∗ remains onto iff no proper submonoid contains B which
is true iff every element of G is represented by some word in B∗.

Remark 1.3.3 (Generating sets as subsets). If A → G generates G and B is
the image of A, then the inclusion B ↪→ G also generates G: the corresponding
homomorphism FB → G must be onto since no proper subgroup of G contains B.
Thus, in principle at least, generating sets for G can be replaced with generating
subsets ofG and it is tempting to make this assumption part of the definition. We do
not do so precisely because closed paths in complicated spaces can be unexpectedly
null-homotopic, making it difficult to determine whether the map F → G derived
from the inclusion X(1) ↪→ X is injective on a basis of the free group F.

The different types of generating sets can be illustrated using the integers.

Example 1.3.4 (Generating sets for Z). Consider the subsets A = {1}, B =
{−1}, C = {2, 3}, and D = {−2,−3} in Z. Each of the four is a generating set for
Z. None of the four is a symmetric generating set or a monoid generating set. The
combinations A∪B and C ∪D symmetrically generate Z, and a set such as A∪D
is a monoid generating set that is not symmetric.

A group with a finite generating set is said to be finitely generated, and it should
be clear from our earlier construction that the fundamental group of a cell complex
with a finite 1-skeleton is an example of such a group. We have highlighted how
cell complexes create generating sets for their fundamental groups; this process can
also be reversed.

Lemma 1.3.5 (Complexes from generating sets). For each map f : FA � G
there is connected cell complex X with RA as its 1-skeleton, G as its fundamental
group, and with f as the homomorphism induced by the inclusion X(1) ↪→ X. As
a consequence, every finitely generated group is the fundamental group of a cell
complex with a finite 1-skeleton.

Proof. Let K be the kernel of f and construct X as follows. Start with the
rose RA and for each non-trivial k ∈ K attach a 2-cell to RA. The element k, being
a non-trivial element of FA, corresponds to a reduced word in (SA)∗, and thus to a
closed immersed path in RA. This is the loop we use as the attaching map for the
2-cell indexed by k. Let g : FA � π1(X, ∗) be the group homomorphism induced
by the inclusion (RA, ∗) ↪→ (X, ∗). By van Kampen’s theorem (Theorem A.2.8) the
kernel of g is the normal subgroup generated by K, but since K is already normal,
the kernel of g is the kernel of f , and consequently π1(X, ∗) ∼= G. �

Generating sets also arise from free actions on cell complexes and we prove
two different versions of this result. The first is more general and produces a
generating set simply from a fundamental domain for the action. The second gives
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an alternative proof using the theory of covering spaces in the special case where
the complex is a graph and the quotient by the group action is a rose.

Lemma 1.3.6 (Generating sets from actions, I). If a group G acts on a connected
cell complex X and F is both a subcomplex and a fundamental domain for the action,
then the set {g ∈ G | F ∩ (g · F) 6= ∅} is a symmetric monoid generating set for G.
More specifically, when the action of G on X is proper and cocompact, G is finitely
generated.

Proof. Let S = {g ∈ G | F ∩ (g · F) 6= ∅} and let x be a vertex in the
subcomplex F . Because X is connected, for each non-trivial g ∈ G there is an
immersed path in the 1-skeleton of X connecting x and g · x. Using this path we
can find a finite sequence {(g0 · F), (g1 · F), (g2 · F), . . . , (gn · F)} of translates of F ,
such that g0 is the identity of G, gn is g, and for each i ∈ [n], (gi−1 · F) ∩ (gi · F)
is non-empty. Because of the G-action, for each i ∈ [n], F ∩ (ai · F) is non-empty
where ai = (gi−1)−1gi. Thus each ai is in S and the factorization g = a1a2 · · · an
shows that g is represented by a word in S∗. Since g was arbitrary, S is a monoid
generating set for G. The G-action also shows that S is symmetric since F ∩ (a ·F)
is non-empty iff (a−1 · F)∩F is non-empty. For the second assertion, note that the
implicit assumption that the action of G on X is cellular means that S is precisely
the subset of G that sends some vertex of F to another vertex in F . Because the
action is cocompact, our fundamental domain is a subcomplex with a finite set of
vertices, and because the action is proper, for any pair of vertices u and v there are
only a finite number of group elements that send u to v. The set S is thus a finite
union of finite sets. �

Lemma 1.3.7 (Generating sets from actions, II). When a group G acts freely on
a connected graph Γ with the rose RA as its quotient, this induces a map FA � G.

Proof. Because the action of G on Γ is free, the quotient map p : Γ→ RA is a
covering map and the group G can be identified as the group of deck transformations
of p. Moreover, the transitivity of the action on vertices means that Γ is a regular
cover of RA. If we pick a vertex v ∈ Γ and define K = π1(Γ, v), then, by the
theory of covering spaces, the induced homomorphism p∗ embeds K as a normal
subgroup of FA = π1(RA, ∗). The quotient of FA by p∗(K) is isomorphic to G
(Proposition A.3.9) and the required map is FA � FA/p∗(K) ∼= G. �

Using these lemmas, it is easy to establish that several natural topological
conditions are equivalent to being finitely generated.

Theorem 1.3.8 (Finitely generated). For each G the following are equivalent:

1. G is finitely generated;
2. G is the fundamental group of a cell complex with a finite 1-skeleton.
3. G acts freely and cocompactly on a connected graph;
4. G acts properly and cocompactly on a connected cell complex;

Proof. Lemmas 1.3.6 and 1.3.5 show 4 ⇒ 1 ⇒ 2. If G ∼= π1(X,x) with X(1)

finite, then the action of G on the 1-skeleton of X̃ is both free and cocompact, so
2⇒ 3. Finally, free actions are proper and graphs are cell complexes, so 3⇒ 4. �

We can also clarify when a set A can generate a group G.
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Theorem 1.3.9 (Generating sets). For each set A and group G consider the
following three collections.

1. homomorphisms FA � G;
2. cell complexes X with π1(X, ∗) = G and X(1) = RA;
3. free G-actions on connected graphs Γ with quotient RA.

A homomorphism in collection 1 converts to a cell complex in collection 2, which
converts to a action on a graph in collection 3 which converts to a homomorphism in
collection 1. Thus, one collection is non-empty iff they are all non-empty. In fact,
up to the appropriate notions of equivalence, these three collections are in natural
bijection.

Proof. The conversions from 3 to 1 and from 1 to 2 use Lemma 1.3.7 and
Lemma 1.3.5, respectively, and to convert from 2 to 3 let G act on the 1-skeleton of
the universal cover of X. We leave the proof that they are in natural bijection up to
equivalence as an exercise. For the record, the appropriate notions of equivalence
are as follows:

1. Two functions fA : FA � G and fB : FB � G that generate G are
considered equivalent if there is a symmetry-preserving bijection SA → SB between
their symmetric bases that extends to an isomorphism i : FA → FB with fB◦i = fA.

2. Let XA and XB be cell complexes with 1-skeletons RA and RB , π1(XA, ∗) =
G = π1(XB , ∗), and induced homomorphisms fA : FA → G and fB : FB → G,
respectively. These complexes are considered (very roughly) equivalent if there is a
homeomorphism RA → RB between their 1-skeletons that induces an isomorphism
i : FA → FB with fB ◦ i = fA.

3. Let G act freely on two graphs Γ and Γ′. These are considered equivalent
if there is an isomorphism of the underlying graphs that is compatible with the
G-action. In other words, there is an isomorphism f : Γ → Γ′ such that for all
g ∈ G and for every cell σ ∈ Γ, f(g · σ) = g · f(σ). �

1.3.2. Cayley graphs. The graphs with group actions that occur in the state-
ment of Theorem 1.3.9 are called Cayley graphs.

Definition 1.3.10 (Cayley graphs). Let G be a group. A connected graph
Γ with a free and vertex-transitive G-action is called a Cayley graph for G. The
quotient of Γ by the action of G is a rose. If we index its edges by a set A, then by
Theorem 1.3.9 there is a corresponding map f : FA � G that generates G, and Γ is
called the Cayley graph for G with respect to f . Finally, if an orientation is added
to the edges of RA, then this defines a basis A for the free group FA and we call Γ
the Cayley graph for G with respect to A.

According to Theorem 1.3.9 a Cayley graph for G can be constructed from a
map FA � G or from a one vertex cell complex with G as its fundamental group.

Example 1.3.11 (Free groups). Since the rose RA is a one vertex complex with
fundamental group FA, its universal cover is a Cayley graph for the free group FA.
The universal cover is, of course, a tree and each vertex has valence 2|A|. A portion
of a Cayley graph for F3

∼= F{a,b,c} is sketched on the lefthand side of Figure 4. The
drawing conventions are as follows: the edges with negative slope represent a (when
moving up and to the left) or a−1 (when moving down and to the right). Those
with positive slope similarly represent b or b−1 and the vertical edges represent c
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or c−1. The length of each edge has been scaled according to its distance from the
base vertex, to enable the graph to be drawn without self-intersections.

Figure 4. Portions of Cayley graphs for F3 (left) and Z3 (right).

Example 1.3.12 (Free abelian groups). The vector space Rn can be given a cell
structure where it looks like unit n-dimensional cubes stacked up in all directions
with a vertex at every point with integer coordinates and edges in the coordinate
directions connecting points distance 1 apart. Moreover, there is a free cellular
Zn-action on Rn where the action is by rigid translation. The action is transitive
on vertices so the quotient of Rn by action of Zn is a one vertex complex called
an n-torus and denoted Tn. The cell complex Tn has

(
n
i

)
i-cells for each i ∈

{0, 1, 2 . . . , n}. Since the space Rn is simply-connected and the Zn-action is free,
(1) π1(Tn, ∗) = Zn, (2) the quotient map is a covering projection, (3) Rn is the
universal cover of Tn and (4) its 1-skeleton is a Cayley graph for Zn. A portion of
this Cayley graph for Z3 is sketched on the righthand side of Figure 4.

Given a map f : FA � G there is a direct construction of the corresponding
graph Γ with a free G-action that eliminates the need for the intermediate complex
X, but to make the construction precise we need the notion of a symmetric edge
labeling of a graph.

Definition 1.3.13 (Edge labelings). In any graph Γ, the edges of Γ form a
set and the oriented edges of Γ (i.e. the combinatorial paths of length 1) form a
symmetric set using the involution that reverses orientation. An edge labeling of Γ
by A is a bijection between the set A and the edges of Γ. Similarly, a symmetric
edge labeling of Γ by S is a symmetry-preserving bijection between the symmetric
set S and the oriented edges of Γ.

Definition 1.3.14 (Labeling the 1-skeleton of X̃). Let X be a cell complex
with X(1) = RA and π1(X, ∗) = G, let X̃ be its universal cover, and let x̃ be one
of its vertices. The group G acts on X̃ as the group of deck transformations of
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the projection map p : X̃ → X and this action can be used to induce a vertex
labeling and a symmetric edge labeling on the 1-skeleton of X̃. Since the action of
G on X̃ is free and vertex-transitive, for each vertex v in X̃ there exists a unique
element g ∈ G with v = g · x̃. We call this vertex vg and the action of G on the
vertex set is described by g · vh = vgh. Similarly, every path of length 1 in X̃ is
uniquely determined by its starting point and the path of length 1 in RA to which it
projects. Since the vertices of X̃ are indexed by G and the paths of length 1 in RA
are indexed by the symmetric basis SA, the paths of length 1 in X̃ are indexed by
G×SA. If we use [a] to denote the image of a under the induced map f : FA → G,
then the oriented edge e(1,a), almost by definition, starts at x̃ = v1 and ends at v[a].
More generally, using the G-action, the oriented edge e(g,a) starts at vg and ends at
vg·[a] and the G-action on oriented edges is described by g · e(h,a) = e(gh,a). From
this we can see that the appropriate involution to define on G× SA to turn it into
a symmetric set is the one sending (g, a) to (g · [a], a−1).

The key observation is that the vertex labeling and the symmetric edge labeling
describe the structure of the graph X̃(1) in a way that only depends on the map
f : FA → G and the multiplication in G. In particular, it and its G-action can be
completely reconstructed with no mention of cell complex X.

Definition 1.3.15 (Cayley graphs from generating sets). The previous discus-
sion shows that if A → G generates G and [a] denotes the image of a ∈ A under
this map, then the corresponding Cayley graph of G with respect to A can be
constructed as follows. Start with a vertex vg for each g ∈ G, then add an edge
connecting vg to vg·[a] for each (g, a) ∈ G × A, and call the resulting graph Γ. To
recover the symmetric labeling of the oriented edges of Γ, we let e(g,a) label the
path of length 1 that travels along the edge indexed by (g, a) from vg to vg·[a] and
label the same edge with the opposite orientation by e(g·[a],a−1). This gives a sym-
metric edge labeling of Γ by G× SA, where the latter is a symmetric set under the
involution with (g, a)−1 = (g · [a], a−1). Finally, there is a natural (left) action of G
on this graph Γ that is defined on vertices and edges by the equations g · vh = vgh
and g · e(h,a) = e(gh,a).

Remark 1.3.16 (Left and right). The Cayley graph constructed above is some-
times called the right Cayley graph of G with respect to f : FA → G since the edges
record what happens when you right multply by [a] ∈ G. The switch between a
right multiplication (·[a]) that defines the edges and a left multiplication (g·) that
defines the G-action is crucial for their compatibility. One could define a left Cayley
graph for G generated by A, but it would only have a natural right G-action.

Remark 1.3.17 (Covers, Cayley graphs and groups). Let X be a one vertex cell
complex with π1(X, ∗) = G. Because X is a cell complex, we know that a universal
cover X̃ exists, but that does not mean that we know how to construct it. The main
difficulty is being able to construct the 1-skeleton of X̃, i.e. the Cayley graph of G
with respect to the generating set that arises from the 1-skeleton of X. In a way that
we make precise in Chapter 3, arbitrarily large portions of X̃ can be constructed iff
arbitrarily large portions of its Cayley graph can be constructed, which can be done
iff we truly understand how to multiply elements inside its fundamental group. In
particular, whenever we know something about the structure of X̃, it can usually
be translated into algebraic information about the group G.
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Remark 1.3.18 (Encoding the group action). If A→ G generates G and Γ is
the Cayley graph for G with respect to A as constucted above, then a few simple
decorations can be added to Γ that encode the group action. For example, it is
sufficient to indicate which vertex v corresponds to the identity in G and to label
each oriented edge e(g,a) by its second coordinate a. For each a ∈ A ∪ A−1, the
action of [a] on Γ is then the unique label-preserving motion that sends v to the
other end of the unique oriented edge starting at v and labeled by a. The fact that
A generates G means that the motions corresponding to the other group elements
are compositions of these basic motions.

Before leaving the subject of group actions on graphs, we briefly indicate how
close an arbitrary free action on a graph is to being a true Cayley graph.

Definition 1.3.19 (Partial and non-standard Cayley graphs). If Γ is a graph
with a free G-action, then Γ can be viewed as a Cayley graph that is partial and
non-standard. The word ‘partial’ indicates that Γ need not be connected and ‘non-
standard’ indicates that the G-action need not be vertex transitive. When a dis-
tinction needs to be drawn, ordinary Cayley graphs are said to be full and standard.

Figure 5. A portion of a non-standard Cayley graph for the fun-
damental group of the complement of the trefoil knot.

Many of the earlier results on Cayley graphs immediately extend to the partial
and non-standard ones, and the places where they do not extend only serve to
highlight how the additional assumptions were used. For example, every full non-
standard Cayley graph corresponds to the 1-skeleton of the universal cover of a
connected cell complex with more than one vertex. Thus, the 1-skeleton of the
complex D̃ that we examined in the prologue is a non-standard Cayley graph for
the fundamental group of the complement of the trefoil knot. We can convert a
full non-standard Cayley graph into standard one by either contracting a spanning
tree in the complex X before we construct its universal cover and restrict to the 1-
skeleton, or, more directly, we can simply contract all preimages of this tree inside
X̃(1). This extra flexibility is particularly useful when the non-standard Cayley
graph is easier to visualize, as in the case of the trefoil knot. Next, partial standard
Cayley graphs arise when we consider arbitrary maps FA → G that need not be
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onto, and they can be converted to full Cayley graphs by enlarging the set A to a
generating set. Finally, in complete generality, let X be a connected complex with
π1(X,x) = G and covering projection p : X̃ → X. The action of G on the preimage
under p of a portion of the 1-skeleton of X is a partial non-standard Cayley graph,
and, up to disjoint union, every partial non-standard Cayley graph (i.e. every free
G-action on a graph) arises in this way.

1.3.3. Presentations. Group presentations, like generating sets and Cayley
graphs, have a topological definition, a corresponding algebraic formalism, and a
group action interpretation.

Definition 1.3.20 (Topological presentations). Let G be a group and let (X,x)
be a based connected combinatorial 2-complex with π1(X,x) = G. When X has
only one vertex, it is called a (topological) presentation of G, and when X has only
a finite number of cells (i.e. when X is compact), we say X is a finite topological
presentation of G and G is finitely presented by X.

Note that Theorem 1.1.4 and Proposition 1.2.6 prove that the class of groups
with finite topological presentations is the same as the class of compact manifold
groups. Echoing the distinctions for Cayley graphs, we add the adjective non-
standard when X has more than vertex. The Dehn complex of a knot diagram,
for example, is a non-standard presentation for the fundamental group of the knot
complement since it has, by construction, 2 distinct vertices.

Example 1.3.21 (Finite groups). If G is a finite group then G has a finite
presentation. In particular, the complex described in Exercise 1 is a finite non-
standard three vertex 2-complex with fundamental group G.

Before turning to the algebraic version, we note that the correspondence be-
tween the definitions is much closer when relators can be listed more than once.
The notion of a multiset in introduced to make this precise.

Definition 1.3.22 (Multisets). Let S be a set. A multiset selected from S is
a function m : S → N, where the value m(s) indicates the number of times that
s ∈ S is selected. Intuitively, a multiset is a cross between a list and set: repetition
is allowed but the ordering is irrelevant. Subsets of S corresponds to multisets
with range in {0, 1} ⊂ N. In the other direction, every multiset m : S → N has
an associated subset formed by collecting together all elements of S selected at
least once. This is equivalent to removing any redundancies. For more on the
combinatorics of multisets, see [28].

Definition 1.3.23 (Algebraic presentations). Let A be a set and let R be a
multiset selected from (A ∪A−1)∗. Since each r in R represents an element of FA,
R implicitly describes a subset of FA. Let N be the smallest normal subgroup of FA
containing this subset and let G be the quotient group FA/N . The pair P = 〈A|R〉
is called an algebraic presentation of G, the elements of R are called relators, and
R itself is a set of defining relators. The quotient map FA � G shows that A
generates G. When both A and R are finite, we say that P is a finite algebraic
presentation of G.

Converting from an algebraic to a topological presentation is straightforward.

Definition 1.3.24 (Relators to 2-cells). If P = 〈A|R〉 is an algebraic presen-
tation of a group G, then we construct a 2-complex X starting with the oriented
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rose RA and attaching one 2-cell to RA for each r ∈ R, attaching it along the
closed combinatorial path in RA to which the word r corresponds. As in the proof
of Lemma 1.3.5, by van Kampen’s theorem (Theorem A.2.8) the kernel of the
map g : FA → π1(X, ∗) is the normal subgroup N generated by the subset of FA
that R implicitly represents. Because 〈A | R〉 is an algebraic presentation of G,
π1(X, ∗) = FA/N = G and X is a topological presentation of G.

Remark 1.3.25 (Redundant 2-cells). When the multiset R is not a subset
of (A ∪ A−1)∗, the corresponding 2-complex has redundant 2-cells (distinct 2-cells
attached along the same closed path). Redundant 2-cells can be removed without
changing the fundamental group, but they are not easy to avoid completely since
covers of complexes with no redundant 2-cells can have redundant 2-cells. The
classic example is the complex for 〈a|an〉. Its single 2-cell is not redundant, but its
universal cover has n distinct 2-cells attached to the same closed path.

Definition 1.3.26 (Useful conventions). When giving explicit examples it is
convenient to use uppercase roman letters, such as ‘A’, ‘B’, ‘C’, to denote the
inverse of their lowercase equivalents, ‘a’, ‘b’, ‘c’. We write, for example, abcABC
instead of abca−1b−1c−1 because the first form is significantly easier to parse and
absorb. The fact that we use ‘A’ to denote both the alphabet of symbols and the
inverse of a ∈ A should not cause any problem since the context makes clear which
is meant. A second convenient convention is to allow relators such as abAB to be
given implicitly via relations such as ab = ba. A relation is an equation of the form
r = s where r and s are words in (A ∪ A−1)∗, and the implicit relator is the word
rs−1. The extra flexibility can be used to highlight aspects that would otherwise be
opaque. In our example, the relation ab = ba makes clear that (the group elements
represented by) a and b commute. This is less clear from the relator abAB.

The conversion in the other direction is similarly straightforward.

Definition 1.3.27 (2-cells to relators). If X is a standard topological presen-
tation of G, we can index and oriented its edges to identify X(1) with an oriented
rose RA. Next, for each 2-cell, its attaching map is a combinatorial map from a
subdivided circle to RA. If we pick an orientation of the circle and a preimage
of the vertex ∗ as our basepoint, then the attaching map can described using the
closed combinatorial path that starts at the lifted basepoint and travels around the
circle in the chosen direction. This combinatorial path is associated with a word
r ∈ (A ∪ A−1)∗. If R collects the multiset of such words, one for each 2-cell of X,
then P = 〈A|R〉 is an algebraic presentation of G.

It should be clear that these conversions are compatible in the following sense.

Proposition 1.3.28 (Presentations). Every standard topological presentation
of a group G can be can be converted into a algebraic presentation of G, from which
the topological presentation can be recovered. Under these conversions, the num-
ber of 1-cells and 2-cells in the topological presentation correspond to |A| and |R|,
respectively, in the algebraic presentation. In particular, G has a finite topological
presentation iff it has a finite algebraic presentation.

Algebraic presentations produce standard topological presentations with only
one vertex. At the end of the chapter we introduce an alternative procedure that
efficiently constructs a large and important class of non-standard complexes. We
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conclude our discussion of presentations with the observation that finitely presented
groups can be characterized via their actions on cell complexes.

Theorem 1.3.29 (Presentations as actions). For each group G, there is a nat-
ural bijection between connected cell complexes with fundamental group G and 1-
connected cell complexes with free G-actions. Moreover, the complexes with one
vertex correspond to the G-actions that are vertex-transitive and the complexes that
are compact correspond to the actions that are cocompact. As a consequence, a
group G has a finite presentation iff it acts freely and cocompactly on a 1-connected
cell complex.

Proof. If G is the fundamental group of a cell complex X then G acts freely on
its 1-connected universal cover Y = X̃. Conversely, if G acts freely on a 1-connected
cell complex Y then by Proposition A.3.9 the quotient of Y by its G-action is a
cell complex X with G as its fundamental group and Y as its universal cover. The
remaining assertions are immediate. �

Remark 1.3.30 (Proper actions). There is a more expansive characterization of
finitely presented groups as those groups capable of acting properly and cocompactly
on a 1-connected cell complex. The easy direction is clear from Theorem 1.3.29 and
in Chapter 7 we establish the more difficult implication.

The reformulation of a presentation as an action naturally leads to the notion
of a Cayley complex. The name highlights the fact that Cayley complexes are to
presentations as Cayley graphs are to generating sets.

Definition 1.3.31 (Cayley complexes). A Cayley complex for a group G is a
1-connected 2-complex Y with a free and vertex-transitive G-action. The 1-skeleton
of a Cayley complex is a Cayley graph and they are created in similar ways. In
particular, when X is a topological presentation of G, the universal cover of X with
its natural free G-action is a Cayley complex for G.

Indexed to here

1.4. Cut points and free products

In this section we focus on a third topological feature of a space that impacts
the structure of its fundamental group: the existence of a cut point. A cell complex
with a cut point can be viewed as a collection of simpler pieces that have been
wedged together and the goal of this section is to show that the fundamental group
of such a wedge product is built out of the fundamental groups of its pieces in an
understandable way.

1.4.1. Wedge products. The wedge product of a collection of based spaces
is usually defined as the quotient of their disjoint union in which their base points
are identified (§A.2), but the key results are easier to prove and easier to visualize
when this standard construction is replaced with a non-standard variation.

Definition 1.4.1 (Non-Standard wedge products). The non-standard wedge
product of based connected spaces (Xα, xα) is a based space (Y, y) created by adding
a new vertex y to the disjoint union of the Xα and adding a new edge eα for each
α that connects y to xα. The non-standard wedge product of three copies of RP 2

is schematically shown in Figure 6. The subcomplex formed by the xα, eα and the
vertex y is a subtree of Y that we call its backbone.
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Figure 6. A non-standard wedge product of three projective planes

Collapsing the backbone of a non-standard wedge product to a point produces
the standard wedge product. So long as each Xα is a cell complex, the two wedge
products are homotopy equivalent (Theorem A.4.5), but this need not be the case
in general (Exercise 24). Assume from here on that each Xα is a cell complex and
let G denote the group π1(X,x) ∼= π1(Y, y). To better understand the group G, we
build the universal cover of Y . A portion of the universal cover of the non-standard
wedge product of three projective planes is shown in Figure 7. In this example it
should be clear that when each 2-sphere is collapsed to a point, the result is a tree.
In fact, the universal cover of a non-standard wedge product always collapses to a
tree in exactly this fashion. The first step is to inductively construct the universal
cover of Y .

Let Y1 be a copy of the backbone of Y and let p1 : Y1 ↪→ Y be the natural
inclusion map. The map p1 is an immersion and it is a local homeomorphism
except at the vertices xα in Y1. To remedy this we attach a copy of the universal
cover X̃α (which exists since Xα is a cell complex) to each deficient vertex xα in
Y1 and we extend p1 using the covering maps X̃α → Xα. Call the resulting space
Y2 and the map p2 : Y2 → Y . The new map remains an immersion and it is a
local homeomorphism except at preimages of xα in the newly attached copies of
the X̃α not already attached to a copy of the backbone. To remedy this we attach
copies of the backbone to each of these vertices and extend the projection to Y in
the obvious way. The result is a local immersion p3 : Y3 → Y that is now a local
homeomorphism except at the preimages of xα in the recently attached copies of
the backbone that are not already attached to a copy of the appropriate X̃α. At
each such vertex we attach a copy of the appropriate X̃α and extend the projection
to Y as before. Continuing in this way forever (alternately attaching copies of the
backbone and copies of the universal covers of the cell complexes used to produce
the wedge product) eventually constructs a space Y ′ and a map p : Y ′ → Y that is
a local homeomorphism everywhere and thus a cover (Proposition A.3.6). Figure 7
shows the intermediate space Y5 in this example; backbones have been attached to
the spheres that were attached to the backbones attached to the spheres attached to
the initial backbone. If final result Y ′ is simply-connected then it is the universal
cover of Y (Proposition A.3.11). The next lemma shows that the intermediate
stages, at least, are simply-connected.
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Figure 7. A portion of the universal cover of the non-standard
wedge product of three projective planes.

Proposition 1.4.2 (Attaching simply-connected spaces). If V is a simply-
connected cell complex, {(Uα, uα)}α∈A is a collection of based simply-connected cell
complexes, and {vα}α∈A is a collection of distinct points in V , then the space U ,
formed by attaching each Uα to V by identifying uα with vα, is simply-connected.

Proof. Pick a vertex u ∈ V ⊂ U and consider an element g ∈ π1(U, u). It
can be represented by an immersed loop f : I → U (1) based at u. See Figure 8.
Since Uα ∩ V = uα and the various subcomplexes Uα are pairwise disjoint, the
maximal subpaths of f in Uα start and end at uα. But each π1(Uα, uα) is trivial,
so these subpaths are null-homotopic and can be excised without changing the
fact that the loop represents g. After excising all of these subpaths, the result is
a loop that remains in V . Because V is simply-connected, g is trivial, and U is
simply-connected. �

By Proposition 1.4.2 the intermediate stages in the construction are simply-
connected, and thus by Proposition A.4.9 the end result is simply-connected. This
means that Y ′ is indeed the universal cover of Y and, as a consequence, we now
know the local structure of Ỹ .
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Figure 8. Attaching simply-connected spaces.

Lemma 1.4.3 (Structure of Ỹ ). Let (Y, y) be the non-standard wedge product of
a collection of based connected cell complexes (Xα, xα) and let S be its backbone. If
p : Ỹ → Y is its universal cover, then each component of p−1(Xα) is a subcomplex
homeomorphic to X̃α and each component of p−1(S) is homeomorphic to S.

The universal cover of the standard wedge product X is, of course, closely
related to Ỹ . In fact, X̃ can be obtained from Ỹ by collapsing each component
of the preimage of the backbone to a point, just as X can be obtained from Y
by collapsing the backbone to a point. If we let X ′ denote the space obtained by
quotienting Ỹ in this way, it is easy to see that the composition Ỹ → Y → X factors
through X ′ to produce a map X ′ → X that is a local homeomorphism and thus a
cover. Finally, by Proposition 1.2.21 the trivial fundamental group of Ỹ maps onto
the fundamental group of X ′ making X ′ simply-connected and the universal cover
of X. This establishes the local structure of X̃.

Corollary 1.4.4 (Structure of X̃). Let (X,x) be the wedge product of based
connected cell complexes (Xα, xα), let (Y, y) be the non-standard wedge product of
this collection with backbone S, and let p : Ỹ → Y be its universal cover. If each
component of p−1(S) is collapsed to a point then the resulting complex is X̃. As a
consequence, the inclusion map Xα ↪→ X lifts to an inclusion X̃α ↪→ X̃.

The fact that we can construct the universal cover of X from the universal
covers of the spaces Xα means that the fundamental group of a wedge product can
be understood once we understand the fundamental groups of the individual spaces
(Remark 1.3.17). In particular, the fact that X̃α embeds in X̃ immediately proves
the following basic result.

Theorem 1.4.5 (Fundamental groups inject). If (X,x) is a wedge product of
based connected cell complexes (Xα, xα), then the homomorphism iα : π1(Xα, xα)→
π1(X,x) induced by the inclusion map is injective for each α.

Proof. Each non-trivial g ∈ π1(Xα, xα) is represented by a loop in X that
lifts to an open path in a copy of X̃α inside X̃ proving that iα(g) is nontrivial. �

In addition to collapsing onto X̃, the space Ỹ also collapses onto a tree.

Corollary 1.4.6 (Tree-like). Let (Y, y) be the non-standard wedge product of
a collection of based connected cell complexes (Xα, xα) and let p : Ỹ → Y be its
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universal cover. If for each α each component of p−1(Xα) is collapsed to a point,
then the resulting graph is a tree.

Proof. The result is a graph since the high dimensional cells have disappeared
and it is a simply-connected since its fundamental group is a quotient of the trivial
group π1(Ỹ ) (Proposition 1.2.21). By Theorem 1.2.1 the quotient is a tree. �

Let T denote the tree obtained from Ỹ in this way. When similar collapsing are
carried out in Y itself, the result looks like its backbone S. The relations among
the spaces and maps constructed so far are best illuminated by a diagram.

X̃ ← Ỹ → T
↓ ↓ ↓
X ← Y → S

Each of these arrows represents a quotient map that has already been described with
the exception of the vertical arrow from T to S. The group G ∼= π1(X,x) ∼= π1(Y, y)
acts freely on Ỹ by the fundamental theorem of covering spaces and it acts on X̃

and T because the horizontal quotient maps commute with the G-action on Ỹ .
In addition, each space in the bottom row can be viewed as the quotient of the
space directly above it by this G-action. Because the action of G on X̃ is free, the
map X̃ → X is a cover; the map from T → S is not since the G-action on T has
non-trivial stabilizers. We return to this picture in Chapter 7 since T is a simple
example of a Bass-Serre tree and S, with the addition of the stabilizer information,
is a simple example of a graph of groups.

1.4.2. Normal forms. Now that the tree-like nature of Ỹ has been firmly es-
tablished, we use this structure to create a canonical factorization of each nontrivial
element in G = π1(Y, y). To facilitate the proof, we introduce additional notation.

Definition 1.4.7 (Backbone vertices and their labels). Every vertex in the
nonstandard wedge product Y belongs to exactly one of the cell complexes Xα

except for the vertex y at the center of the backbone. We call y the backbone vertex,
and the others we call cell complex vertices. Using the covering map p : Ỹ → Y

and the quotient map q : Ỹ → T we can extend this partitioning of vertices to
Ỹ and then to T : preimages and images of backbone / cell complex vertices are
backbone / cell complex vertices. These distinctions are particularly striking in T
where every edge connects a backbone vertex to a cell complex vertex. Finally,
we pick a backbone vertex ỹ ∈ Ỹ as our base point, and, as in Definition 1.3.14,
we then use the G-action to label each backbone vertex of Ỹ as yg where g is the
unique element in G with yg = g · ỹ. The image of yg under the quotient map q is
called tg.

Lemma 1.4.8 (Paths to factors). Each immersed path of length 2 connecting
backbone vertices in T corresponds in a canonical way to a non-trivial element
g ∈ iα(π1(Xα, xα)) for some particular α.

Proof. Let tg and tg′ be the backbone vertices in T at either end of the path
and let vα be the cell complex vertex it passes through. As in Proposition 1.2.21
we lift this path to Ỹ by inserting a path in q−1(vα) connecting the appropriate
endpoints. The lifted path projects to a loop in Y and then to a loop in Xα ⊂ X
using the quotient maps already described and thus corresponds to an element
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g ∈ iα(π1(Xα, xα)). See Figure 9. Although the lifting process involves a choice,
any two such insertion paths are homotopic relative to their endpoints precisely
because q−1(vα) is a copy of X̃α (Lemma 1.4.3) and thus simply-connected. �
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Figure 9. The correspondence betweeen paths in T and loops in X.

Corollary 1.4.9 (Existence). If (X,x) is a wedge product of based complexes
(Xα, xα) and iα is the group homomorphism induced by the inclusion Xα ↪→ X,
then for each non-trivial element g ∈ π1(X,x) there is a canonical factorization of
g as g1g2 · · · gk where each gi is a non-trivial element of iα(π1(Xα, xα)) for some
α and consecutive gi’s belong to distinct subgroups of this form.

Proof. Start with the unique immersed path in T from t1 to tg. Because it
is immersed as it passes through cell complex vertices, Lemma 1.4.8 can be used
to convert it step by step into a factorization; because it is immersed as it passes
through backbone vertices, the α’s involved in consecutive factors are distinct;
and because the lifted path connects y1 to yg, the factorization produced is a
factorization of g. �

Uniqueness follows from the reversibility of this process.

Lemma 1.4.10 (Factors to paths). Every non-trivial element g ∈ iα(π1(Xα, xα))
corresponds in a canonical way to an immersed path of length 2 in T from the base
point t1 to the backbone vertex tg.

Proof. For the appropriate α, pick an immersed path f : I → X
(1)
α ⊂ X

based at x representing g. Lift f to a loop based at y in Y by adding the edge
eα both before and after the loop f in Xα ⊂ Y . There is unique lift of this new
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loop to Ỹ starting at ỹ = y1 (Theorem A.3.7) and that lift projects to a path in
T starting at t1. Since the loop in Ỹ only crosses two edges in the backbone, the
projected path to T has length 2. Because g is non-trivial, the lift to Ỹ is not
closed and the two edges in the projection to T are distinct. Finally, the end result
is independent of the path chosen to represent g since the possible lifts to Ỹ have
the same endpoints and project to the same path in T . �

We now complete the proof of the main result.

Theorem 1.4.11 (Wedge product normal form). If (X,x) is a wedge product
of based connected cell complexes (Xα, xα), then for every non-trivial element g ∈
π1(X,x) there is one and only one way to write it in the form g = g1g2 · · · gk where
each gi is a non-trivial element in iα(π1(Xα, xα)) for some α and consecutive gi’s
belong to distinct subgroups of this type.

Proof. Corollary 1.4.9 proves the existence of such factorizations, so we only
need to show uniqueness. Let g = g1g2 · · · gk be a factorization where each gi is
a non-trivial element in iα(π1(Xα, xα)) for some α and consecutive gi’s belong to
distinct subgroups of this type. Because each gi is non-trivial, Lemma 1.4.10 can
be used to produce an immersed length 2 path in T starting at any particular
backbone vertex. If we rechoose the base point in Ỹ and T at each step to be
the endpoint of the previous lift, then these lifted paths can be concatenated and
the result is immersed as it passes through each cell complex vertex. The fact
that consecutive gi’s belong to distinct subgroups ensures that the concatenated
path is also immersed as it passes through each backbone vertex. The result is an
immersed path from in T from t1 to tg. Since the conversion process is deterministic
in both directions, there must be a one-to-one correspondence between immersed
paths from t1 to tg and factorizations of g of the desired type. But there is only
one such path in a tree, so there is only one such factorization. �

Since the rose RA can be viewed as a wedge product of A circles, Theorem 1.4.11
immediately implies the following normal form for elements of free groups.

Corollary 1.4.12 (Free group normal form). If RA is an oriented rose with
FA = π1(RA, ∗) and A ⊂ FA, then every non-trivial element of FA can be uniquely
written in the form an1

1 an2
2 · · · ank

k where each ai is in A, each ni is a nonzero
integer, and adjacent ai’s are distinct.

This corollary should not be surprising since the free group normal form given
above is just a way of writing reduced words so that the transitions between let-
ters are highlighted. The subwords ani

i highlighted in the corollary are known as
syllables. Wedge products now can be used to define a product operation on groups.

Definition 1.4.13 (Free products). Given an arbitrary collection {Gα} of
groups, we can select a collection of based, connected cell complexes {(Xα, xα)}
with π1(Xα, xα) ∼= Gα for each α, and then define the free product of the collection,
denoted G = ∗αGα, as π1(X,x) where (X,x) = ∨α(Xα, xα). By Theorem 1.4.11
the group that results is independent of the cell complexes chosen to represent each
Gα, so the group G is well defined. In this notation the free group FA is a free prod-
uct of the form ∗α∈AZ, and the fundamental group of the space shown in Figure 6
is the group (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z).

Reversing this construction leads to the notion of a free decomposition.
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Definition 1.4.14 (Free decompositions). A group G is freely decomposable if
it can be written as a free product of non-trivial groups and any particular way
of writing G as ∗αGα is called a free decomposition of G. The groups Gα are
called free factors of G. Topologically, a group is freely decomposable iff it can be
represented as the fundamental group of a wedge product of two connected but not
simply-connected spaces. A group that cannot be freely decomposed is said to be
freely indecomposable.

1.4.3. Vertex links. We have seen that cell complexes with cut points are
wedge products and that their fundamental groups are free products of the funda-
mental groups of the pieces. A similar result holds when a cell complex has a local
cut point (Theorem 1.4.19).

Definition 1.4.15 (Local cut points). A point x in a topological space X is
called a cut point if X is connected but X \ {x} is disconnected, and x is called
a local cut point if there is a neighborhood U of x such that U is connected but
U \ {x} is disconnected.

When X is a combinatorial cell complex, it can be subdivided so that x is a
vertex, and the structure of X near x is encoded in a lower dimensional complex
called its link. Although the link of a vertex is slightly tricky to define, the idea is
easy to explain, at least in the presence of a reasonable metric.

Definition 1.4.16 (Vertex links; metric intuition). Let X be a combinatorial
cell complex with a metric compatible with its topology and let v be a vertex in
X. The link of v is the set of points in X at distance exactly ε from v (ε being
a small positive number) with the induced topology and cell structure. It should
be intuitively clear that so long as the metric on X remains reasonably nice and ε
sufficiently small, the link, denoted Link(v,X), is a cell complex whose structure is
independent of ε and independent of the metric on X.

The idea behind Definition 1.4.16 can be made rigorous when X is a simplicial
complex. An extended technical definition that applies to arbitary combinatorial
cell complexes is also sketched.

Definition 1.4.17 (Vertex links; technical version). If σ is a single simplex
with the regular Euclidean metric and v is one of its vertices, then Link(v, σ) is
a simplex of one lower dimension cannonically homeomorphic (via the projection
using straight lines through v) to the simplex spanned by the remaining vertices
of σ. As a consequence, the link of a vertex v in a simplicial complex X can
be idenitified with (or defined as) the set of simplices not containing v that are
nonetheless contained in simplices that do contain v. The set of simplices containing
v is called the star of v and it is homeomorphic to the ball of radius ε around v.

Vertex links in arbitrary combinatorial cell complexes can be defined using sub-
division. If X is a combinatorial cell complex, then its second barycentric subdivi-
sion is a simplicial complex, and the link of v in the second barycentric subdivision
of X is the second barycentric subdivision of the combinatorial cell complex one
would want to call the link of v. The details of this procedure are left as an exercise.

Figure 10 illustrates the correspondence between the two definitions.

Example 1.4.18 (Vertex links in 2-complexes). In combinatorial 2-complexes,
vertex links have a very simple description: Link(v,X) is a graph with a vertex
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Figure 10. The top row shows a simple cell complex and its sec-
ond barycentric subdivision; the second row shades the ball of ra-
dius ε around its central vertex and its star in the second barycen-
tric subdivision, respectively.

for each end of a 1-cell attached to v and an edge for each occurrence of v in the
boundary cycle of a 2-cell of X.

Since the link of v can be thought of as the sphere of radius ε around v and its
structure is independent of ε as ε shrinks to 0, the ball of radius ε around v can be
identified with the topological cone over its link. As a result, v is a local cut point iff
the link of v is disconnected. We call a combinatorial cell complex X link-connected
when all of its vertex links are connected cell complexes, and we note that this is
true iff X has no local cut points. Using this characterization Theorem 1.4.19
converts local cut points into wedge products. A concrete illustration of the proof
is given in Example 1.4.20 and shown in Figure 11.

Theorem 1.4.19 (Splitting 2-complexes). Every group is the fundamental group
of a wedge product of circles and link-connected 2-complexes.

Proof. For every group G there is a taut, connected, one vertex 2-complex
X with π1(X, ∗) = G (Proposition 1.2.6 and Corollary 1.1.3). Let L = Link(∗, X).
If L is connected then we are done. Otherwise, let A and B be sets that index
the connected components of L and X \ {∗}, respectively, and note that since L
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can be viewed as the boundary of an ε-neighborhood of ∗ in X, there is a well-
defined map f : A� B. We construct a new 2-complex Y by pulling the connected
components of L in different directions. More specifically, start with a tree T that
has 0-cells indexed by A t {∗} and an edge eα from v∗ to vα for each α ∈ A. The
rest of Y is built by adding a 1-cell or 2-cell to T for each 1-cell and 2-cell in X
in such a way that the complex obtained by contracting T to a point is equal to
X. Concretely, for each 1-cell of X we add a 1-cell to T with each end attached to
the vertex vα in T where α ∈ A indexes the component of L through which this
end approaches ∗ in X. This completes the 1-skeleton of Y . For each 2-cell of X
we attach a 2-cell to Y (1) along the lift of its attaching map in X as constructed
by Proposition 1.2.21. Because paths of length 2 in the boundary cycles of 2-cells
create edges in L, the ends of these adjacent edges belong to the same component α,
their lifts are attached to the same vertex vα, and thus these lifts are concatenated
without inserting additional edges. The quotient map from Y to X is a homotopy
equivalence by Theorem A.4.5.

The remaining steps are straightforward. Since Y \T is homeomorphic toX\{∗}
under the quotient map, its connected components are also indexed by B. For each
β ∈ B select an edge eα with f(α) = β and then reattach all unselected edges
in T so that both of their endpoints are at v∗. See the lower righthand corner of
Figure 11. The result is homotopy equivalent to Y by Theorem A.4.6 since there is
a path from the other endpoint to v∗ that travels through a component of Y \T and
then back to v∗ along a selected edge. The last step is to contract the tree formed
by the selected edges to a point and to note that the result is a wedge product of
circles and complexes indexed by B. Every vertex link in a complex indexed by B is
connected since, by construction, it can be identified with a connected component of
the original link L. Finally, if desired, simply-connected complexes can be removed
from the wedge product without changing its fundamental group. �

Example 1.4.20 (Splitting 2-complexes). Let X be the quotient of S2tS2 that
identifies two distinct points in the first 2-sphere and three distinct points in the
second 2-sphere to a single point. The quotient X can be given a cell structure
so that it is a taut connected one vertex 2-complex, but the exact cell structure
is irrelevant. The link of the unique vertex ∗ in X has 5 connected components
and X \ {∗} has 2. In other words |A| = 5 and |B| = 2. Figure 11 illustrates the
sequence of steps used to show that X is homotopy equivalent to S2∨S2∨S1∨S1∨S1

and that π1(X, ∗) = π1(S1 ∨ S1 ∨ S1, ∗) = F3.

One corollary of Theorem 1.4.19 is that every freely indecomposable group is
either infinite cyclic or the fundamental group of a link-connected 2-complex. The
converse, however, is false (Exercise 27).

1.5. Constructions and examples

This final section contains a way to easily describe many 2-complexes with mul-
tiple vertices, and discusses examples of groups that arise from simple topological
constructions.

1.5.1. Presentations revisited. Some cell complexes are easy to describe:
a rose corresponds to a set A, and a standard topological presentation can be



34 1. COMBINATORIAL GROUP THEORY

Figure 11. An illustration of the homotopy equivalences used to
convert an arbitrary 2-complex into a wedge product of circles and
link-connected 2-complexes.

constructed from an algebraic presentation 〈A|R〉. When we try to describe 2-
complexes with multiple vertices using similar techniques, there are two issues that
arise. First, there is no standard way to quickly describe a complicated 1-complex
with edges oriented and labeled by a set A, and second, even once such a 1-skeleton
is given, not all words in (A∪A−1)∗ can be used to describe closed paths, making it
easy to list collections of words that are incompatible with the given graph. In the
absence of local cut points, however, there is a simple procedure that avoids both
of these difficulties. It constructs a multi-vertex link-connected combinatorial 2-
complex from any multiset of words, and every such complex can be constructed in
this way. Such a process is sufficient for most purposes since by Theorem 1.4.19 the
only 2-complexes excluded are those that are homotopy equivalent to a non-trivial
wedge product in an obvious way. The construction begins with polygons.

Definition 1.5.1 (Polygons). A polygon is a 2-disc whose boundary cycle has
been given the structure of a graph. When its boundary cycle has combinatorial
length n it is called an n-gon, and traditional names, such as monogon, bigon,
triangle, square, pentagon and hexagon, are used when n is small.

Polygons arise naturally in the construction of combinatorial 2-complexes.

Remark 1.5.2 (Polygons and 2-complexes). Let X be an arbitrary 2-complex
and recall that X is defined as X(1) tF E where X(1) is a 1-complex, E = t D2

is a disjoint union of 2-discs, one for each 2-cell of X, and E is attached to X(1)

along the induced map F : ∂E → X(1) that collects together all of the individual
attaching maps (Definition A.1.3). When X is combinatorial the boundaries of the
2-discs in E can be subdivided into vertices and edges so that F : ∂E → X is
a cellular map. Under this subdivision, E is a disjoint union of polygons and a
combinatorial 2-complex in its own right. Moreover, the induced map E → X is
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cellular and a quotient map. Note also that there is a natural bijection between
vertices in E and the edges in the vertex links of X.

There is an intermediate complex constructed from the edges identifications.

Definition 1.5.3 (Edge identifications). Let X be a combinatorial 2-complex
and let E be the disjoint union of polygons used to construct X. There is a third
cell complex Y , between E and X, defined as follows. Identify pairs of 1-cells in E
iff they are sent to the same 1-cell in X, and identify them in the same fashion. For
Y to be a cell complex certain vertex identifications must also be made, but only
make those that are forced by the edge identifications. The quotient map E � X
factors into quotient maps E � Y � X, and we say that Y is constructed from X
by edge identifications. Notice that since E → Y is a factor of E → X, the only
vertices in E that can be identified in Y are those with the same image in X.

The key observation is the following.

Lemma 1.5.4 (Vertex identifications). If X, E, F and Y are defined as above
and v and v′ are vertices in E with F (v) = F (v′) = u in X, then v and v′ are
identified in Y iff the edges of Link(u,X) corresponding to v and v′ belong to the
same connected component.

Proof. Both directions are straightforward. If the corresponding edges belong
to the same connected component then there is a finite length path connecting them
in the link. This path encodes a finite sequence of individual edge identifications
that force v and v′ to be identified in Y . Conversely, identifying vertices iff the
corresponding edges belong to the same connected component of the link produces
a cell complex in which all the edge identifications can be performed with no further
vertex identifications. Thus, no additional vertex identifications are forced. �

The following properties follow immediately from Lemma 1.5.4.

Proposition 1.5.5 (Edge identifications). If X is a combinatorial 2-complex
and Y is constructed from X by edge identifications, then Y is always link-connected
and the quotient map Y → X is a homeomorphism iff X is link-connected.

We are now ready for the general construction.

Definition 1.5.6 (Combinatorial descriptions). Let A be a set and let R be
a multiset selected from (A ∪ A−1)∗. First, let E be a disjoint union of polygons
indexed by the words in R so that the polygon corresponding to a word of length n
is an n-gon. Next, choose a vertex and a direction for each polygon in E and then
use the corresponding word to orient and label the edges of this polygon so that
starting at the chosen vertex and proceeding in the chosen direction, the labels and
orientations encountered represent the associated word. Finally, define Y as the
quotient of E that identifies edges according to label and orientation, and identifies
vertices only when this is needed to make the quotient a cell complex. We call
Y the complex constructed from [R] and [R] is a combinatorial description of Y .
Square brackets are used in place of angled ones to highlight the distinction between
combinatorial descriptions and algebraic presentations, and it is “combinatorial”
rather than “algebraic” since the letters used do not correspond to the generators
of a group.
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Theorem 1.5.7 (Words and 2-complexes). Every combinatorial description
[R] constructs a link-connected combinatorial 2-complex X and every such X can
be converted into a multiset of words from which X can be recovered. Under these
conversions, the number of 2-cells in X corresponds to |R|. In particular, X is
compact iff R is a finite list.

Proof. The main assertions have similar proofs. Either let X be the complex
constructed from a given combinatorial description [R], or let [R] be the combina-
torial description derived from a given link-connected combinatorial 2-complex X
as follows. Let E be the disjoint union of polygons used to construct X. Orient
and index the 1-cells of X by a set A, and then induce an orientation and labeling
of the 1-cells in E by pulling these features back through the quotient map E � X.
Next, for each polygon in E, select a vertex and a direction and then reduce the
oriented labeling of its boundary cycle to a word in (A ∪ A−1)∗. Let R denote
the multiset of words produced in this way. Under either scenario, we claim that
the complex described by [R] is identical to the complex constructed from X by
edge identifications since they both make the same identifications. Moreover, this
common complex is link-connected and equal to X by Proposition 1.5.5. �

The useful conventions for algebraic presentations listed in Definition 1.3.26 also
apply to combinatorial descriptions. The main distinction between combinatorial
descriptions and algebraic presentations is highlighted by the following example.

Example 1.5.8 (Combinatorial descriptions vs. algebraic presentations). The
complex constructed by [abcABC] is a non-standard torus with two vertices and
its fundamental group is Z2. The algebraic presentation 〈a, b, c | abcABC〉, on the
other hand, constructs the quotient of this torus with its vertices identified. Using
Theorem 1.4.19, the latter complex is homotopy equivalent to a wedge product of
a torus and a circle and its fundamental group is Z2 ∗ Z. See Exercise 33 for a
generalization.

1.5.2. Simple examples. The only groups that are fundamental groups of
1-complexes are, by definition, the free groups, and their algebraic structure is
reasonably well understood. On the other hand, every group is the fundamental
group of a 2-complex, and, in a very precise sense, many of them are difficult
or impossible to understand. See Chapter 3. As a first step into the world of 2-
complexes, we consider 2-complexes that have combinatorial descriptions consisting
of a single word and their corresponding one-relator fundamental groups. We begin
with surfaces.

Figure 12. A surface of genus 2.

say more about surfaces
topologically, universal cov-
ers, classification, etc Example 1.5.9 (Compact surfaces). Classification, genus, orientation, distinc-

tions between universal covers
The ones with boundary deformation retract to graphs and thus their funda-

mental groups are free.
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Let R be a finite list of words. If every letter that occurs, occurs at most twice
(in either orientation), then R describes a compact surface, possibly disconnected,
with a nonempty boundary iff there is a letter that only occurs once (Exercise 35).
Simple examples such as [a], [aa], [aA], [aab], [abAB], [abaB], [abcABC], and [abcB]
produce a disc, a real projective plane, a 2-sphere, a Möbius strip, a torus, a Klein
bottle, another torus, and another Möbius strip, respectively.

Our next examples take a surface with boundary and wrap each boundary
cycle multiple times around a circle. These attaching maps are determined, up to
homotopy, by an integer called its degree.

Definition 1.5.10 (Maps between circles). If we view S1 as the set of unit
complex numbers, then for each n ∈ Z we can define a map fn : S1 → S1 that sends
z 7→ zn. Topologically this is just a map that wraps one circle |n| times around
the other with no backtracking where the sign of n indicates which way to proceed.
The number n is called its degree and if f : S1 → S1 is any map homotopic to fn,
then f is called a degree n map. It is easy to show that every map S1 → S1 is
homotopic to exactly one such fn (Exercise XXX), so every map between circles
has a unique degree.

The simplest surface with boundary is a disc.

Example 1.5.11 (Discs and finite cyclic groups). Let X be the space that re-
sults when a disc is attached to a circle by an attaching map of degree n (Figure 13).
A combinatorial description of X is [an] and an algebraic presentation is 〈a|an〉.
These are derived by giving the circle the simplest possible graph structure with
one vertex and one edge. The fundamental group of X is Z/nZ, the finite cyclic
group of order n, and its universal cover looks like n distinct n-gons with their
boundary cycles identified.
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Figure 13. A disc attached to a circle.

Example 1.5.12 (Annuli and torus knot groups). The one vertex version
[am = bn] is hard to understand (but not /that/ hard really) but the two-vertex
presentation [amt = tbn] is trivial since its universal cover is a tree cross the reals.

Example 1.5.13 (Möbius bands and one-relator Artin groups). If a Möbius
strip is attached to a circle along its boundary cycle then the fundamental group
of the resulting space is called a one-relator Artin group. The name, of course, is
derived from the theory of a larger class of groups. Topologically these groups are
very simple, and there should probably be a better name and notation for them.

(explain the presentation) 〈a, b | ababa... = babab...〉



38 1. COMBINATORIAL GROUP THEORY
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Figure 14. An annulus attached to two different circles.
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Figure 15. A Möbius band attached to a circle.

Example 1.5.14 (Annuli and Baumslag-Solitar groups). The Baumslag-Solitar
group, BS(m,n) is the group defined by the single relation [amb = ban]. Topolog-
ically they are the fundament groups of the spaces constructed by attaching both
ends of an annulus to the same circle, one attaching map with degree m and the
other with degree n. Despite their elementary definition, these groups have a num-
ber of surprising properties.

These groups were first systematically studied by Gilbert Baumslag and Donald
Solitar in 1969 (check this and add some history / refs, quote John’s book).

They have a number of quite interesting properties, and their analysis is not
nearly so elementary as one might think.

PSfrag replacements
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Figure 16. An annulus attached to a single circle.

They have proved an interesting object of study, even after 30 years. For
example, it was only recently that it was completely determined which pairs of
Baumslag-Solitar groups were quasi-isometric to one another (and the answer was
slightly surprising). [Amenable ones by Benson Farb and Lee Mosher in 1998 [11]
and the non-amenable ones by Kevin Whyte in 2001 [30]]

Remark 1.5.15 (3-manifolds groups). Every group is the fundamental group
of a combinatorial 2-complex, but not every group is the fundamental group of a
1-complex or of a manifold with dimension at most 3.Add remarks about 3-

manifolds being special
somewhere
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Notes

Historical notes and other comments will eventually go here.
Exercise 1 is a baby version of Milnor’s construction of Eilenberg-Maclane

spaces for groups.
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Exercises

Cell complexes

1. (Groups as fundamental groups) Let G be a group and let Y be the simpli-
cial complex with vertices indexed by G×{1, 2, 3} and a simplex spanning
every subset of vertices with pairwise distinct second coordinates. Let X
be the quotient of Y by the natural G-action defined by g · v(h,a) = v(gh,a).
a. Show that when |G| = 2, Y is the boundary of an octahedron, the
G-action is antipodal, and X is homeomorphic to RP 2.

b. Prove that for every group G, Y is connected and simply-connected,
the G-action is free and cellular, and thus X is a cell complex with
fundamental group G.

2. (Whitney embeddings) Find explicit embeddings of (subdivisions of) the
graphs K5 and K3,3 into R3 using the proof of Theorem 1.1.5. Similarly,
choose a cell structure for RP 2 and linearly embed a subdivision into R5.

Graphs and trees

3. (Metrics on graphs) Prove that the combinatorial distance function dX(u, v)
defines a metric on the 0-skeleton of any connected graph X. Next, show
that there is a natural extension of the combinatorial distance function that
defines a metric on all of X.

4. (Finite versus infinite rank) Prove that when A is finite and B is infinite,
RA and RB are not homotopy equivalent, and conclude by the theory of
Eilenberg-Maclane spaces that FA and FB are not isomorphic groups.

5. (Free group cardinality) Recall from cardinal arithmetic that if at least one
of κ and λ is an infinite cardinal, then κ·λ = max{κ, λ}. In particular, if ℵ0

denotes the cardinality of the natural numbers, n denotes a finite cardinal
(any cardinal n < ℵ0) and κ denotes an infinite cardinal (any cardinal
κ ≥ ℵ0), then n · κ = ℵ0 · κ = κ · κ = κ.
a. Prove that in a uniformly κ-branching tree there are exactly κ(κ− 1)n

vertices distance n+ 1 from a given vertex v, κ arbitrary.
b. Prove that |FA| = ℵ0 · |A| = max{ℵ0, |A|}, and conclude that |FA| = ℵ0

when A is finite and |FA| = |A| when A is infinite.
6. (Maps between roses) A map f : X → Y is called a π1-injection, a π1-

surjection, or a π1-isomorphism when the induced map f∗ between funda-
mental groups is injective, surjective or an isomorphism, respectively. By
Theorem 1.2.11, ∃ a π1-isomorphism f : RA → RB iff |A| = |B|.
a. Prove ∃ a π1-surjection f : RA → RB iff |A| ≥ |B|.
b. Prove ∃ a π1-injection f : RA → RB iff |FA| ≤ |FB |.

7. (Tree removal) Let T be a tree in a graph X and let q : X → X/T be the
corresponding quotient map. Use Theorem 1.2.1 to show that every non-
trivial immersed closed path based at x ∈ X is sent by q to a non-trivial
immersed closed path based at q(x).

Free groups

8. (Basic properties) Prove that for every cardinal κ > 1, Fκ is infinite, non-
abelian and has trivial center.

9. (Algebraic definition) Prove that Definition 1.2.22 produces a group.
10. (Symmetric bases) State and prove versions of Proposition 1.2.25 and Propo-

sition 1.2.26 that hold for categorical free groups with symmetric bases. In
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particular, prove that a group G is a categorical free group with symmetric
basis S iff there is a topological free group FA = π1(RA, ∗) with symmetric
basis SA and an isomorphism f : G→ FA with f(S) = SA.

11. (Comparing bases) Let (X,x) be a based connected graph, let T and T ′ be
two different spanning trees in X, and let A and B index the edges not in T
and T ′, respectively. Determine which elements of π1(X,x) are contains in
both symmetric bases SA and SB under the isomorphisms FA ∼= π1(X,x) ∼=
FB . In particular, prove that distinct spanning trees identify distinct bases
for π1(X,x).

12. (Infinitely many bases) Prove that Fκ ∼= Inn(Fκ) ⊂ Aut(Fκ) for any car-
dinal κ > 1. Conclude that every non-abelian free group has an infinite
number of bases. What happens for κ ≤ 1?

Free group automorphisms

13. (Finite rank automorphisms) Complete the proof of Corollary 1.2.29.
14. (Infinite rank automorphisms) Let α be any ordinal of cardinality κ. Prove

that the automorphisms of Fκ are in one-to-one correspondence with the
well-orderings of the bases of Fκ that have order type α.

15. (Abelianization) Let ZA denote the direct sum of A copies of the integers
(whose elements are functions A → Z with only finitely many non-zero
values). Show that the abelianization of FA is ZA and that the abelianiza-
tion map FA → ZA sends a basis of FA to a basis of ZA viewed as a free
Z-module. Conclude that there is a group homomorphism from Aut(FA)
to Aut(ZA) and note that the latter is the group GLκ(Z) when κ = |A| is
finite.

16. (Primitive elements) An element in a free group is primitive if it belongs
to some free basis. Find an element in F2 that is not primitive (and prove
that it is not primitive).

17. (Bases and graphs) Let X be a connected graph and let T be a spanning
tree in X. Show that the edges of X not in T form a basis in the following
sense. [Fundamental groups of connected graphs are free groups but they
do not have obvious bases when there is more than one vertex. For example,
if X is the 1-skeleton of a cube and x is one of its vertices, then π1(X,x) is
isomorphic to F5 (since its rank is |χ̃(X)| = |8− 12− 1| = 5), but there is
no obvious choice for a five element basis or ten element symmetric basis.
One possibility is to contract a spanning tree in X to create a rose with 5
leaves, but doing so involves several asymmetrical choices.]

18. (Rose homeomorphisms)
19. (Planar surface model)
20. (Handlebody model)
21. (Develop some elementary automorphism of free group stuff in the exercises.

Include exercises on the various model spaces for free groups)
22. (Develop some elementary Stallings foldng exercises as well)

Generating sets and Cayley graphs

23. (Detecting Generating Sets) Complete the proof of Proposition by showing
that the three collections are in natural bijection up the listed notions of
equivalence.

Wedge products and free products
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24. (Standard and non-standard wedge products) Let (X,x) be a cone on the
Hawiian earring where x is the so-called ‘bad point’ in the base of the
cone. Let (Y, y) be another copy of the same based space. Show that theAdd a figure so its clear that

x is not the cone point standard and non-standard wedge products of (X,x) and (Y, y) are not
homotopy equivalent by showing that the non-standard wedge product is
simply-connected but that the standard wedge product has a non-trivial
fundamental group.

25. (Non-abelian) Use the normal form theorem to prove that every non-trivial
free product is non-abelian, and conclude that abelian groups are freely
indecomposable.

26. (Local Cut Points) Let x be a point in a topological space X. Show that
if U is a connected neighborhood of x such that U \ {x} is disconnected
and V ⊂ U is another connected neighborhood of x, then V \ {x} is also
disconnected. Thus being a local cut point only depends on arbitrarily
small neighborhoods of x.

27. (Decomposable and link-connected) Give an example of a combinatorial
2-complex that is link-connected but whose fundamental group can be de-
composed as a free-product of non-trivial groups.

28. (Normal form algorithm) Describe an algorithm that inputs an aribitrary
product of elements in a free product, outputs its unique normal form, and
only basic knowledge about elements in the factor groups. In particular,
your algorithm may assume (and in fact it must assume) that the algebraic
structure of the factor groups is well understood. How is your algorithm
related to the process for simplifying paths in trees?

What effect do reparsing and 1-elimination have on the corresponding
path in T .

Presentations

29. (The quick brown fox) Prove that the complex [The, quick, brown, fox,
jumped, over, a, lazy, dog] is connected and that its fundamental group is
free. Find its rank.

30. (English) Let X be the 2-complex defined by the list of the 50,000 or so
words in the English language (picking some official list of words in order
to make this precise). Prove that X is connected, simply-connected, and
has only one vertex.

31. (Your name here) Let X be the 2-complex constructed from your full name.
Find χ(X). What do you know about π1(X)? Is it free? If so, what is
its rank? Warning: for some names these later questions might be hard to
answer.

32. (Retracts and finite presentations) Prove that the retract of a finitely pre-
sented group is finitely presented (and that a presentation can be found via
the retraction map). The idea for this exercise is from the Groves-Wilton
paper/presentation.

33. (Standard versus non-standard) Let [R] be a combinatorial description, let
A be the set of letters that occur in R and let X be the complex described
by [R]. Show that if X is connected, then the group presented by 〈A|R〉 is
the free product of π1(X) and a free group F of rank |X(0)| − 1.

Simple examples
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34. (Trefoil knot Dehn complex) Prove that the complex [acbd, adbe, aebc] is
the Dehn complex of the trefoil knot described in the prologue. How do
the edges a through e listed above correspond to the edges E0 through E4

used in the prologue?
35. (Letters and surfaces) Prove that a list of words in which each letter is used

at most twice describes a surface. When is the surface closed? When is it
connected? If it is a single word, how can you detect orientability?

36. Describe in detail the universal covers of each of the following basic com-
plexes (move the simple surface-like examples here).

37. (Classification) We should outline the classification of surfaces as an exer-
cise.

Turn some of this into exercises.
〈a1, a2, . . . , an | a1a2 · · · an = an · · · a2a1〉
〈a1, a2, . . . , an | a2

1a
2
2 · · · a2

n = 1〉
In the first case, it is easy to check that these surfaces are orientable

(because the two occurences of each letter have opposite orientations in
the boundary). In the second case, these surfaces are non-orientable since
the presence of the subword a2

1 already implies that there is a Möbius strip
inside the surface. (comment about what happens when n is odd /even in
the first type: 1-vertex versus 2).

By the classification of compact surfaces, the complexes for these pre-
sentations include at least one representative of each compact surface, and
the only ones which are homeomorphic are Type I with 2n and 2n+ 1.





CHAPTER 2

Metrics on Groups

There is a long mathematical history—dating back at least to the late 1800s and
Felix Klein’s Erlanger Programme—of exploring the connections between geometric
spaces and their groups of isometries. Here are two striking results that indicate
the influence that geometry can have on group theory:

1. If G acts properly discontinuously and cocompactly on Rn by isometries,
then G contains a finite index subgroup isomorphic to Zn. (Bieberbach)

2. If G acts properly discontinuously and cocompactly on hyperbolic space
Hn by isometries, then G does not contain a subgroup isomorphic to Z2.
(Gromoll and Wolf?)

Even if you have only a passing familiarity with hyperbolic spaces (we describe
them in Chapter 4) the message should be clear: If a group admits a properly
discontinuous and cocompact action on a particularly nice geometry, then there are
algebraic consequences. Although such results may seem to be special to particular
geometries, if one adopts a fairly flexible notion of what constitutes a “geometry”
then the techniques and results hinted at in these two examples apply broadly to
infinite groups. In this chapter we introduce such a broad notion of a geometry (due
to Jim Cannon) along with the appropriate types of maps between such geometries:
quasi-isometries. The goal is to prove two fundamental results: first, that every
finitely generated group acts on a geometry, and second that this geometry is unique
up to quasi-isometry.

2.1. Metrics and quasi-isometries

Definition 2.1.1 (Isometries). An isometric embedding of one metric space
into another is an injective map f : X → Y such that dX(x, y) = dY (f(x), f(y))
for all x, y ∈ X. If f is also onto, then f is an isometry and X and Y are said to
be isometric.

Definition 2.1.2 (bi-Lipschitz equivalence). Two metric spaces X and Y are
bi-Lipschitz equivalent if there is a function f : X → Y and a fixed constant K ≥ 1
such that

1. The function is a bi-Lipschitz embedding meaning that for any two points
x, x′ ∈ X, one has

1
K
dX(x, x′) ≤ dY (f(x), f(x′)) ≤ K · dX(x, x′).

2. The function f is quasi-onto meaning that for any y ∈ Y , there is an x ∈ X
such that dY (f(x), y) ≤ K.

When it is interesting to note the constant, one refers to K-bi-Lipschitz maps.

45
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We leave the proof of the following lemma and a related result (Proposi-
tion 2.1.5) to the exercises.

lem:bilip-equiv

Lemma 2.1.3. The notion of bi-Lipschitz equivalence is an equivalence relation.

nets
The group Zn has a natural geometry upon which it acts geometrically, namely,

Rn. The also acts geometrically on its Cayley graphs. While any two Cayley graphs
are bi-Lipschitz equivalent, none are bi-Lipschitz equivalent to Rn (n ≥ 2). In order
to pass between discrete subgroups and extensions, we need a slightly broader notion
of equivalence.

Definition 2.1.4 (Quasi-isometry). A function f : X → Y between metric
spaces is a K-quasi-isometric embedding if for all x, x′ ∈ X,

1
K
· dX(x, x′)−K ≤ dY (f(x), f(x′)) ≤ K · dX(x, x′) +K

If f is also K-quasi-onto, then f is a quasi-isometry.

The way that geometric group theorists often talk about these constants is that
multiplying and dividing by K means a bounded amount of “stretching” and the
addition/subtraction of K means a bounded amount of “tearing”.

Proposition 2.1.5 (Quasi-isometry is an euqivalence relation). The relation
of begin quasi-isometric is an equivalence relation on (qualified) metric spaces. In
particular, the identity map is a quasi-isometry, every quasi-isometry has a quasi-
inverse, and the composition of two quasi-isometries is a quasi-isometry.

One of the more difficult steps in establishing this proposition is the construc-
tion of the quasi-inverse. Let f : X → Y be a K-quasi-isometry. Since f is
K-quasi-onto, every y ∈ Y is contained in a metric ball BK(f(x)) for at least one
x in X. define f−1(y) to be any suuch x. The reader who objects that such a map
is almost guaranteed to be discontinuous has not yet grasped the rought nature of
quasi-isometries! We leve the verification that f−1 : Y → X is a quasi-isometry, as
well as the proof of the rest of this proposition, as an exercise.Explain Cannon’s alterna-

tive definition or put it in an
exercise.

2.2. Geometries and geometric actions

Of particular importance is the case where the metric space being embedded is
an interval of the reals.

Definition 2.2.1 (Embeddings and geodesics). An isometric embedding of an
interval [a, b] ⊂ R into X is a geodesic segment1. If the embedding is f : [a, b]→ X
then this is a geodesic segment of length b − a from f(a) to f(b). Let (X, d) be
a fixed metric space, let x and y be fixed distinct points of X, and consider the
infinimum of the lengths of paths from x to y. When there is at least one such path,
it is clear that this infinimum exists. The space (X, d) is a path metric space if the
distance between two points equals the infimum of path lengths, and this infimum
is realized by at least one geodesic.

1If you studied geodesics in a course on differential geometry, you probably recall that they

were defined to be locally length minimizing curves or a curve that satisfies a certain differential
equation. The global length minimizing property used in this definition is often presented as a

consequence of certain curvature conditions.
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Definition 2.2.2 (Geometries and geometric actions). Let (X, d) be a metric
space. The closed ball of radius r ∈ R+ centered at x ∈ X is the set

B≤r(x) = {y ∈ X | d(x, y) ≤ r}.

The space X is proper if B≤r(x) is compact for every choice of r and x. A proper
metric space whose metric coincides with the path metric, is a geometry. An action
G y X of a group on a geometry is geometric if it is cocompact and properly
discontinuous.

This definition includes the classic geometries—Euclidean, spherical and hy-
perbolic spaces—but it is a good deal more broad than that. It includes each of the
eight geometries that Thurston championed for the study of 3-manifolds as well as
many cell-complexes endowed with metrics, as we discuss below.

Definition 2.2.3 (Graph metric). Any connected graph (i.e. any connected
1-dimensional cell complex) can be turned into a metric space by declaring that
every 1-cell has the same metric as the unit interval [0, 1] in the reals. The distance
between two points x and y in Γ is defined to be the minimum length of a path
from x to y. Notice that when x and y are distinct vertices this minimal distance
is a positive integer that counts the smallest number of edges traversed in a path
from x to y.

It is an easy exercise to check that this is a metric: Because paths are re-
versible, the function is symmetric; because all edges are isometric, the infimum
of path lengths between points is bounded away from zero; because paths can be
concatenated, the function satisfies the triangle inequality.

Example 2.2.4. Let G be a group with finite generating set S, and let Γ =
Cayley(G,S) be the associated Cayley graph. The graph metric turns Γ into a
geometry and the action G y Γ is geometric. Thus every finitely generated group
acts geometrically on some geometry.

This metric on the Cayley graph is often conflated with the word metric on the
group G. The word metric on G is defined as

d(g, h) = ||gh−1||

where ||g|| denotes the minimal length of a word in S and S−1 that produces the
element g. Restricting the graph metric to the vertices of Γ, and identifying the
vertices with the elements of G, shows that these two metrics are identical. Note,
however, that while Γ is a geometry, the word metric does not make G a geometry,
as this metric space is not path connected

The graph metric is a basic example of taking a cell complex and forming a
metric space by endowing each cell with a metric structure. In higher dimensions
it is important to see some of the details of this construction.

Definition 2.2.5. Let S be a collection of compact polyhedral subsets of any of
the standard spaces of constant curvature—spheres, Rn or Hn—where we presume
the set S is closed under the operation of taking faces. The set S is the set of
shapes.

A piecewise polyhedral complex X is a disjoint union of a set of shapes,
∐
S,

modulo an equivalence relation ∼, which satisfies certain conditions. Let p :
∐
S →
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X =
∐
S/ ∼ denote the quotient map and pσ the restriction to any particular poly-

hedron σ ∈ S. To insure that X is a regular cell complex and that the polyhedral
metrics have been assigned consistently, we assume:

1. Each pσ is locally injective; and
2. If pσ(σ)∩ pσ′(σ′) 6= ∅ then there is an isometry φ from the support of σ to

the support of σ′ such that pσ(x) = pσ′(x′) iff φ(x) = x′.
If all the shapes come from a single space of constant curvature, then X would be
referred to as a piecewise spherical, Euclidean, or hyperbolic complex (depending
on the source geometry).

The geometry of piecewise polyhedral complexes is developed nicely and quite
completely in [4], so we will not repeat this work. We do however point out a couple
of highlights that we will make frequent use of.

You can define the length of a path `(p) ... Define a pseudo-metric on X by
d(x, x′) = infp{`(p) | p connects a to b}. The triangle inequality is immediate. In
the absence of no further hypotheses, this is not a metric.

thm:finitelymanyshapes

Theorem 2.2.6 (Finitely many shapes). If X is a piecewise polyhedral complex
whose set of shapes is finite, then the induced path pseudo metric is a metric.

Here’s the idea of the proof. For details, see [4].
We end this section with a few examples that we will frequently cite.

Definition 2.2.7 (Hemisphere metric). Let X be an arbitrary combinatorial
2-complex. The 1-skeleton of X can be turned into a metric space by making each
edge isometric to an open unit interval. Next, consider a 2-cell R in X and let
k ∈ Z+ be the length of the combinatorial path along which it is attached. We
assign a metric to R so that it is isometric to the northern hemisphere of a 2-sphere
in R3 of radius r, where r has been choosen so that the length of the equator is
exactly k. In other words, r = k/2π. Finally, the attaching map is the natural
isometry between the equator of the hemisphere and the combinatorial path in
X(1).

In §2.2 we establish that for any combinatorial 2-complex X these local metrics
on the 1-cells and 2-cells combine to turn X in a geodesic metric space with the
unusual property that the inclusion map X(1) → X is an isometric embedding.

Theorem 2.2.8. If X is a taut 2-complex, then the local hemisphere metric
defines a global geodesic metric on X.

Proof. (the key thing to prove is that every pair of points is connected by a
length minimizing path.)

(observe that the metric 1-skeleton isometrically embeds; i.e. given two points
in the 1-skeleton, the shortest path between them lies in the 1-skeleton.)

(the only paths that need to be consider are those that head straight to a
vertex in the boundary of the cell we’re in. This reduces things to combinatorial
distances.) �

(notice that this does NOT depend on something like a finitely many cell types
assumption and it’s true for arbitrary taut 2-complexes)

exmp:p-eucl-2-cplx

Example 2.2.9. Every finite 2-complexes can be converted into a piecewise
Euclidean complex. The most common method for doing this is to assign to each
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2-cell the metric structure of a regular Euclidean n-gon, whose sides are of unit
length2. As X is finite, this can be done with finitely many shapes, hence X with
the path metric is a metric space. Moreover, the universal cover X̃ is a geometry
that π1(X) acts on geometrically.

For example, let X be the 2-torus with the standard cellular structure with one
vertex, two edges and a single 2-cell thought of as a 4-gon. Giving the 4-gon the
metric structure of a unit Euclidean square turns X into a standard flat torus, and
X̃ is isometric to R2.

While the piecewise Euclidean structure described above is often useful, there
is a spherical variation of it with its own utility.

prop:p-sph-2-cplx

Proposition 2.2.10 (2-complexes). Let X be a finite 2-complex. Then X and
its universal cover X̃ admit a piecewise spherical metric making them geometries
and the action of π1(X) on X̃ is geometric. Further, this can be arranged so that
the embedding X̃(1) ↪→ X̃ is an isometric embedding.

Proof. Each edge of X is given the metric structure of the unit interval. Since
X is a combinatorial cell complex, each 2-disk can be identified with an n-gon, where
n is the number of edges hit by the attaching map (counted with multiplicity). Give
such a disk the metric structure of a hemisphere of radius n/2π, where the boundary
loop has been divided into n unit intervals. Since the set of shapes is finite, this
describes a metric space.

Let x and y be any two points in X̃(1), and let p : [0, d]→ X̃ be a geodesic join-
ing them. Since any geodesic is a local geodesic, if the path traced by p ever leaves
the 1-skeleton and enters a 2-disk D, then its first return to the 1-skeleton must
occur at the opposite point on the boundary of D. But as D has a hemispherical
metric, it would have been just as efficient to have travelled around the boundary.
Thus any geodesic path in X̃ connecting points in the 1-skeleton can be converted
to a geodesic path contained in the 1-skeleton. �

Giving cell complexes piecewise polyhedral metrics is not a process that is
restricted to dimensions 1 and 2. In fact, Theorem 2.2.6 immediately establishes
that any finite, connected simplicial complex can be converted into a geometry.

prop:simplicialmetric

Proposition 2.2.11. If Σ is any finite, connected simplicial complex, then Σ
admits a piecewise Euclidean structure where the metric, restricted to any simplex,
is that of a regular Euclidean simplex whose edges have length 1. The universal
cover Σ̃ is then a geometry that π1(Σ) acts on geometrically.

2.2.1. Metrics and bi-Lipschitz maps.
illustrate using change of fi-
nite generating set2.2.2. Quasi-isometries.

Corollary 2.2.12. Let H be a finite-index subgroup of a finitely generated
group G, hence H is also finitely-generated by Theorem 2.3.14. The intrinsic metric
on H (with respect to any finite generating set) is quasi-isometric to the intrinsic
metric on G (with respect to any finite generating set).

2In the case where n = 1 you can use a disk whose boundary has circumference 1; for n = 2
use a bigon formed by two arcs of unit circles, each arc of length 1.
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Proof. We show that the inclusion map H ↪→ G is a quasi-isometry. Since H
is a finite index subgroup, there are coset representatives such that

G = H ∪ g1H ∪ · · · ∪ gnH.
The inclusion is then k-quasi-onto, where k = Max{||gi||}.

Because all finite generating sets lead to quasi-isometric metrics on G, we
may assume that the generating set for G contains the generating set for H. So
dG(h, h′) ≤ dH(h, h′).

As the Cayley graph is locally finite, there is a universal bound on the number
of elements of H that can occur in a ball of radius (k + 1) about any element of
G. Thus there is a universal bound k̂ on the H-distance between any two. Let
dG(h, h′) = n and let p be a path connecting h to h′ of length n, passing through
the vertices {g0 = h, g1, g2, . . . , gn = h′}. For each gi pick an element hi where
dG(gi, hi) ≤ k. It follows that dH(hi, hi+1) ≤ k̂. Thus dH(h, h′) ≤ k̂dG(h, h′).
Thus the embedding of H in G is K-bi-Lipschitz for K = Max{k, k̂}. Since K ≥ k
it then follows that the embedding is a K-quasi-isometry. �

Definition 2.2.13 (Commensurable). Commensurability is the symmetric and
transitive closure of the finite-index subgroup relation. Since a finite-index subgroup
H of a finite-index subgroup K of a group G is itself a finite-index subgroup of G,
groups G and G′ are commensurable iff they can be connected by a finite sequence of
groups G = G0, H0, G1, H1, . . . ,Hn−1, Gn = G′ where for each i = 0, . . . , n− 1, Hi

is isomorphic both to a finite-index subgroup of Gi and to a finite-index subgroup
of Gi+1.

weakly commensurable

Corollary 2.2.14 (Commensurable implies quasi-isometric). Let G and G′ be
commensurable groups. If G is finitely-generated then so is G′ and, moreover, the
intrinsic metrics on G and G′ are quasi-isometric.

Remark 2.2.15. In general the commensurability relation is strictly weaker
than being quasi-isometric. For example, consider two closed hyperbolic 3-manifolds
with irrationally related volumes.

Proposition 2.2.16 (Homotopy equivalence implies quasi-isometry). If f :
X → Y is a homotopy equivalence between compact connected cell complexes, then
any lift f̃ : X̃ → Ỹ is a quasi-isometry.

Proof. Pick g such that fg ∼= 1 and gf ∼= 1 and pick a lift of g so that f̃ g̃
fixes a base point. (Look at the lifts of the paths traced out by the homotopy from
fg to the identity) �

The following is [7, Theorem 11.1]; you can essentially find it in a paper by
Milnor published in JDG in 1968 where he discusses growth in groups and manifolds.

(include the Charney-Crisp extension)

Theorem 2.2.17 (Milnor-Švarc Theorem). If a group G acts geometrically on
two geometries X and Y then X and Y are quasi-isometric.

Proof. Since quasi-isometry is an equivalence relation, it suffices to prove that
X is quasi-isometric to G with the word metric relative to some finite generating
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set S. Fix a compact fundamental domain D for the action of G on X, let U be an
ε-neighborhood of D for some ε > 0, that is

U = {x ∈ X | d(x,D) < ε}
and for convenience, pick

S = {g ∈ G | g · U ∩ U 6= ∅}.
Define a function ξ : G → X by choosing a point x ∈ D and setting ξ(g) =

g ·x ∈ X. Since the action of G on X is cocompact, the map ξ is quasi-onto. In fact,
if δ is the diameter of U , that is δ = Max{d(x, y) | x, y ∈ U}, then ξ is δ-quasi-onto.

To establish that ξ is bi-Lipschitz, pick a geodesic in Γ = Cayley(G,S) con-
necting g to h. This geodesic passes through a sequence of vertices of Γ giving
an associatedd sequence of elements in G, {g = g0, g1, g2, . . . , gn = h}, where
n = d(g, h) and gi−1si = gi for some si ∈ S. As siU ∩ U 6= ∅, the sequence of
elements describes a chain of copies of U in X, {gU = g0U, g1U, . . . , gnU = hU},
where giU ∩ gi+1U 6= ∅. The triangle inequality implies that d(gi · x, gi+1 · x) ≤ 2δ
and further uses of the triangle inequality show that d(g · x, h · x) ≤ 2δ · d(g, h) (see
Figure 1). In other words, d(ξ(g), ξ(h)) ≤ 2δ · d(g, h).

Figure 1. The proof of the Milnor-Švarc Theorem

Let γ : [0, d] → X be a geodesic segment connecting g · x to h · x, where
d = d(g · x, h · x). Divide the domain into m = d(d + 1)/εe equal pieces to form
smaller geodesics γi, each of length < ε. Since the length of each of these geodesic
segments is < ε, each is contained in a copy of U . Thus we have a chain of
copies of U , {g0U, g1U, g2U, . . . , gmU} where gi−1U ∩ giU 6= ∅. Thus for each i,
1 ≤ i ≤ m, there is an si ∈ S such that gi−1si = gi. Further, since g0U contains
g · x, g0U ∩ gU 6= ∅, so either g0 = g or there is some s0 ∈ S such that g0s0 = g.
Similarly either gm = h or gmsm+1 = h for some sm+1 ∈ S. Thus

d(g, h) ≤ m+ 2 < ε−1d(ξ(g), ξ(h)) + 3 + dε−1e
hence

1
ε−1

d(g, h)− (3 + dε−1e) ≤ d(ξ(g), ξ(h)).

It follows that if K = Max{ε, 3 + dε−1e, 2δ} then ξ is a K-quasi-isometry. �

If G is the fundamental group of a finite cell complex, X, then the universal
cover X̃ admits piecewise polyhedral metrics (see 2.2.9 through 2.2.11). The action
of G on X̃ is then a geometric action on a geometry, hence we have the following
corollary.
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Corollary 2.2.18 (Fundamental groups and universal covers). Let X be a
compact connected metric cell complex whose fundamental group is G. Then the
universal cover X̃ is quasi-isometric to G with the word metric with respect to any
finite generating set.

Following Jim Cannon [cite] we call a property of a finitely generated group
geometric if it is independent of which finite generating set is chosen. We call a
property of a finitely generated group a QI-invariant if it is independent of quasi-
isometry type.

finite-index subgroups, virtual properties, all finite groups have the same geo-
metric and QI properties.

2.3. Geometric properties of groups

There are a number of naturally occurring ways to alter “the” word metric on a
finitely generated group G. One is to switch finite generating sets: If S and S′ both
generate G, and there is a g ∈ S′ which is not in S, then dS(1, g) > dS′(1, g) = 1.
Another is to keep the generating set fixed, but to assign positive weights ω(s) to
each s ∈ S, where if s and s−1 are both contained in S, then ω(s) = ω(s−1). One
can then give the Cayley graph Γ = Cayley(G,S) the metric where each edge
associated to generator s carries the metric of the interval [0, ω(s)], and use this to
describe a metric on G by restricting to the vertices. By Theorem 2.2.6 the induced
path metric is a metric.3 Of course, one can also combine these two metric varying
techniques.

Call any metric derived from choosing a finite generating set and assigning
positive weights to the generators a Cayley graph metric on G. The question is to
what extent these Cayley graph metrics on G are ‘equivalent’.

Lemma 2.3.1 (Redundant generators). Let G be a group and let S a generating
set for G. If S′ is a set consisting of S and exactly one additional element t, then
the metrics dS and dS′ on G are K-bi-Lipschitz equivalent where K = ||t||S.

Proof. Since any path in Cayley(G,S) is also a path in Cayley(G,S′),
dS(g, g′) ≥ dS′(g, g′) ≥ 1

K dS′(g, g
′) for all g, g′ ∈ G. Conversely, let w be a word

over S that represents t ∈ S′ \ S and that realizes ||t||. Given any path p con-
necting g to g′ in Cayley(G,S′), we can find a path connecting these vertices in
Cayley(G,S) that is at most K times as long by replacing each edge labelled t
(or t−1) with the path described by the word w (or w−1).

tt t

Figure 2. The bi-Lipschitz equivalence of Cayley graphs

Thus dS′(g, g′) ≥ K · dS(g, g′) for all g, g′ ∈ G, establishing the bi-Lipschitz
embedding. Because the map is a bijection, it is also quasi-onto. �

3This second option is surprisingly useful at times, and mimics constructions used to study

mapping class groups of surfaces by looking at the space of metrics on a given topological surface.
This method of varying the metric on edges also shows up in Culler and Vogtmann’s construction

of Outer Space, a geometry for Out(Fn).
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Lemma 2.3.2 (Rescaling). Let G be a group with finite generating set S. Let
d denote the standard word metric induced by S and let d̂ denote a word metric
induced by some fixed assignment of positive weights to the elements of S. Then
(G, d) and (G, d̂) are bi-Lipschitz equivalent.

Proof. Let m = min{ω(s) | s ∈ S} and let dm denote the metric induced by
assigning each edge in Cayley(G,S) the metric of [0,m]. Then the metric dm is
just m · d, hence dm and d are bi-Lipschitz equivalent. By Lemma 2.1.3 it suffices
to show that dm and d̂ are bi-Lipschitz equivalent.

Define K = Max{ω(s)/m | s ∈ S} and let p be a path connecting g to g′ in
Cayley(G,S). If `m(p) denotes the length of p with respect to the dm metric,
and ˆ̀(p) denotes its length with respect to d̂, then 1

K `m(p) ≤ ˆ̀(p) ≤ K · `m(p). It
follows that

1
K
dm(g, g′) ≤ d̂(g, g′) ≤ K · dm(g, g′).

Hence the identity map establishes the bi-Lipschitz equivalence. �

The preceding lemmas combine to establish:

Proposition 2.3.3. If G is a group that admits a finite set of generators, then
every finite generating set for G, with every rescaling, determines the exact same
bi-Lipschitz equivalence class of metrics on G.

With little more than the core definitions, one can find deep connections be-
tween properties of a geometry for a group G and topological properties of G. In this
section we establish that finiteness properties of groups are geometric properties,
and moreover, they are quasi-isometry invariants.

By Theorem 1.3.8 we know that a group G is finitely generated iff it acts
freely and cocompactly on a connected graph. Similarly Theorem 1.3.29 shows G is
finitely presented iff it acts freely and cocompactly on a 1-connected cell complex.
The natural generalization of these finiteness properties is that a group is of type
Fn iff it is the fundamental group of a cell complex X with finite n-skeleton. (Thus
being of type F1 is equivalent to being finitely generated, and F2 is the same as
being finitely presented.) For further information on these and other finiteness
properties see KEN BROWN’S BOOK.

In this section we focus on the property of being finitely presented. However,
as the results in this section generalize to these Fn, we state more general results,
even though our arguments will be restricted to the case n = 2.

thm:finitenessconnectivity

Theorem 2.3.4 (Finiteness and connectivity theorem). For n ≥ 0, a group G
acts geometrically on an (n− 1)-connected geometry X iff G is of type Fn

Proof. The ⇐ direction follows immediately from the definition of Fn and
Proposition 2.2.11. For in this case, the group G acts freely and cocompactly on
the n-skeleton of the universal cover of its K(G, 1), and this universal cover can be
given a metric making it into a geometry. The other direction is more subtle.

The argument for the base case, n = 1, was essentially given BEFORE. The
idea is to take a fundamental domain D ⊂ X and define

S = {g ∈ G | gD ∩D 6= ∅}.
As the action of G on X is geometric, S is finite. The fact that S is a set of
generators for G follows from the fact that X is 0-connected.
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We assume then that G is finitely generated and that G acts geometrically on a
1-connected geometry X. Let Γ be a Cayley graph for G with respect to some finite
generating set. Our goal is to carefully add finitely many G-equivariant classes of
2-cells to Γ that kill π1(Γ). By the Milnor-Švarc Theorem (2.2.17), Γ and X are
quasi-isometric. Let f : Γ→ X be a quasi-isometry and let F : X → Γ be a quasi-
inverse of f . We let K denote the quasi-isometry constant, chosen large enough so
that

dX(f ◦ F (x), x) ≤ K and dΓ(F ◦ f(γ), γ) ≤ K
for all x ∈ X and γ ∈ Γ. Fix a constant ε > 0 such that if v and w are adjacent
vertices in Γ, then dX(f(v), f(w)) < ε.

Let U be a fundamental domain for the action of G on X, and define

V = Nε(U) = {x ∈ X | d(x, U) < ε}.
Notice that if v and w are adjacent vertices in Γ, then f(v) and f(w) are contained
in g · V for some g ∈ G. Conversely, let δ be sufficiently large so that if v and w
are vertices in Γ where f(v) and f(w) are contained in the same copy of V then
dΓ(v, w) ≤ δ.

Let Bδ be the ball of radius δ centered at the identity in Γ. Let (u, v, w) be an
ordered triple of vertices in Bδ, where any two or even all three vertices might be
equal. Choose edge paths from u to v, v to w and w to u, each of which is reduced
and contained in Bδ. There is then a circuit in Bδ given by the paths u → v,
v → w, and w → u; attach a 2-cell for every such circuit. Note in particular that
this 2-cell depends on the original ordered triple (u, v, w) and the choices of paths
connecting these vertices. Thus the same basic circuit in Bδ will bound multiple
2-cells as defined above. Since the action G y Γ takes ordered triples of vertices
to ordered triples of vertices, and paths to paths, we can compose these attaching
maps with the action of G on Γ to equivariantly distribute 2-cells throughout Γ.
Denote the resulting 2-complex by Γ(2).

We claim Γ(2) is a free, cocompact G-complex that is 1-connected. The action
G y Γ(2) is essentially given by the construction. If σ is a 2-cell of Γ(2) then σ
is associated to an ordered triple of vertices (u, v, w), along with paths connecting
them. An element g ∈ G takes σ to the 2-cell associated to the triple (g ·u, g ·v, g ·w),
along with the g-images of the original paths. The action of G is free on Γ, thus to
show that it is free on Γ(2) it suffices to show that gσ 6= σ, unless g is the identity.
But for gσ to equal σ, it would have to be the case that gu = u, which is impossible
unless g is the identity. Since Bδ is finite, claim that Γ(2)\G is finite is immediate.
The main difficulty is in establishing that we have added enough 2-cells to kill the
fundamental group.

Let φ : S1 → Γ represent an element of π1(Γ), where we may assume that S1

has been subdivided and φ has been homotoped so that the map is simplicial. Form
a map ϕ : S1 → X where if v is a vertex of S1, then ϕ(v) = f(φ(v)), and if v and w
are adjacent vertices of S1 then ϕ([v, w]) is a geodesic (necessarily contained inside
a copy of U).

Because the geometry X is 1-connected, ϕ can be extended to a cellular map
ϕ̂ : D → X where D is a simplicial 2-disk whose boundary has the same cellular
structure as S1. Further, we may refine the simplicial structure of D so that the
image of any simplex in D is contained in a copy of V . The disk D and map ϕ̂ can
be used to extend φ : S1 → Γ to a map φ̂ : D → Γ(2).
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If v is a vertex in the interior of D, choose φ̂(v) so that f(φ̂(v)) is in the same
copy of V as ϕ̂(v). If [v, w] is an interior edge of D, map it to an edge path in
Γ connecting φ̂(v) to φ̂(w) inside a ball of radius δ. If σ is a 2-simplex, then the
image of its boundary is a circuit inside a ball of radius δ. By construction, there
are multiple 2-cells filling this circuit, so we may send σ to a 2-cell whose boundary
is this circuit. �

We can now extend Theorems 1.1.4 and 1.3.8.
cor:geometricfiniteness

Corollary 2.3.5. A group G is of type Fn iff there is a geometric action of
G on an (n − 1)-connected cell complex. In particular, G is finitely generated iff
there is a geometric action on a connected cell complex, and G is finitely presented
iff there is a geometric action on a 1-connected cell complex.

At this point the reader may feel a bit overburdened by the multiple character-
izations of being finitely presented, yet we will add just one additional characteri-
zation. Let G be a finitely generated group with a fixed finite generating set S with
its induced word metric. For any integer k ≥ 1 let ∆k(G) be the simplicial complex
whose simplices consist of subsets of G of diameter ≤ k. Notice that the 1-skeleton
of ∆1(G) is the Cayley graph of G with respect to S, and in general the 1-skeleton
of any ∆k(G) contains this Cayley graph of G. Thus each ∆k(G) is a connected
simplicial complex and by definition ∆k(G) ⊂ ∆k+l(G). There are induced maps

π1(∆k(G))→ π1(∆k+l(G)),

one for each triple (n, k, l) ∈ N × N × N. (Since the complexes are connected, and
nested, we have not specified a specific fixed base point.) The directed system
{π1(∆k(G))} is essentially trivial if for each k ∈ N there is an l ∈ N such that the
map π1(∆k(G))→ π1(∆k+l(G)) is trivial.

If you are familiar with the notion of a direct limit, you should note that
being essentially trivial is stronger than stating the direct limit is trivial. In fact,
the direct limit lim

k→∞
π1(∆k(G)) is trivial for any finitely generated group G. To

see this notice that any g ∈ π1[∆k(G)] can be represented by a map φ : S1 →
∆k(G) whose image has diameter D. Thus g ∈ Ker [π1(∆k(G))→ π1(∆k+D(G))].
Being essentially trivial is stating that there is a constant l such that π1(∆k(G)) =
Ker [π1(∆k(G))→ π1(∆k+l(G))].

The following result is a corollary of a more general theorem, often referred to
as “Brown’s Criterion,” established by Ken Brown in [5].

thm:BrownCrit

Theorem 2.3.6. A finitely generated group G is of type Fn iff the directed
systems {πi (∆k(G))} are essentially trivial for 1 ≤ i < n. In particular, G is
finitely presented iff the directed system {π1 (∆k(G))} is essentially trivial.

Proof. Again, we are only going to prove the case of n = 2, that is, we show
that G is finitely presented iff {π1 (∆k(G))} is essentially trivial.

Let ∆̃k(G) denote the universal cover of ∆k(G) and let Gk be the group of all
homeomorphisms of ∆̃k(G) that cover elements of G. Notice that G acts geometri-
cally on ∆k(G), hence Gk acts geometrically on ∆̃k(G), and therefore Gk is finitely
presented by Corollary 2.3.5. For each k ∈ N there is a short exact sequence

1→ π1(∆k(G))→ Gk → G→ 1
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and for each k and l ∈ N there is an induced commutative diagram
1 −−−−→ π1(∆k(G)) −−−−→ Gk −−−−→ G −−−−→ 1

y
y

∥∥∥

1 −−−−→ π1(∆k+l(G)) −−−−→ Gk+l −−−−→ G −−−−→ 1

Assume first that G is finitely presented. Then for any k ∈ N, π1(∆k) is
finitely generated as a normal subgroup of Gk. That is, there is a finite collection
of elements {a1, . . . , am} ⊂ Gk whose normal closure is π1(∆k). Since for each ai
there is an li such that ai ∈ Ker [π1(∆k)→ π1(∆k+li)], we make take l = Max{li}
to see that

{a1, . . . , am} ⊂ Ker [π1(∆k(G))→ π1(∆k+l(G))] .
Hence this map is trivial and thus the directed system {π1(∆k(G))} is essentially
trivial.

Conversely, assume the directed system is essentially trivial, hence given k there
is an l such that

π1(∆k(G)) = Ker [π1(∆k(G))→ π1(∆k+l(G))] .

Since G ' Gk/π1(∆k(G)), the map Gk → Gk+l in the commutative diagram above
induces a map G → Gk+l. This map provides a section of the map Gk+l → G, so
G is a retract of the finitely presented group Gk+l, and hence G is itself finitely
presented. �

This was first established by
Juan Alonso. Corollary 2.3.7. The property of being Fn is a QI-invariant.

Proof. Let G and H be quasi-isometric groups where H is finitely presented.
Let φ : G → H be a quasi-isometry with QI-constant K, and let φ−1 : H → G

be a quasi-inverse. The map φ induces a map φ̂ : ∆k(G) → ∆Kk+K(H) de-
fined at the level of vertices by φ̂(g) = φ(g) and extended to simplices by noticing
that if dG(g, g′) ≤ k then dH(φ(g), φ(g′)) ≤ Kk + K. Since H is finitely pre-
sented, Theorem 2.3.6 implies there is a number L such that π1(∆Kk+K(H)) =
Ker [π1(∆Kk+K(H))→ π1(∆L(H))].

Define the map ι : ∆k(G) → ∆KL+K(G) as the composition of the following
three maps

ι : ∆k(G)→ ∆Kk+K(H) ↪→ ∆L(H)→ ∆KL+K(G) ,

where the last map is induced by the fact that if dH(h, h′) ≤ L then

dG(φ−1(h), φ−1(h′)) ≤ KL+K .

Notice that ι(g) = φ−1◦φ(g), hence dG(g, ι(g)) ≤ K. It follows that in ∆KL+K(G),
σ∪ι(σ) is contained in a simplex for any σ. Hence the map ι is homotopic to the in-
clusion map ∆k(G) ↪→ ∆KL+K(G). But by its construction, ι kills the fundamental
group, hence the directed system {π1(∆k(G))} is essentially trivial. �

2.3.1. Maps between cell complexes. Let (X,x) and (Y, y) be based con-
nected cell complexes with π1(X,x) = G and π1(Y, y) = H. The next few results
investigate the relationship between the homotopy equivalence classes of based
maps (X,x) → (Y, y) and the group homomorphisms G → H. Certainly each
based map induces a group homomorphism that is well-defined up to base-point
preserving homotopy. The question we want to explore is when is the function
hom((X,x), (Y, y))→ hom(G,H) onto and when is it one-to-one.
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Proposition 2.3.8 (Homomorphisms and maps). If (X,x) is a presentation
2-complex with π1(X,x) = G and (Y, y) is an arbitrary based cell complex with
π1(Y, y) = H, then for every group homomoprhism h : G→ H there is a continuous
map f : (X,x)→ (Y, y) such that f∗ = h.

Proof. (existence) simply build the map. We know the equivalence class of
loops to which each edge show be sent. Pick one for each. Next, the boundary cycle
of each 2-cell in X is sent to a null-homotopic loop in Y . Use this null-homotopy
to extend the map constructed so far over this 2-cell.

(the right map) Since A generates G, the map induced by
�

Lemma 2.3.9. Let (X,x) and (Y, y) be based connected cell complexes with
π1(X,x) = G and π1(Y, y) = H. If X is 2-dimensional, then the map hom((X,x), (Y, y))→
hom(G,H) is onto. In particular, every group homomorphism G → H is induced
by some based map (X,x)→ (Y, y).

Proof. (add in) �
Redo with k-connectivity?

(the restriction is necessary; consider the identity homomorphism when Y is
the 2-skeleton of X. concretely, let Y be a solid 3-cube with all 8 vertices identified
and let X be its 2-skeleton – work on this)

Lemma 2.3.10. Injective when X is k-dimensional and Y is k-connected.

Theorem 2.3.11. Let (X,x) is a based connected 2-dimensional cell complex
with π1(X,x) = G. If X is a classifying space (i.e. if X is aspherical), then there
is a bijection between the automorphisms of G and the based homotopy equivalences
(X,x)→ (X,x) up to base point preserving homotopy.

Moved from Chapter 1

2.3.2. Commensurability. There are several natural constructions that start
with finitely generated and/or finitely presented groups and produce additional
groups that has similar finiteness properties. Our first example of such a construc-
tion involves short exact sequences of groups.

Theorem 2.3.12 (Short exact sequences). If 1→ N ↪→ G� Q→ 1 is a short
exact sequence of groups, then there is a systematic way to construct a topological
presentation for G from topological presentations for N and Q. As a consequence
of this construction when N and Q are finitely generated, G is finitely generated,
and when N and Q are finitely presented, G is finitely presented.

There’s a problem with the
current proof outline: KG
should not contain a copy of
KQ because we don’t know
that the ses splits.

Proof. Let KN be a topological presentation for N with 1-skeleton RA and
let KQ be a topological presentation for Q with 1-skeleton RB . The construction of
a topological presentation for G starts with the wedge product K = KN ∨KQ and
then adds several new 2-cells, one for each ordered pair (a, b) ∈ SA × SB . Roughly
speaking the extra relations record how preimages of the symmetric generators of Q
conjugate the images of the symmetric generators of N . For each a ∈ SA and b ∈ SB
let na and qb be the elements of N and Q they represent. Finally, if i : N ↪→ G
and s : G� Q denote the maps in the short exact sequence, let ga = i(na) and for
each b ∈ SB pick an element gb ∈ s−1(qb).

Because i(N) is normal in G, the element gbgagb−1 is in i(N). Thus, there is a
word wa,b ∈ (SA)∗ that represents gbgagb−1 and we attach a 2-cell to K along the
closed path described by the word bab−1(wa,b)−1. Let K ′ be the 2-complex that
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results from attaching such a 2-cell to K for each (a, b) ∈ SA × SB . The claim is
that the one vertex combinatorial 2-complex K ′ is a topological presentation of G.
To see this note that when we crush the copy of KN inside K ′ to a point, the copy
of KQ injects into the quotient and the cells not in KQ are now attached along null-
homotopic paths. Thus, π1(K ′/KN ) ∼= π1(KQ) = Q, and by Proposition 1.2.21 the
induced map π1(K ′)� Q is onto.Fix/finish this proof

This gives us a surjection π1(K ′) � Q whose kernel is the normal subgroup
generated by KN . But π1(KN ) is a normal subgroup of π1(K ′). Thus we have a
commutative diagram

1 −−−−→ π1(KN ) −−−−→ π1(K ′) −−−−→ π1(KQ) −−−−→ 1

..iso

y
y iso

y ..

1 −−−−→ N −−−−→ G −−−−→ Q −−−−→ 1

And so π1(K ′) = G. If N and Q are finitely generated, then both KN and KQ

can be chosen to have a finite 1-skeleton, K ′ will have a finite 1-skeleton, and G is
finitely generated. If N are Q are finitely presented, then both KN and KQ can
be chosen to be finite 2-complexes, K ′ will be a finite 2-complex, and G is finitely
presented. �

Our second example relates the finiteness properties of a group to those of a
finite index subgroup. Its proof uses an elementary lemma about normal subgroups.

Lemma 2.3.13 (Creating normal subgroups). Every finite index subgroup of G
contains a finite index subgroup normal in G.

Proof. Let H be a subgroup of G and let G/H be the set of left cosets of H.
There is a group homomorphism ρ : G→ SymG/H that sends g ∈ G to the way left
multiplication by g permutes the left cosets of H. The kernel of this representation
is a normal subgroup N / G with N ⊂ H since H is the stablizer of the identity
coset. Finally, when H is finite index in G, SymG/H is a finite group, and the index
of N in G must also be finite. �

The proof of Lemma 2.3.13 extends to subgroups of infinite index with only
minor modifications. See Exercise 11 and Exercise 12.

Theorem 2.3.14 (Finite index). If H is a finite index subgroup of G, then H
is finitely generated iff G is finitely generated and H is finitely presented iff G is
finitely presented.

Proof. One direction is a straightforward consequence of the topological char-
acterizations: if G is the fundamental group of a cell complex X with a compact
i-skeleton and H is finite index in G, then the finite cover of X corresponding
to H also has a compact i-skeleton. In the other direction, assume H is finitely
generated or finitely presented and let N be a finite index subgroup of H that is
normal in G (Lemma 2.3.13). Because H is finitely generated/finitely presented,
so is N . Finally, since N is normal we have a short exact sequence of groups
1 → N → G → Q → 1 with Q := G/N , and Q, being a finite group, has a finite
presentation (Example 1.3.21). Theorem 2.3.12 completes the proof. �

Definition 2.3.15 (Commensurability). Two groups G and G′ are called com-
mensurable if there is a finite sequence of groups G0, G1, . . . , Gk such that G ∼= G0,
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Gk ∼= G′ and for each pair of adjacent groups in the sequence, one of them is iso-
morphic to a finite index subgroup of the other. In other words, commensurability
is the most refined equivalence relation on groups in which every group is related
to each of its finite index subgroups.

By Theorem 2.3.14, commensurable groups have similar finiteness properties.

Corollary 2.3.16 (Commensurability). If G and G′ are commensurable groups,
then G is finitely generated iff G′ is finitely generated and G is finitely presented iff
G′ is finitely presented.

2.3.3. Notes on Sources. One of the primary sources for the material in
this chapter is the wonderful article by Jim Cannon in the book “Ergodic theory,
symbolic dynamics and hyperbolic space” edited by Tim Bedford, Michael Keane
and Caroline Series. In particular, this is the source of the finiteness result and the
interested reader can consult it for a complete proof for all n.

(Metrical viewpoint)
Stallings, Tits, Serre, Bass, Gromov, Thurston.

Presenting a group G in terms of generators and defining relations
is as arbitrary a procedure as choosing a coordinate system to de-
scribe a geometric configuration. [20, p.120]

Move this quote elsewhere

Exercises

Metrics and quasi-isometries
1. In general you need finitely many shapes.
2. (Tietze transformations) Describe Tietze transformations (move to Chapter

3?)
3. Jon’s hemispherical metric is a metric even if there are infinitely many

shapes. (For example a fg but not fp group.)
4. Consider the word metric on the integers with generating sets A = {1}

and B = {2, 3}. Calculate explicitly the distance function dB(n,m). By
Lemma XXX it is clear that the metrics dA and dB are quasi-isometric.
Use your explicit answer to find the optimal constants a, b, c, d so that
a ∗ dB(n,m) + b ≤ dA(n,m) ≤ c ∗ dB(n,m) + d for all n,m ∈ Z.

5. Let G be a group and let S and S′ be distinct, possibly infinite, generating
sets for G. Show that if the symmetric difference of S and S′ is finite (i.e.
there are only a finite number of generators in one set but not the other)
then the identity map 1 : (G, dS) → (G, dS′) is a quasi-isometry between
these metric spaces. More generally, show that this map is a quasi-isometry
when the length of each element in S is uniformly bounded in the dS′ metric
and, conversely, the length of each element in S′ is uniformly bounded in
the dS metric.

6. Let X be the unit torus (i.e. the space constructed from the square with
side length 1 where opposite sides have been identified in an orientation
preserving way). Consider the two metrics on its fundamental group Z2

derived from (1) the geodesic distance dX in the universal cover and (2)
the word metric dA on the 1-skeleton. Prove these two metrics are quasi-
isometric and find the optimal constants a, b, c, d so that a ∗ dX(x, y) + b ≤
dA(x, y) ≤ c ∗ dX(x, y) + d for all x, y ∈ Z2.
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7. Consider the group BS(1, 2) = 〈ab = ba2〉 and let d denote the word
metric with respect to this generating set. The subgroup H = 〈a〉 has
its own word intrinsic metric with respect to its generating set {a} and
an ambient metric which simply restricts the word metric on BS(1, 2) to
the subgroup H. Calculate the distance from e to an in both metrics.
Then prove that these two metrics on H are not quasi-isometric to each
other. When the subgroup metric is quasi-isometric to the restriction of the
ambient metric, the subgroup is said to be quasi-isometrically embedded.
The subgroup H in BS(1, 2) is the simplest example of a subgroup which
is not quasi-isometrically embedded in its ambient group.

Geometries and geometric actions
8. One can extend Theorem 2.3.4 to include a slightly lower base case: A group
G acts geometrically on a proper metric space iff G is countable. Hint: pick
a sequence of elements that generate larger and larger subgroups and look
at the metric where the n-th element has length n.

9. A fg subgroup H of a finitely generated group G is a quasi-retract if the
inclusion H ↪→ G is a quasi-isometric embedding and there is a map φ :
G→ H with an associated constant K such

dH(h, φ(h)) ≤ K
for all h ∈ H. Prove that if G is finitely presented, then so is any quasi-
retract of G.

Want an example of a quasi-retract? The trefoil knot group is virtually
F2 × Z. The F2 subgroup is a retract of F2 × Z. Show it’s a quasi-retract
of the trefoil knot group.Check this is a good exam-

ple! 10. Show that the following are commensurable classes of groups:
a. fg non-abelian free groups
b. fundamental groups of hyperbolic surfaces

11. Theorem 2.3.4 describes how to construct a free action on a 1-connected
complex from a geometric action on a 1-connected geometry. The infinite
dihedral group is 〈s, t | s2 = t2 = 1〉 and it acts on the real line with point
stabilizers ' Z2. Convert this to a free action on a 1-connected complex.

12. Prove the “space of Cayley graph metrics” on a group G is path connected.
(topology given by fixing the size of K?)

13. Prove Lemma 2.1.3 and Proposition 2.1.5.
14. The geometric dimension of a group G is the minimal dimension of a

K(G, 1). For example, a group G has geometric dimension 1 iff it is free.
Prove that the geometric dimension of the free abelian group Zn is n.



CHAPTER 3

Dehn’s Fundamental Problems

“The general theory of groups defined in this way [via a finite pre-
sentation], in so far as they are infinite, does not appear to be very
well developed. There are above all three fundamental problems
whose solution is very important and probably not possible without
a penetrating study of the subject.”1

Max Dehn in 1911 [9]

We begin with a series of fundamental questions. Suppose a closed loop is
drawn on a compact surface. Is there an easy way to tell whether or not it is trivial
in the fundamental group? Notice that this question is not about some particular
loop.

The question can be reformulated as follows. Is there some uniform procedure
that can be set up in advance so that no matter which closed loop is selected as
an input, the procedure determines, in a finite amount of time, whether or not the
loop represents the identity element in the fundamental group.

In 1912 Max Dehn proved that the answer to this question is “yes” for compact
surfaces but the proof is not as general as one would like. If compact surface is
replaced by compact 3-manifold the answer is not currently known (comment on
Grigori Perlman, Jason Manning). If we consider compact 4-manifolds the answer
is a resounding “no”.

1. How do we construct the universal cover of X?
2. Which maps f, g : S1 → X are homotopic?
3. Which complexes X, Y are homotopy equivalent?

3.1. Disc diagrams and van Kampen’s lemma

Definition 3.1.1 (Disc diagrams). A disc diagram is a finite contractible com-
binatorial 2-complex D together with a specified embedding into the plane R2. If
D is homeomorphic to a disc then D is called non-singular. Otherwise it is a sin-
gular disc diagram. For example, disc diagrams with cut vertices or cut edges are
singular.

Definition 3.1.2 (Boundary cycle). The explicit embedding into R2 is used
to select an oriented boundary cycle. (say more)

(somewhere – Chapter 3 – we should probably put a Lebesgue number argu-
ment that shows that every continuous map from S1 → X1 can be homotoped

1“Die allgemeine Theorie derartig definierter Gruppen, sofern sie unendlich sind, scheint
bisher sehr wenig entwickelt zu sein. Hier sind es vor allem drei fundamentale Probleme, deren

Lösung sehr wichtig und wohl nicht ohne eindringendes Studium der Materie möglich ist.”

61
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to a combinatorial loop. Similarly every continuous map from D2 → X2 can be
homotoped to a van Kampen diagram.)

Alternatively, a disc diagram can be defined as the complement of a (open)
2-cell inside a combinatorial 2-sphere. Since S2 is compact, the complex is finite,
the complement of an open 2-cell is clearly a subcomplex, and it is not two hard to
see that this complement must be contractible.

The following lemma is immediate.

Lemma 3.1.3. Let X be a combinatorial 2-complex, (let C be a combinatorial
circle), and let p : C → X be a combinatorial loop. If there is a disc diagram D
and combinatorial maps i : C → D and q : D → X such that q ◦ i = p then p is
null-homotopic.

Van Kampen’s lemma establishes the converse.

Lemma 3.1.4 (Van Kampen’s lemma). Let X be a combinatorial 2-complex,
(let C be a combinatorial circle), and let p : C → X be a combinatorial loop. If
p is null-homotopic, then there exists a disc diagram D and combinatorial maps
i : C → D and q : D → X such that q ◦ i = p.

import the proof and the
pictures from Fans-Ladders Proof. �

Theorem 3.1.5 (Constructing the universal cover). Let X be a compact combi-
natorial 2-complex. The word problem for π1(X) is algorithmically decidable iff its
universal cover is algorithmically constructible iff the Cayley graph is constructible.

3.2. Algorithms and decidability

Definition 3.2.1 (Recurvsively enumerable). Let U be some well-understood
set and let A be some subset of U . If there exists an algorithm that only outputs
elements of A and has the property that every element of A is produced as output
after some finite length of time, then this algorithm proves that the members of A
are recursively enumerable. If A and U \ A are both recursively enumerable then
membership in A is said to be decidable.

Theorem 3.2.2. Let X be a combinatorial 2-complex. The collection of null-
homotopic loops in X are recursively enumerable.

Proof. This follows from van Kampen’s Lemma. The finite list of disc dia-
grams with exactly v vertices, e edges and f 2-cells can be effectively enumerated.
For each disc diagram there are a finite number of maps to X. Concatenating this
countable collection of finite lists enumerates all disc diagrams over X. For each
disc diagram over X output its boundary cycle. �

In the 1930s it came as a bit of a shock when it was discovered that there are
subsets of the natural numbers whose members can be effectively listed but with
an undecidable membership problem.

Theorem 3.2.3 (Gödel). There exists a subset A ⊂ N which is recursively
enumerable, but not decidable.

This result was then transfered to group theory by Tarski.
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Theorem 3.2.4 (Tarski). There is a finitely presented group with an undecid-
able word problem. This means, in particular, that there exists a finite combina-
torial 2-complex X where the collection of combinatorial loops in X that are not
null-homotopic cannot be recursively enumerated.

The theorem does not say that there is some mysterious finitely presented
group G with this property. The proof given by Tarski proceeds by giving an
explicit concrete example and showing that the halting problem can be encoded
into the group structure of G.

filling function. Dehn functions

Proposition 3.2.5 (Filling Theorem). If G acts geometrically on a simply
connected manifold M then the filling function on M is equivalent to the Dehn
function on G.

Theorem 3.2.6 (Dehn functions and computability). A fintlely presented group
G has a decidable word problem iff its Dehn function is recursive.

Proof. The proof of this isn’t quite as hard as it might seem. If the Dehn
function is a recursive function, then given a word w we first compute the value of
δP (n) where n = |w|. Then we enumerate all disc diagrams with at most n 2-cells.
If none of these have w as the boundary cycle, then we can conclude that w is not
equal to the identity.

The converse will be left a little vague. If there is a computer program which
conclusively proves that w is or is not trivial for any arbitrary input w, it must im-
plicitly computes some recursive bound on the number of 2-cells used. In particular,
the Dehn function must be recursive. �

3.3. Dehn’s algorithm for surface groups

The word problem asks whether an arbitrary word can be reduced a the unique
word of length 0. Sometimes there are obvious ways to immediately shorten the
length of the word under consideration. Dehn’s algorithm incorporates and formal-
izes these obvious shortenings. follow John Stillwell’s book

which gives Dehn’s original
argumentExample 3.3.1 (Surface groups). Let S be the surface constructed by identi-

fying the opposite edges of an octogon in an orientation preserving way (i.e. the
standard complex for the relation abcd = dcba.) We can build the universal cover
by starting with a circle octogon... (build rings and then look at an arbitrary closed
loop)

Definition 3.3.2 (Dehn’s algorithm). Dehn’s algorithm begins with a proce-
dure where you systematically try to locally shorten a combinatorial loop by pushing
a subpath across a single 2-cell. In particular, suppose that p contains a subpath
that is also more than half of the boundary of a 2-cell (in the combinatorial met-
ric). If you find such a subpath, homotopy this subpath across the 2-cell to create
a strictly shorter closed loop. Repeat. At some point this shortening process stops
at a local minimum. If the finally path is trivial, then you have proved that the
original loop was null-homotopic. The other possibility is that you stop at a word
that cannot be locally shortened by crossing a single 2-cell. The shortening process
can applied to any combinatorial loop in any combinatorial 2-complex.

A presentation is said to satisfy Dehn’s algorithm if one can prove that every
null-homotopic closed loop can be locally shortened. This implies that a non-trivial
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loop with no local shortening is guarannteed to represent a non-trivial element of
the fundamental group and that our relatively straightforward shortening procedure
can be used as a diagnostic to detect whether a closed path is trivial or not. Simply
run then check to see whether the result was the trivial loop. If it is, the original
loop represent the identity element and if it is not, then it does not.

Theorem 3.3.3. If a presentation satisfies Dehn’s algorithm, then the group it
defines has a solvable word problem.

(reference and poach from Chuck Miller’s excellent survey article [22])

3.4. Combinatorial Curvature

(the text below has been lifted from the paper with D. Wise [21]. It still needs
to be blended in and simplified)begin the import from FL

In this section, we state and prove a version of the combinatorial Gauss-Bonnet
theorem, followed by two applications. It was first stated and proven for diagrams
which embed in a sphere without boundary by Gersten in [12] and Pride in [24],
thereby refining some earlier ideas of Lyndon’s concerning (p, q)-maps (see [19])
as well as an idea of Sieradski’s [27]. The Gauss-Bonnet theorem was stated for
surfaces in [13]. In this article, we prove a generalization to arbitrary 2-complexes.
Since first writing this article we have learned that this theorem was proven earlier
for piecewise constant curvature 2-complexes by Ballmann and Buyalo [2]. The
proof is the same.

Definition 3.4.1 (Links and perimeters). Let X be a locally finite 2-complex
and let x be a point in its 1-skeleton. The cells of X each have a natural partial
metric obtained by making every 1-cell isometric to the unit interval and every
n-sided 2-cell isometric to a Euclidean disc of circumference n whose boundary has
been subdivided into n curves of length 1. In this metric, the set of points which
are a distance equal to ε from x will form a finite graph. If ε is sufficiently small,
then the graph obtained is independent of the choice of ε. This well-defined graph
is the link of x in X and is denoted by Link(x). If v is a 0-cell of X, then the
graph Link(v) is called the link of the 0-cell v. When X contains a single 0-cell v,
then Link(v) is the star graph or coinitial graph of the presentation X encodes. To
avoid confusion, we will discuss Link(v) using the language of vertices and edges
and reserve the terms 0-cells and 1-cells for the 2-complex X containing v. Notice
that the link of a 0-cell can be an arbitrary finite graph. In contrast, if x lies in the
interior of a 1-cell e of X, then the link of x has a very particular form: Link(x) will
have exactly two vertices (corresponding to the two ends of e) and a finite number
of edges connecting these two vertices. The number of edges in Link(x) is called
the perimeter of e and will be denoted P(e). The word “perimeter” is used because
if each 1-cell is thought to have length 1, then this is the length of the boundary
created when the 1-cell e is removed from X.

Definition 3.4.2 (Corners and sides). Let X be a 2-complex, let v be a 0-cell
in X, let R→ X be a 2-cell in X, and let x be a point in the interior of a 1-cell e in
X. If we regard the 2-cells of X as polygons, then the edges of Link(v) correspond
to the corners of these polygons attached to v. We will refer to a particular edge
in Link(v) as a corner of R at v if this edge comes from the polygon R → X.
Similarly, the edges of Link(x) correspond to the sides of these polygons attached
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to e, and we will refer to a particular edge in Link(x) as a side of R at e if this edge
comes from R→ X.

Remark 3.4.3. It is immediate from the definition that the 2-cell R → X
contributes exactly |∂R| corners at 0-cells of X and exactly |∂R| sides at 1-cells of
X. Since the number of sides contributed by each polygon is the same as the number
of corners, the total number of sides in X equals the total number of corners.

Definition 3.4.4 (Combinatorial curvature). We say X is an angled 2-complex
provided that every corner c of X has been assigned a real number ∠c called the
angle of c, and X is positively angled if all these angles are positive. If f is a 2-cell
of X then the curvature of f is defined to be the sum of the angles assigned to its
corners minus (|∂f |−2)π (which is the expected Euclidean angle sum). In symbols
we have

κ(f) =


 ∑

c∈Corners(f)

∠c


− |∂f |π + 2π

The curvatures of the 2-cells of X are its 2-cell curvatures. If v is a 0-cell of X
then the curvature of v is defined to be 2π minus π · χ(Link(v)) minus the sum of
the angles assigned to corners at v. If X embeds in the plane and v is an interior
0-cell then Link(v) is a circle and the curvature measures the difference between the
expected Euclidean angle sum of 2π and the actual angle sum. This 0-cell curvature
equation gives the appropriate generalization of this idea to arbitrary 2-complexes.
In symbols

κ(v) = 2π − π · χ(Link(v))−


 ∑

c∈Corners(v)

∠c




Remark 3.4.5. Let D be a positively angled diagram and let v be a 0-cell of
D. If Link(v) is not a complete circle (but is not empty), then χ(Link(v)) ≥ 1 and
thus κ(v) ≤ π. Moreover, κ(v) = π if and only if Link(v) is a single vertex and v is
the tip of a spur. Furthermore, if Link(v) is disconnected, then χ(Link(v)) ≥ 2 and
thus κ(v) ≤ 0. In this case, κ(v) = 0 if and only if the Link(v) consists of exactly
two isolated vertices.

We can now state and prove the combinatorial Gauss-Bonnet theorem.

Theorem 3.4.6 (Combinatorial Gauss-Bonnet). If X is an angled 2-complex
then the sum of the 2-cell curvatures and the 0-cell curvatures is 2π times the Euler
characteristic of X.

(1)
∑

f∈2-cells(X)

κ(f) +
∑

v∈0-cells(X)

κ(v) = 2π · χ(X).

In particular, if X is a disc diagram then this sum will be 2π and if X is an annular
diagram the sum will be 0.

Proof. For convenience we will define the following pair of constants.

C =
∑

c∈Corners(X)

∠c P =
∑

e∈1-cells(X)

P(e)

The proof will follow from the following two equations:

(2)
∑

f∈2-cells(X)

Curvature(f) = C − πP + 2πF



66 3. DEHN’S FUNDAMENTAL PROBLEMS

(3)
∑

v∈0-cells(X)

Curvature(v) = 2πV − 2πE + πP − C

where the letters V , E, and F represent the number of 0-cells, 1-cells, and 2-cells
in X, respectively. To prove the theorem, one simply adds Equations 2 and 3, and
observes that the corner sums and the perimeter sums cancel, leaving 2π(V −E+F ),
which is exactly 2π times the Euler characteristic of X. The remainder of the proof
justifies these two equations.

In the definition of the curvature of a 2-cell, there are three terms. The first
term contributes C and the last term contributes 2πF towards the sum of all 2-cell
curvatures. Observe that the sum of the lengths of the boundaries of the 2-cells of
X is precisely the number of sides of 2-cells in X, and this is the total number of
sides at 1-cells of X which is precisely P . Thus the middle term contributes −πP
towards the sum, and Equation 2 has been established.

Similarly, in the definition of the curvature of a 0-cell there are three terms.
The first term contributes 2πV and the last term contributes −C towards the sum
of the 0-cell curvatures. Thus to establish Equation 3 it remains to show that
the sum of the Euler characteristics of the links of the 0-cells is 2E − P . We will
consider the vertices and edges in the links separately. Note that the edges in the
links of the 0-cells are in one-to-one correspondence with the corners of X. Since
each 2-cell has as many corners as sides, the total number of edges occurring in the
links of the 0-cells is P . On the other hand, the vertices in the links of the 0-cells
correspond to the ends of the 1-cells of X. Since each 1-cell of X contributes two
distinct vertices to the links of the 0-cells, the total number of vertices which occur
in the links is 2E. Finally, since the Euler characteristic of a graph is the number
of vertices minus the number of edges, the sum of the Euler characteristics of the
links is 2E − P . This establishes Equation 3 and completes the proof. �

In the remainder of the section we present two quick applications of Theo-
rem 3.4.6. The first application is perhaps the most surprising, and it is the source
of essentially all of the results of small cancellation theory.

Theorem 3.4.7. Let D be a positively angled disc diagram. Suppose that each
2-cell and each interior 0-cell of D has nonpositive curvature. Then one of the
following holds:

1. D is trivial.
2. D is a subdivided interval.
3. There are at least three 0-cells in ∂D with positive curvature.

Proof. By the Combinatorial Gauss-Bonnet theorem, the total curvature of D
is exactly 2π. Therefore there must be some 0-cells in ∂D with positive curvature.
First observe that if there is a 0-cell v in ∂D with κ(v) > π then Link(v) is empty,
and therefore D is trivial because it is connected and so D = v.

The other possibility is that no boundary 0-cell has curvature larger than π.
Now if there are at most two sources of positive curvature, then both of these 0-cells
must have curvature exactly equal to π and all other curvatures must equal 0. Let
v0 be one of the two 0-cells of positive curvature. By Remark 3.4.5, the link of v0

must consist of a single 0-cell. If the 0-cell v1 at the other end of the unique 1-cell
emanating from v0 is not the other 0-cell of positive curvature, then κ(v1) = 0,
and Link(v1) must be disconnected. By Remark 3.4.5 we conclude that Link(v1)
has a specific structure: it consists of two disconnected vertices, and thus there is
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a unique additional 1-cell incident at v1. Repeating this argument, we eventually
reach the other 0-cell of positive curvature and the proof is complete. �

As a consequence, diagrams satisfying C(p)-T (q) for large p and q have re-
stricted structures.

Theorem 3.4.8. Let D be a C(3)-T (6) [C(4)-T (4)] disc diagram. Then one of
the following holds:

1. D is trivial.
2. D is a subdivided interval.
3. There are at least three 0-cells in ∂D with connected links and valence ≤ 3

[≤ 2].

Proof. We assign an angle of π/3 [π/2] to each corner of D. Let R be a 2-cell
of D. By the C(3) [C(4)] condition and the convention on sides , R has at least 3 (old refconv:psides)

[respectively 4] corners and therefore has nonpositive curvature. By the T (6) [T (4)]
condition, each interior 0-cell has nonpositive curvature. Let v be a 0-cell in ∂D. If
Link(v) is disconnected then v will be nonpositively curved because χ(Link(v)) ≥ 2.
On the other hand, if Link(v) is connected and v has valence at least 4 [respectively
3], then v is nonpositively curved because of the way the angles are assigned. An
application of Theorem 3.4.7 completes the proof. �

end the import from FL

Definition 3.4.9 (Angled 2-complex). The corner of a polygon is determined
by a vertex in its boundary cycle. An angled 2-complex is one where every corner
of every polygon has been assigned a real number called its angle. There is no
requirement that these real numbers be positive or even non-negative. If every
assigned angle is positive or non-negative, the complex is called a positively or
non-negatively angled 2-complex.

Definition 3.4.10 (Curvatures).

Definition 3.4.11 (Small cancellation conditions).

small cancellation groups and the combinatorial Gauss-Bonnet theorem.
Do the C(3)− T (6) situation.

Example 3.4.12 (Surfaces). Let S be a compact surface. If it is not a 2-sphere
or a projective plane then there is a 1-vertex triangulation of S with at least 6
corners meeting at the unique vertex. In particular, it is a C(3)− T (6) complex.

(Redo the surface example using CGB and a single regular 4n-gon.)

Notes on sources. Martin Bridson has a very nice article [3] on the geometry
of the word problem. More specifically, he details the relationship between Dehn
functions and filling functions in Riemannian manifolds.

Exercises





CHAPTER 4

Hyperbolic Geometry

The Milnor-Švarc theorem (Theorem 2.2.17) firmly establishes a close connec-
tion between geometries and finitely generated groups. In this chapter is a short
digression into the world of hyperbolic geometry to set the stage for the following
chapter on Gromov hyperbolic groups. Keeping this chapter brief has been diffi-
cult since there are many beautiful aspects of hyperbolic geometry that are easily
explained. Thus virtually all of the topics included contribute directly to our main
goal: to prove that every triangle in hyperbolic space is uniformly thin. To do this
we need an explicit hyperbolic metric in one of the standard models of hyperbolic
space, and a working knowledge of some of its isometries. We begin with the study
of circle preserving maps from the 2-sphere to itself.

In particular, the theory of Möbius transformations is introduced via circle pre-
serving maps of the 2-sphere. We define the hyperbolic metric as the unique metric
(up to rescaling) that is invariant under all Möbius transformations stabilizing a
disc. The key points are:

1. Circle preserv maps
2. Classification theorem
3. Lin frac trans
4. Point Stab = Isom(R2)
5. Disc Stab = Isom(H2)
6. Invariant metrics
7. Thin triangles

4.1. Circle-preserving maps

When a plane in R3 intersects the unit 2-sphere in more than one point, we call
the result a circle in S2 (Figure 1). The homeomorphisms of S2 that send circles to
circles form a group under composition. This group contains the orthogonal group
O(3), the full isometry group of S2, but there are many other homeomorphisms
that preserve the circles. In this section we characterise these homeomorphisms.

Figure 1. A circle in a 2-sphere.

Definition 4.1.1 (Stereographic projection). Use (x, y, z) for a point on the
unit sphere (i.e. with x2 + y2 + z2 = 1) and (X,Y, 0) for a point in the xy-
plane. Every non-horizontal line through the point (0, 0, 1) contains exactly one
additional point on the unit sphere and one point in the plane. This bijection is
called stereographic projection.

Proposition 4.1.2 (Circles under stereographic projection). The stereographic
projection map sends circles in S2 to lines and circles in R2 and vice versa. More
specifically a circle in S2 is sent to a line iff it contains the north pole.
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Proof. To see the equivalence between circles through the north pole and lines
in the xy-plane, simply notice that both conditions are in one-to-one correspondence
with the non-horizontal planes through the point (0, 0, 1). More specifically, each
non-horizontal plane through (0, 0, 1) can be intersected with the unit sphere to
create a circle on S2 or with the xy-plane to create a line and it is clear that
stereographic projection provides a bijection between them.

So suppose that we have a circle on S2 that does not contain the point (0, 0, 1).
It is described by a pair of equations x2 + y2 + z2 = 1 and ax+ by + cz = d where
a, b, c, d are fixed constants and since we are assuming that this plane nontrivially
intersects S2, we know that a2 + b2 + c2 > d2. On the other hand, a circle in the
plane is described by equations (X −A)2 + (Y −B)2 = C2.

It’s straightforward to verify the correspondence. The equations connecting
them are, in one direction a = 2A, b = 2B, c = (A2 + B2 − C2 − 1) and d =
(A2 +B2−C2 +1), and in the other 2A = a, 2B = b, and 2C =

√
a2 + b2 + c2 − d2.

�finish this and make it more
explicit. In particular, use
my notes from lecture to fill
in the short algebraic proof We are now able to create lots of maps h : S2 → S2 that preserves circles.

Simply consider h = f ◦ g ◦ f−1 where g : R2 → R2 is an map from R2 to itself
that sends circles to circles and lines to lines. Three easy examples are translations,
rotations and dilations.

Example 4.1.3 (Translations). The action on S2 corresponding to a translation
preserves the circles through the north pole corresponding to lines parallel to the
translation direction and it shifts the lines through the north pole corresponding to
the perpendicular lines. The only point on S2 that is fixed is the north pole itself.

Proposition 4.1.4. The only orientation preserving circle map fixing only one
point on S2 is the projection of a translation.

If f fixes a point we might as well assume that it’s the north pole. If f fixes
another point we might as well assume that it’s the south pole (by conjugating by
a translation).

Example 4.1.5 (Rotations). Rotations fix two points on S2 and they preserves
some circles.

Example 4.1.6 (Dilations). Dilations have a north-south dynamic with one
attracting fixed point and one repelling fixed point.

We now work to show that there is a circle preserving map that sends any
three points on S2 to any other three points. This is a property known as being
3-transitive.

Using rigid motions, translations, rotations and dilations we can assume that
f fixes three points.

Proposition 4.1.7 (Triply transitive). For any triple of distinct points x, y,
and z there exists an orientation preserving circle preserving homeomorphism f :
Ĉ → Ĉ with f(x) = ∞, f(y) = 0, and f(z) = 1. As a consequence, the group of
circle preserving maps is triply transitive on Ĉ.

Lemma 4.1.8 (Rhombi). A rhombus contains an inscribed circle, but a non-
rhombic parallelogram does not.
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Corollary 4.1.9 (Circles to circles). If f is a Möbius transformation that
fixes ∞, then the action of f on the stereographic projection sends circles in R2

centered at a to circles in R2 centered at f(a).

Proof. Let x and y be two nonantipodal points on the circle of radius r cen-
tered at a and consider the rhombus with sides ax and ay. The map f preserves
parallels and sends lines to lines so the image of this rhombus under f is a parallel-
ogram. Moreover, since f preserves incidence, the circle inscribed in the rhombus
must be sent to a circle inscribed in its image, forcing the image to be a rhombus.
Thus d(f(a), f(x)) = d(f(a), f(y)). Call this value s. The same argument shows
that every point z on the circle radius r centered at a is sent to a point f(z) on
the circle of radius s centered at f(a) (since no such z is antipodal to both x and
y). �

It turns out that we don’t need to know much about f to know it completely.

Lemma 4.1.10 (Midpoints). If f is a Möbius transformation that fixes ∞, a
and b, then f also fixes the point halfway between a and b.

Proof. Let r = d(a, b). By (previous stuff) the circle of radius r centered at a
is sent to itself as is the circle of radius r centered at b. These two circles intersect
in two points c and d and f({c, d}) = {c, d}. Even if they are switched by f , the
line through c and d is sent to itself by f and its point of intersection with the line
through a and b must be fixed. �

Lemma 4.1.11 (Three points). The only orientation-preserving circle-preserving
map of S2 that fixes three points is the identity map.

Proof. Without loss of generality, assume that ∞ is one of the fixed points.
The argument begins as in the previous proof, but the addition of orientation
preserving implies that c and d are each fixed by f . The (rhombus idea) implies
that the entire lattice that they generate in C is fixed. The (midpoint idea) extends
this to a fixed set which is dense. Continuity completes the proof. �

mention Snapper and Troyer

(add in corollaries that give the group structure in terms of linear fractional
transformations).

As an obvious corollary to this lemma, there is at most one circle map f sending
x to a, y to b and z to c.

Proposition 4.1.12 (Constructing Möbius functions). Let f : Ĉ → Ĉ be an
orientation preserving circle preserving map. If f(a) = 0, f(b) =∞ and f(∞) = c

and a, b and c are distinct, then f(z) = c
(
z−a
z−b

)
.

Example 4.1.13 (Rotations). Proposition 4.1.12 can be used to quickly write
down explicit transformations for the 48 rigid motions that permute the six special
points {0,∞, 1,−1, i,−i}. For example, the one-quarter rotation that fixes 1 and
−1 and sends 0→ i→∞→ (−i)→ 0 is described by the function f(z) = i

(
z−i
z+i

)

since f(i) = 0, f(−i) = ∞, and f(∞) = i. Note for later use that after pre-
and post-composing with stereographic projection, this rotation sends the upper
half-space to the unit disc.

Example 4.1.14 (Möbius functions). An orientation preserving circle preserv-
ing maps is uniquely determined by how it acts on any three distinct points.
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Figure 2. The standard coordinates on Ĉ = CP 1.

Remark 4.1.15 (Higher dimensional analogues). Most of what we have done
readily extends to higher dimensions. Consider the group of motions of homeomor-
phisms of the Sn that send subspheres (determined by non-trivial affine intersec-
tions) to subspheres. This includes the transitive action by the orthogonal group.
Thus we only need to understand the homeomorphisms that fix the north pole.
Using stereographic projection we find that every similarity of Rn (i.e. all com-
positions of orthogonal transformations, translations and dilations) lead to Möbius
transformations of the n-sphere. The rhombus argument still holds...

Remark 4.1.16 (Möbius geometry). More generally, given any two fields F1 ⊂
F2 and positive integers k ≤ l, we can study the orbits of F1P

k inside F2P
l. Circles

in 2-spheres are the special case of copies of RP 1 inside CP 1.

4.1.1. Möbius transformations. Here is the outline of the steps used to
show that Möbius transformations are the only circle preserving homeomorphisms
from Ĉ toĈ. The key result is the following:

Theorem 4.1.17 (Three points). The only orientation preserving, circle pre-
serving homeomorphism from Ĉ to Ĉ that fixes 0, 1, and ∞ is the identity.

Proof. Let f be such a map.
1. First f preserves the intersection number between two cirlces.
2. Because f fixes ∞, f sends lines to lines
3. and f sends parallel lines to parallel lines
4. parallelograms go to parallelograms
5. rhombi go to rhombi
6. circles centered at z go to circles centered at f(z).
7. Fix(f) is parallogram closed
8. Fix(f) is midpoint closed
9. Fix(f) is dense (using o.p.)
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10. Fix(f) is C̄. (using continuity)
�

Corollary 4.1.18 (Uniquely triply transitive). There exists a unique orienta-
tion preserving circle preserving homeomorphism that takes any three points to any
other three points

4.2. Models of hyperbolic space

(define disc in S2 as a nontrivial intersection of a half-space with S2.)
The Möbius transformations act transitively on the discs in the unit 2-sphere.
Can we define a metric that is invariant under all of the Möbius transformations

that stabilize this disc. The answer is yes.
For concreteness consider a hemisphere in S2. Two standard choices would be

the hemisphere bounded by the real axis containing i, or the hemisphere bounded by
the unit circle in C that contains 0. In Figure 2 these would be southern hemisphere
and the front hemisphere.

bounded by the real axis where we pick the side containing i. Discuss (1) the upper half-
space model, (2) Poincaré
disc model, (3) the Klein
model and (4) the hyperbo-
liod model - as well as their
relations. In all of them
describe the geodesics, and
in at least one, describe the
distance function explicitly.

Definition 4.2.1 (Upper half-space model). Let U be the upper half-space in
the complex plane and define the hyperbolic length of a piecewise differentiable path
f : [a, b]→ U to be given by the integral

∫

f

|dz|
Im(z)

The next step is to use the metric on the upper half plane to induce a metric
on the unit disc.

Definition 4.2.2 (Poincaré Disc Model). Let D be the open unit disc in the
complex plane and define the hyperbolic length of a piecewise differentiable path
f : [a, b]→ D to be given by the integral

∫

f

2
1− |z|2 |dz|

Two comments: first, it is easy to show that these two elements of arc length
end up defining the same notion of arc length in the hemisphere of S2.

Proposition 4.2.3 (Lengths). Let h be the Möbius function that sends the
upper half plane to the unit disc via a rigid rotation of the corresponding hemispheres
in Ĉ. For every piecewise differentiable path f : [0, 1]→ U, the length of f calculated
in the upperhalf space model is equal to the length of h(f) calculated in the disc
model.

Proof. The function h is defined by the formula h(z) = i
(
z−i
z+i

)
. (the key

calculations include |z + i|2 − |z − i|2 = 4 Im(z) and h′(z) = −2(z + i)−2). �

The length function dD is clearly invariant under rotations around 0 and dU
is clearly invariant under translations and dilations. Together these observations
show that this notion of distance is invariant under PSL2(R).

Example 4.2.4. Show that the hyperbolic length of the segment from the origin
to (r, 0) is log

(
1+r
1−r

)
= 2 tanh−1(r).
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4.3. Isometries of hyperbolic space

Isometry between them, conformal, angles and geodesics,
group of isometries, homogeneous space,

4.4. Triangles in hyperbolic space

S2 H2

law of sines
sin a
sinα

=
sin b
sinβ

=
sin c
sin γ

sinh a
sinα

=
sinh b
sinβ

=
sinh c
sin γ

1st law of cosines cos γ =
cos c− cos a cos b

sin a sin b
cos γ =

cosh a cosh b− cosh c
sinh a sinh b

2nd law of cosines cos c =
cosα cosβ + cos γ

sinα sinβ
cosh c =

cosα cosβ + cos γ
sinα sinβ

area (α+ β + γ)− π π − (α+ β + γ)

Remark 4.4.1 (Labeling conventions). The conventions for labeling a (hyper-
bolic) triangle are as follows. Capitol letters for vertices, lower case for side lengths
and Greek for angle measures. If a vertex is labeled A, then the size of the angle at
A is called α and the length of the opposite side is called a. A fully labeled triangle
is show in Figure 3.PSfrag replacements

A

B

C

a

b

c

α

β

γ

Figure 3. Conventions for labeling a hyperbolic triangle.

Lemma 4.4.2 (Law of sines). If ABC is an arbitrary hyperbolic triangle, then

sinh a
sinα

=
sinh b
sinβ

=
sinh c
sin γ

Lemma 4.4.3 (Law of cosines; first version). If ABC is an arbitrary hyperbolic
triangle, then

cos γ =
cosh a cosh b− cosh c

sinh a sinh b
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Definition 4.4.4 (Thin triangles). A triangle ABC is called k-thin if every
point on any side of the triangle is at most k units from some point on one of the
other two sides of the triangle.

look up whether this really
is δ-thin or δ-slim, or one
of the other equivalent no-
tions.

Theorem 4.4.5. Every triangle in hyperbolic n-space is log(1 +
√

2)-thin.

Proof. Let ABC be an arbitrary hyperbolic triangle and let x be a point on
the AB side of the triangle. In the Poincaré disc model we can use the isometries
of hyperbolic space to arrange the picture so that x lies at the origin, and the side
AB lies along the real axis. The ideal points at either end of this geodesic are 1 and
−1. Without loss of generality we can assume that C has a non-negative imaginary
part and a non-positive real part. Under these conditions we can can argue that
the line y = x intersects line segment AC before it intersects the line connecting 1
and i. (argue this)

The latter distance is log(1 +
√

2). To see this notice that the line connecting
1 and i is an arc of the unique circle that intersects the unit circle at right angles.
In this case the circle is obvious. It is centered at 1 + i and has radius 1. Thus the
point y of intersection is (Euclidean) distance

√
2−1 from the origin. The estimate

now follows from the Example above. �

PSfrag replacements

1−1

i

AB

C

O

x

y

4.4.1. PSL2(Z). (put most of this into the exercises) Farey fractions, Ford
circles, Apollonius, binary quadratic forms (Conway’s book [8])

Remark 4.4.6 (Comment on history).

4.4.2. Historical Notes. As most undergraduates learn at some point, Eu-
clid begins the first book of the Elements with a list of “common notions” that
starts as follows.

1. A straight line may be drawn from any point to any other point.
2. A finite straight line may be extended continuously in a straight line
3. A circle may be drawn with any center and any radius
4. All right angles are equal
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5. If a straight line falling on two straight lines makes the interior angles on
the same side less than two right angles, the two straight lines, if extended
indefinitely, meet on the side where the angles are less than two right angles.

Euclid’s “Fifth postulate”, as it came to be called, clearly stands out as a notion
different in quality from those preceding it.

The existence of non-Euclidean geometries came as a shock to many 19th cen-
tury mathematicians, but in retrospect it seems quite natural. In this chapter we
review some of the standard results about the hyperbolic plane and its isometry
group.

4.4.3. Annontated Bibliography. The material for this chapter is quite
classical. We have used and referred to the following works.

1. Jim Anderson “Hyperbolic Geometry” []
2. Riccardo Benedetti and Carlo Petronio “Lectures on Hyperbolic Geometry”

[]
3. John Ratcliffe “Foundations of Hyperbolic Manifolds”
4. David Mumford, Caroline Series, David Wright “Indra’s Pearls”



CHAPTER 5

Gromov’s Hyperbolic Groups

(The basic model for this chapter should be the good concise discussion in
Chapter III.Γ of Bridson-Haefliger [4], pp.399–437 or the section on hyperbolic
groups in Roe [25].)

(From the outline.tex file)
The key points to highlight are:

• Opening gambit: properties of hyperbolic manifolds.
• 1-skeleton of a hyperbolic manifolds, quasi-geodesic triangles are thin. quasi-

geodesics are uniformly close to geodesics.
• Basic definitions.
• Spaces first: δ-hyperbolic space.
• thin triangles, 4-point (quasi double max), [ slim triangles. incenter, tripod,

bigons, Gromov inner product one, etc. in exercises?]
• Examples. variably curved manifolds. universal cover a wedge of hyperbolic

manifolds. c(3)-t(7), twisted figure 8 knot.
• Quasi-geos fellow travel.
• exponential divergence of geodesics.
• Nicening δ-hyperbolic spaces, Rips complex.
• Gromov hyperbolic groups. defined as groups acting geometrically on δ-

hyp spaces. Then apply Rips construction to preimage of a basepoint to
get a geometric action on the Rips complex.

• Cor: hyp-¿ nice finiteness properties.
• Linear IP = Hyperbolic. (subquadratic -¿ hyp)
• Dehn’s algorithm = Hyperbolic
• no Z + Z

5.0.4. Exercise:

• Prove the various definitions are equivalent.
• R-trees as connected 0-hyperbolic spaces.
• Tropical stuff
• Twisted figure 8 knot doesn’t embed in a 3-manifold.

5.0.5. Maybe stuff.

• Finitely many cone types
• Free subgroups (gn, hn)
• automaticity.
• elementary hyperbolic
• quasiconvexity of Z subgroups.
• translation length

77



78 5. GROMOV’S HYPERBOLIC GROUPS

5.1. δ-hyperbolic spaces

The most basic objects are δ-hyperbolic spaces. Recall that a geodesic is a
length minimizing curve and that a geodesic metric space is a metric space in
which every pair of points is connected by a geodesic.

PSfrag replacements

x y

z

p

X

Figure 1. A triangle which is not quite δ-thin.

Definition 5.1.1 (δ-hyperbolic). A geodesic metric space X is δ-hyperbolic if
there is a fixed δ ≥ 0 such that for all points x, y, z ∈ X and for all geodesics
connecting x, y, and z and for all points p on the chosen geodesic connecting x to
y, the distance from p to the union of the other two geodesics is at most δ.

A space is called hyperbolic if it is δ-hyperbolic for some value of δ.
(Remark on the dangerous aspects of this terminology. Mention H3 minus

horoballs, complement of the figure 8 knot, etc.)

5.2. Quasi-geodesics

Definition 5.2.1 (Quasi-geodesics). A quasi-geodesic is an isometrically em-
bedding of an interval of the reals.

As we noted in the earlier section on quasi-isometries, in a typical metric space
such as R2, a quasi-isometric embedding of an interval need not look anything like
a geodesic between its endpoints.

Example 5.2.2 (Quasi-geodesics are necessarily close). If α and β are quasi-
geodesics that start and end at the same endpoints, then there

The following is an easy consequence of δ-hyperbolicity.

Proposition 5.2.3. Let X be a δ-hyperbolic geodesic metric space, let α be a
geodesic from x to y, and let β be an arbitrary rectifiable curve from x to y. If p is
a point on α, and `(β) ≤ 2N+1, then d(p, β) ≤ Nδ + 1.

Proof. The proof is an easy induction. When N = 0, `(β) ≤ 2. Since α is
a geodesic, its length is at most 2 and p is within 1 unit of one of the endpoints.
On the other hand, if 2N < `(β) ≤ 2N+1, then by drawing a geodesic triangle
connecting x, y and the point z half-way along the curve β, we can find a point q
on one of these sides that is at most δ from p. Applying the induction hypothesis
completes the proof. �
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Corollary 5.2.4. “Circles” in δ-hyperbolic spaces have circumferences that
are exponential functions of their radii.

Theorem 5.2.5 (Stability of quasi-geodesics). If X is a δ-hyperbolic space then
there exists an M depending only on δ and K such that every pair of coterminous
K-quasi-geodesics are within M of each other.

Lead up to this.

Theorem 5.2.6 (Stability of hyperbolicity). If X is δ-hyperbolic and X ′ is
quasi-isometric to X, then X ′ is δ′-hyperbolic for some δ′.

Proof. Take a geodesic triangle in X ′, pull it back to a quasi-geodesic triangle
in X, relate it to a geodesic triangle in X, apply the δ-hyperbolic condition and
then push everything forward again to X ′. A careful accounting of the constants
involved shows that X ′ is δ′-hyperbolic. �

We are now ready to define the notion of a hyperbolic group.

Definition 5.2.7 (Gromov hyperbolic groups). A finitely generated group G
is called Gromov hyperbolic or word hyperbolic (or simply hyperbolic when there is
no danger of confusion) if its intrinsic geometry is hyperbolic

Corollary 5.2.8. If G and G′ are quasi-isometric groups and G is Gromov
hyperbolic, then G′ is Gromov hyperbolic.

Lemma 5.2.9. If Mn is a closed and compact hyperbolic n-manifold then π1(M)
is a Gromov hyperbolic group.

Remark 5.2.10 (Hyperbolic groups and hyperbolic manifolds with boundary).
It is an unfortunate accidents of terminology that the fundamental group of a
compact hyperbolic manifold with boundary need not be a Gromov hyperbolic
group. In particular, it is relatively easy to construct a hyperbolic 3-manifold M
with a torus boundary component. In this situation, π1(∂M) = Z× Z injects into
π1(M), proving that π1(M) is not a Gromov hyperbolic group.

(an example of this phenomenon is the complement of the figure 8 knot)

5.3. Equivalent definitions

Basic Definitions and their equivalence. Plus key properties. Dehn’s algorithm.

Definition 5.3.1 (Inradius).

Definition 5.3.2 (Tripods).

Definition 5.3.3 (Double maximum).

Definition 5.3.4 (Roughly linear). Let X be a metric space and let ε be a
fixed constant. If dX(x, z) + dX(z, y) − dX(x, y) ≤ ε, then z is ε-quasi-between x
and y and x, z and y are roughly linear. Note that in a geodesic metric space, z is
0-quasi-between x and y iff there is a geodesic from x to y through z.

Definition 5.3.5 (Vertex hyperbolic). (discuss the difference between being δ-
hyperbolic and having a δ-hyperbolic vertex metric. So long as there is a cocompact
group action, the two notions are equivalent.)
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Proposition 5.3.6. If X is a geodesic metric space which is δ-hyperbolic and
L is a subset of X which is ε-quasi-onto, then the induced metric on L is δ + 2ε
roughly thin.

Definition 5.3.7 (Maximum almost occurs twice). Let X be a geodesic metric
space. It has the δ double maximum property if for all quadruples of points, x, y,
z and w, the following inequality is satisfied:

dX(x, y) + dX(z, w) ≤ max{dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)}+ 2δ

(discuss the situation in trees and then convert it to δ-hyerpbolic spaces) (com-
ment on the relation with tropical geometry).

(where should this go?)

Theorem 5.3.8 (Characterization theorem). A group G acts geometrically on
hyperbolic 3-space H3 if and only if its Cayley graph is quasi-isometric with H3.
(Theorem 11.4 from [7] by Cannon and Cooper)

5.4. Rips’ complex

Definition 5.4.1 (Discrete metric spaces). A discrete metric space is any met-
ric space where the induced topology is discrete. I.e. for every x ∈ X there is an ε
such that Bε(x) only contains x.). Examples include the 0-skeleton of any metric
cell complex in the induced metric.

(there are minor restrictions that need to be made, but these can be handled
in the definition of a metric cell complex).

Definition 5.4.2 (Rips complex). Let L be a discrete metric space and let d >
0 be a fixed constant. The simplicial complex Ripsd(L), known as the Rips complex,
is defined as follows. Start with a 0-skeleton labeled by the points of L. Next add
an edge between distinct vertices iff the distance between the corresponding points
in X is at most d. In other words, if we let u and v denote distinct elements of
L inside X as well as the corresponding vertices in the simplicial complex we are
constructing, then the vertices u and v are connected by an edge iff dX(u, v) ≤ d.
The last step is to attach all possible simplices to this graph so that the final result
is a flag complex. (say more and/or define flag elsewhere)

Theorem 5.4.3 (Contractibility). If X is a δ-hyperbolic metric space and L is
an ε-quasi-onto discrete subset of X, then for all d ≥ 4δ+2ε, the simplicial complex
Ripsd(L) is contractible.

Proof. Fix d ≥ 4δ + 2ε and let Y = Ripsd(L). By Whitehead’s theorem
(Theorem A.4.8) it is sufficient to show that every map Sn → Y is null-homotopic.
Notice that if C is any compact space, any map f : C → Y can be factored as
C → K ↪→ Y where K is a finite subcomplex containing the image and the second
factor is the inclusion map. In particular, Sn is compact, and it is thus sufficient to
show that for every finite subcomplex K in Y , the inclusion map is null-homotopic.
As a base case of an induction, notice that for every pair of vertices u and v in K,
dX(u, v) ≤ d, then K is contained in a simplex of Y , and the inclusion map is thus
null-homotopic.

The strategy at this point is to use the δ-hyperbolicity to construct explicit
homotopies from the inclusion map K → Y (with K finite) to another map whose
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image is contained in a proper subcomplex of K. It will be clear from the construc-
tion that this procedure can be applied systematically to reduce the vertex diameter
of the image of K to the point where the base case can complete the proof.

(somewhere assume that K is the full subcomplex on this vertex set)
Let K be a finite simplicial complex and let x be one of its vertices. Consider

the value m = max{dX(x, v)|v ∈ K(0)}, and let y be a vertex of K that achieves
this maximal distance. If m ≤ d/2 then every pair of vertices in K are at most
d apart and we are in the base case. Thus we may assume that dX(x, y) ≥ d/2.
Consider a geodesic in X connecting x and y and let z be a point in L that is at
most ε from the point on the geodesic distance d/2 from y and m − d/2 from x.
See Figure XXXX. We define a map from K to K which fixes the 0-skeleton of K
except that it sends y to z. The key claim is that this map on the vertices can be
extended to a simplicial map. The only concern involves the simplices containing
y. For example, if there is an edge connecting w and y, then there needs to be
an edge connecting w and z. Thus we need to know that dX(w, y) ≤ d implies
dX(w, z) ≤ d. Conversely, this is sufficient since K is a flag complex.

Using the quasi-double maximum version of δ-hyperbolicity, we know that
dX(w, z)+m ≤ max{d+m−d/2+ ε,m+d/2+ ε}+2δ = m+d/2+ ε+2δ ≤ m+d.

(Final step, mumble something about how this map is homotopic to the identity
map.) �

some consequences
Mention that group actions on X that preserve L extend to group actions on

Ripsd(L).

5.5. Finite subgroups

As a warm-up do finite groups acting on trees and finite groups acting on
Euclidean space.

Lemma 5.5.1. If G is a finite group acting by isometries on a tree X then the
XG 6= ∅ where XG denotes the set of global fixed points.

Proof. Let x be a point inX and consider the smallest subtree ofX containing
the orbit of x under the action of G. This is a finite tree T . Since G is acting by
isometries, it is a bijection on the vertex set and sends leaves to leaves. Thus the
subtree T ′ of T obtained by removing all the leaves of T (if non-empty) is also
preserved by the action of G. Continuing in this way we find a tree T with no
internal vertices that is preserved by the action of G. This T is either a single
vertex or a single edge. Done. �

Lemma 5.5.2. If G is a finite group acting by isometries on X = Rn, then
XG 6= ∅.

Proof. (Find the set of best centers and show there’s only one.) �

With these two proofs as preamble, it is perhaps surprising that a finite group
acting on a Rips complex need not have a global fixed point. The first step can

Argue that finite groups stabilize some bounded orbit. (maybe allude to Bob
Olivers strange theorem [23]).

On the other hand, stabilizers are clearly finite.
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5.5.1. Final remarks. Reasons for studying negatively curved groups (from
[7] p.319)

1. In a certain formal sense, negatively curved groups are the most common
among finitely presented groups

2. Among 2 and 3 manifolds, the negatively curved manifolds are far and away
the most common.

3. Computationally the negatively curved groups exhibit behavior just one
step more complicated then free products and HNN extensions.

4. Negatively curved groups are surprisingly stable under natural construc-
tions.

Example 5.5.3 (Virtually Free Groups). A finitely generated group G is called
virtually free if it contains a finite index subgroup which is free.

From [7]
The task of geometric group theory is to study geometric group
actions and group actions that are nearly geometric in some sense.
The goal is to determine which groups can act on which geometries
and to determine the combinatorial properties of the groups which
can so act.



CHAPTER 6

Ends and Boundaries

When the real line is considered intuitively, most observers would agree that it
has two distinct “ends” whereas something qualitatively different is going on with
the portion of the complex plane far away from the origin. The technical concept
of an end of a space is a way to formalize this intuition. Use the second half of

Chapter III.Γ of Bridson-
Haefliger [4] as a reference

6.1. The Space of Ends

Opening gambit: number of ends of R, R2, and a trivalent tree.
The key points to highlight are:

• Ends. Categorical definition
• Proper rays. Quotient definition
• (Freudenthal-Hopf) Every group has 0,1,2 or infty ends.
• 0 iff finite
• 2 iff virt. Z
• mention stallings, and remark that one-ended is where its at.
• The space of ends has a topology. (its perfect)
• QI -¿ homeo.

Categorical definition
Proper rays. Quotient
definition
(Freudenthal-Hopf) Every
group has 0,1,2 or infty
ends.
0 iff finite
2 iff virt. Z
mention stallings, and
remark that one-ended is
where its at.
The space of ends has a
topology. (its perfect)
QI -¿ homeo.
Projective limits.

Definition 6.1.1 (Ends via projective limits). If X is a metric space, then
let U(X) denote its set of unbounded path components. Given a metric space X,
the sets U(X \ C) where C is an arbitrary compact subspace form a projective
system. The ends of X are the projective limit of this system. Alternatively, (give
the proper ray definition)

Definition 6.1.2 (Proper rays). A map f : X → Y is proper if the inverse
image of each compact set S ⊂ Y is a compact subset of X.

Definition 6.1.3 (Ends via equivalence relations). The ends of X can also be
defined using an equivalence relation on the collection of all proper rays in X. Call
two rays equivalent with respect to C if they both eventually remain in the same
unbounded component of X \ C. Two rays are equivalent if and only if they are
equivalent with respect to every possible compact subset C.

(should we prove these two definitions are the same?)
Notice that if C ′ ⊃ C then there is a well-defined map U(X \C ′)→ U(X \C).

These are the maps in the diagram with respect to which we taking the projective
limit. (awkwardly said)

Theorem 6.1.4 (Freudenthal-Hopf). Every finitely generated group has either
0, 1, 2, or infinitely many ends.
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Proof. Notice that as larger and larger compact subsets C of X are removed,
the cardinality of U(X \C) can only increase and the number of ends is the supre-
mum of these increasing values. Thus it suffices to prove the following. If there
exists a compact set C such that X \C has at least k ≥ 3 unbounded components,
then there exists a compact set C ′ ⊃ C such that X \ C ′ has at least k′ > k
unbounded components. (add in the standard move things around proof) �

Lemma 6.1.5. Every quasi-isometry f : X → Y between geodesic metric
spaces induces a homeomorphism f∗ : Ends(X) → Ends(Y ). Moreover, the map
QI(X)→ Homeo(Ends(X)) is a group homomorphism.

As a corollary we have the following.

Proposition 6.1.6. The number of ends is a geometry property.

6.2. The Boundary at Infinity

• Boundaries.
• Geodesics rays in R2

• Gromov-Hausdorff distance
• geo / equiv = boundary
• same for H2. Note that in the hyp case, we can use quasi-geo.
• Still works. δ-hyperbolic. Still works.
• connected components of the boundary = ends.
• Remark on Mostow rigidity.

Various definitions: boundaries of hyperbolic groups,
(look at the AIM conference description for ideas)

Exercises

• π1 at infinty. (R2)
• f.g. x f.g. is one-ended.
• Bestvina-Kapovich-Kleiner [Inv02]. Embeddings. K3,3 and F2 × F2.

6.2.1. Maybe stuff. Stallings infty ends -¿ splits. (torsion-free version only?)



CHAPTER 7

Splittings and Quasiconvexity

(I’ve simply joined together old ch 8 and 9 and tried out some section titles.
Nothing is where is should be yet)

One of the main goals of this chapter is to introduce enough of the ideas and
results so that afterwards, Serre’s book on trees [26] should be readable.

7.1. Actions on trees

Stalling’s theorem and actions on Z-trees seemed like a topic which was some-
thing that wasn’t so elementary as to be presumable, but so basic that it seemed
strange to leave it to a case study. Plus, if we include a short chapter on this
there are many opportunities to build on it later. Although the definitions do not
seems inherently metric, the content of the theorem is that whether a group has a
non-trivial splitting only depends on the purely geometry notion of the number of
ends that its geometry possesses.

HNN extensions, amalgamated free products, Britton’s lemma, actions of groups
on (Z-)trees, splittings, graphs of groups, Stallings theorem, complexes of groups

7.2. Scott and Wall’s approach

7.3. Bass-Serre Theory

7.4. Amalgamations and Quasiconvexity

relating the metric on an amalgamated free product to the metrics on all sides.
Quasiconvexity, the Z’s inside Z2, gen. set dependent in general, not so in a hyper.
group.

(Higman, Neumann, Neumann)
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Epilogue: Where to go from here

All of mathematics is a tale about groups.
Henri Poincaré 1

Moved from the intro

Some examples include the book by Martin Bridson and André Haefliger on
the geometry of nonpositively curved spaces [4], the six-author work on automatic
groups [10] and, of course the original long article by Misha Gromov [14] where
many key results about hyperbolic groups were outlined for the first time. More
recent examples include a book by Mike Davis on Coxeter groups and one by Ross
Geoghagan on topological methods in group theory.

(Detailed pointers to other sources of information. Sort of a bibliographic
essay.)

[USE the S-book stuff!!!]

7.4.1. Notes on History. Moved from Ch.1: Here’s a quasi-random list of
names/bits of history that I might want to work in as I go.

Names: (Topological / combinatorial viewpoint)
Prehistory: Niels Abel, Evariste Galois, Dyck, Arthur Cayley,
Founders: Max Dehn, Henri Poincaré
First steps: Tietze, Nielsen, Reidemeister, Schreier, van Kampen,
Coxeter, Baumslag, Miller, Boone
Grushko, Adyan, Novikov
Early group theory books: Burnside [6], Hall [15], Kurosh [17, 18], Magnus-

Karrass-Solitar [20], Lyndon-Schupp [19], Stillwell [29].

1The context for this quote is provided by Hawkins: “Thus when Lie visited Paris in 1882,

he found Poincaré already convinced of the importance of group theoretic ideas in geometry - and
throughout mathematics. According to Lie’s report to Klein in a letter from Paris, Poincaré had

explained to Lie that all of mathematics was a tale about groups. Lie indicated that Poincaré did

not know the Erlanger Programm, and so he described it to him. There is no evidence, however,
that Poincaré ever studied the Programm or was particularly influenced by it since he himself had

already arrived at a group theoretic interpretation of geometry.” [Hawkins 1984, p. 447-448]
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APPENDIX A

Algebraic Topology

This appendix is a brief review of basic algebraic topology. The idea is to make
explicit the foundations on which geometric group theory is built and to establish
standard notation and terminology.

A.1. Cell complexes and Euler characteristics

The notion of a cell complex is flexible enough to construct complicated spaces,
but restrictive enough to avoid pathological examples such as the topologist’s sine
curve or the Hawaiian earring. The most basic cell complexes are the simplicial
ones.

Definition A.1.1 (Simplicial complexes). An abstract simplicial complex is a
collection S of finite subsets of a fixed set V such that τ ⊂ σ ∈ S implies τ ∈ S.
The elements of V are called vertices and the elements of S are called simplices
because of the shapes they produce in the geometric realization. Let U be a real
vector space with a basis whose elements are indexed by V . To each σ ∈ S we
associate the subset of U formed by all nonnegative linear combinations

∑

v∈σ
λvv with

∑

v∈σ
λv = 1.

If σ has n elements, then this set is an ordinary (n−1)-simplex. (For n = 0, 1, 2 and
3, an n-simplex is a point, an interval, a triangle and a tetrahedron.) The union of
the simplices associated to each σ ∈ S is the (topological) geometric realization. For
convenience we use S for both the abstract simplicial complex and for its geometric
realization, and we use σ for both a finite subset of V and the topological simplex
it contributes to S.

Because of their concrete description, simplicial complexes are nice to work
with, but there are situations where they are unnaturally restrictive. A more flexible
construction involves iteratively attaching cells.

Definition A.1.2 (Attaching spaces along subspaces). If X0 and X1 are topo-
logical spaces, A is a subspace of X1 and f : A → X0 is a continuous map, then
we can form a quotient of X0 tX1 by identifying each point a ∈ A with its image
f(a) ∈ X0. The resulting space X is denoted X0 tf X1 and it is described as the
space X0 with X1 attached along A via f . See Figure 1.

Definition A.1.3 (Cell complexes). The notion of a cell complex or CW com-
plex (terms we use interchangeably) is defined inductively, dimension by dimension.
A 0-dimensional cell complex is an arbitrary set of points called 0-cells with the
discrete topology. An n-dimensional cell complex or n-complex X is constructed by
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PSfrag replacements
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Figure 1. A schematic representation of spaces and maps used to
construct X = X0 tf X1.

attaching a disjoint union of n-discs along their boundary spheres to an already con-
structed (n−1)-dimensional cell complex Xn−1. In particular, let En =

∐
Dn be a

disjoint union of n-discs and for each n-disc fix a continuous map f : ∂Dn → Xn−1,
called the attaching map. There is then an induced map F : ∂En → Xn−1 and
the complex X = Xn−1 tF En is an n-dimensional cell complex. For any j < n,
the space Xj embeds into X and thus Xj can be viewed as a subspace of X; it is
called the j-skeleton of X. Since unadorned superscripts often indicate dimension,
we use X(j) to denote the j-skeleton of a cell complex X.

The interiors of the n-discs map homeomorphically into X and these images
are called the n-cells of X. Since the points of X can be partitioned into X(n−1)

and the n-cells of X, by induction, the set X can be viewed as a disjoint union
of its j-cells, 0 ≤ j ≤ n. For convenience, we often refer to 0-cells and 1-cells as
vertices and edges respectively, and 1-complexes as graphs. A cell complex is finite
if it has only finitely many cells.

Infinite dimensional cell complexes can also be constructed. Given cell com-
plexes X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · where each Xk is a k-dimensional cell complex
constructed by attaching k-discs along their boundary to the previous complex in
the list, we let X denote the union of these nested spaces and declare U ⊂ X to be
an open subset of X iff U ∩Xk is open in Xk for all k ≥ 0.

Remark A.1.4 (Dimension −1). The inductive construction described above
could actually have started one step earlier by declaring the empty topological space
to be a (−1)-dimensional cell complex X−1. The 0-dimensional cell complexes are
constructed by attaching a disjoint union of 0-discs along their boundary spheres
to this (−1)-dimensional cell complex. Because D0 is the entire space R0, it is open
in the topology of R0 and thus its boundary is empty. This is completely consistent
with the idea that ∂D0 = S−1 since S−1, by definition, is the set of vectors in R0

of length 1, which is, once again, empty. As a consequence, E0 =
∐

D0 is a set of
points with the discrete topology, ∂E0 is the empty set, and the only choice we have
for F : ∂E0 → X−1 is the empty map between empty spaces. The resulting space
X = X−1 tF E0 is then a set of points with the discrete topology. This convention
is often useful. For example, one can define the k-cells of X as the images of the
interiors of the k-discs under their attaching maps with no need to single out the
0-cells of X for separate treatment.

A subcomplex of a cell complex X is a union of j-cells that is closed in the
topology of X. The various skeleta are obvious examples of subcomplexes, but
there are many others. The fact that cell complexes are well-behaved is illustrated
by the following theorem:
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Theorem A.1.5 (Cell complex properties). Every cell complex X is normal
and Hausdorff. It is connected iff it is path-connected iff its 1-skeleton is connected.
It is compact iff it has only finitely many cells. And every compact subspace of X
is contained in some finite subcomplex.

As a consequence of Theorem A.1.5, the image of any k-disc, being compact, is
contained in some finite subcomplex. Historically, this property was called closure-
finite since the finite subcomplex contains the closure of the corresponding k-cell.
Cell complexes were originally defined in a way that relied heavily on the closure-
finite property and the use of the weak topology on the union. Hence the name CW
complex.

Definition A.1.6 (Euler characteristics). Let X be a finite cell complex and let
ci denote the number of i-cells that X contains. The (ordinary) Euler characteristic
of X is equal to

∑
i≥0(−1)ici and it is denoted χ(X). The reduced Euler charac-

teristic of X is a slight modification of the Euler characteristic where we consider
the empty set as a (−1)-dimensional cell of X. When viewed in this way c−1 = 1
and the alternating sum over the cells of X yields

∑
i≥−1(−1)ici = χ(X) − 1.

The reduced Euler characteristic is denoted χ̃(X). Despite the redundancy, it is
useful to have both χ(X) and χ̃(X) available. For example, χ̃(Sn) = (−1)n and
χ(X × Y ) = χ(X) × χ(Y ). Neither pattern can be stated as cleanly in the other
notation.

There is great freedom in the definition of a cell complex, as the nature of
the attaching maps is not very restrictive. In particular, it is not the case that
every cell complex is homeomorphic to a simplicial complex (Exercise 4). In this
book we often restrict ourselves to a simpler situation where the spaces are always
homeomorphic to simplicial complexes (Exercise 5).

Definition A.1.7 (Cellular maps and combinatorial complexes). A map Y →
X between cell complexes is cellular if its restriction to each cell of Y is a home-
omorphism onto a cell of X. A cell complex X is combinatorial if a cell structure
can be imposed on the domain of each attaching map of each k-cell of X so that
the result is a cellular map between cell complexes. In the literature, combinatorial
cell complexes are also known as regular cell complexes.

A.2. Fundamental groups and van Kampen’s theorem

Next we shift our attention from spaces to maps.

Definition A.2.1 (Homotopic maps). Two maps g, h : X → Y are homotopic
if there is a map F : X × I → Y (a homotopy) such that g = f0 and h = f1 where
ft : X → Y is the map defined by the equation ft(x) = F (x, t). We write g ∼= h
when g and h are homotopic maps. When g : X → Y is homotopic to a constant
map (i.e. a map whose image is a single point of Y ), then g is null-homotopic. If A is
a subspace of X and there is a homotopy F : X×I → Y such that F (a, s) = F (a, t)
for all s, t ∈ I, then g and h are homotopic relative to A.

Recall that a based space is a pair (X,x) where X is a topological space and x
is a point of X and a based map is a map from (Y, y) to (X,x) is a map f : Y → X
with f(y) = x. Such a map is denoted f : (Y, y)→ (X,x).
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Definition A.2.2 (Fundamental groups). The fundamental group of a cell
complex X based at a point x is the set of equivalence classes of paths in X that
start and end at x where two paths are considered equivalent if they are homotopic
relative to their endpoints. The multiplication of two such classes is defined by
taking the equivalence class of the concatenation of representatives. If x and x̂
are two points in the same connected component of X, then any path connecting
them induces an isomorphism π1(X,x) ≈ π1(X, x̂). We should note, however, that
the exact isomorphism usually depends on the choice of a connecting path. Since
fundamental groups of connected cell complexes are well-defined up to isomorphism,
basepoints are occasionally suppressed.

One of the key properties of this construction is its functoriality.

Proposition A.2.3 (Functorality). There is a functor from the category of
based topological spaces to the category of groups such that the image of (X,x) is
π1(X,x) and the image of the map f : (X,x)→ (Y, y) is the group homomorphism
f∗ : π1(X,x) → π1(Y, y). In particular, if f = gh as based maps, then the cor-
responding group homomorphisms satisfy f∗ = g∗h∗, and if f is the identity map
then f∗ is the identity group homomorphism.

To illustrate the benefits of functoriality, consider a retraction onto a subspace.
Let A be a subspace of X and let i : A → X be the inclusion map. Recall that a
map r : X → A is called a retraction if ri = 1A and it is a deformation retraction
if, in addition, ir is homotopic to 1X relative to the subspace A.

Proposition A.2.4 (Retractions and fundamental groups). If A is a connected
subspace of a connected space X, i : A→ X is the inclusion map and r : X → A is
a retraction, then r∗ is surjective and i∗ is injective. In particular, π1(A, a) can be
viewed as a subgroup of π1(X, i(a)).

Proof. Pick a ∈ A. By Proposition A.2.3, r∗i∗ = 1G where G = π1(A, a).
The rest follows from the fact that 1G is a bijection. �

add connecting text

Proposition A.2.5. For every subcomplex A of a cell complex X there is
a small open neighborhood N of A such that N deformation retracts to A. In
particular, N is homotopy equivalent to A.

Proposition A.2.6. Let X be a cell complex. Then every map f : S1 → X

can be homotoped to a map f̂ : S1 → X(1). In particular, if ι : X(1) ↪→ X is the
inclusion of the 1-skeleton into X, then the induced map ι∗ : π1(X(1))→ π1(X) is
a surjection.

Definition A.2.7 (Wedge products). Let {(Xα, xα)} be a collection of based
spaces. The wedge product of this collection is the quotient of their disjoint union
in which all of the base points have been identified:

∨
Xα =

∐

α

Xα/{xα ∼ xβ}.

The resulting space is denoted ∨αXα or X ∨ Y when only two spaces are involved.

If X is a cell complex with basepoint x, and X can be expressed as a union of
subcomplexes Aα, each of which contains x, then there is a map

φ :
∨
Ai → X
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Figure 2. A decomposition into subcomplexes induces a map
from the wedge product of the subcomplexes

defined by making φ an isomorphism when restricted to any Ai.

Theorem A.2.8 (van Kampen’s Theorem). Let X be a cell complex that can
be expressed as a union of path-connected subcomplexes X =

⋃
Aα, where for all

pairs of distinct indices Aα ∩ Aβ = C, for a fixed, path-connected subcomplex C.
The resulting map from the wedge product of the pieces, φ :

∨
Aα → X induces a

surjection on the level of fundamental groups: φ∗ : π1(
∨
Aα) � π1(X). Further,

if for each index α we let ια denote the induced map π1(C) → π1(Aα), then the
kernel of φ∗ is the normal subgroup generated by {ια(c)ιβ(c−1) | c ∈ π1(C)}.

Corollary A.2.9. Let X be a cell complex and let ι : X(2) ↪→ X be the
inclusion of its 2-skeleton. Then the induced map ι∗ : π1(X(2)) → π1(X) is an
isomorphism.

Proof. In higher dimensions, when you attach cells it is along 1-connected
subspaces, so the kernel is trivial. �

A.3. Group actions and covering spaces

In the prologue we began our study of the fundamental group of the complement
of the trefoil knot, G ≈ π1(S3 \K), by forming a cell complex D with G ≈ π1(D).
In order to study the structure of G we needed to understand not just the structure
of D, but how G acts on D̃.

Definition A.3.1 (Group actions). A left action of a group G on a mathe-
matical structure X is a group homomorphism from G to Aut(X), the group of
all invertible structure preserving maps under function composition. Thus, if X is
a topological space, Aut(X) is the group of all homeomorphisms from X to itself.
More explicitly, a left group action of G on X is a function a : G×X → X such that
(1) for each g ∈ G, the restriction g· : X → X defined by g · (x) = a(g, x) is a home-
omorphism from X to itself, (2) g · (h · (x)) = (gh) · (x) for all g, h ∈ G and for all
x ∈ X, and (3) the identity element of G restricts to the identity homeomorphism.

Left group actions are denoted G y X, which is read as “G acts on X”. The
word “left” is usually suppressed since the sidedness of the action is implied by the
way that functions are denoted. In order to define a right action of G on X we
would need to use algebraist notation (i.e. we would have to write (x)f instead of
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f(x) to describe the function f applied to the point x). The few occasions where
algebraist notation for functions and right group actions are needed are clearly
indicated.

Definition A.3.2 (Proper group actions). Let G y X, where X is a topolog-
ical space. The group G is acting properly discontinuously on X if for every point
x ∈ X there is a neighborhood U of x such that {g ∈ G | g(U) ∩ U 6= ∅} is finite.
The action is free if the open set U can always be chosen so that this set contains
only the identity element of G. The stabilizer of a point x ∈ X is the subgroup
Stab(x) = {g ∈ G | g(x) = x}, and a group action is proper if all of the point
stabilizers are finite.

Remark A.3.3 (Group actions and categories). The notion of a group action
depends on the category used to define Aut(X). Consider the group Aut(S1).
When S1 is viewed as a cell complex, the natural maps are cellular maps and
Aut(S1) is either a cyclic group of order 2 (in the one 0-cell case) or a finite
dihedral group whose order depends on the number of 0-cells in S1; when S1 is
viewed as a metric space, the natural maps to are isometries and Aut(S1) becomes
the Lie group O(2); and when S1 is viewed purely as a topological space, Aut(S1)
contains all homeomorphisms from S1 to itself, which is quite a large group.Cite Caligari?

Suppose · : G × X → X is a left group action of a group G on a space X.
Because group elements are invertible, every map g· : X → X is necessarily one-
to-one and onto. Moreover, when X has any additional structure (such as a cell
structure, or an orientation on its 1-skeleton, etc.), we shall assume that the action
of G preserves this additional structure. In the case of a cell structure, this means
that each map g· induces a bijection from the i-cells of X to the i-cells of X.

Definition A.3.4 (Quotients). Given an action G y X, the quotient of the
action is the quotient space formed by identifying g · x with x for each x ∈ X
and g ∈ G. It is denoted G\X. A fundamental domain for an action G y X
is a path connected, closed subset F ⊂ X such that G · F = X with no proper
subset of F satisfying these conditions. When X is a cell complex one can always
find a fundamental domain that is a subcomplex, but this is not required. Note
that given a fundamental domain F there is an induced surjection F � G\X. A
group action G y X is cocompact if G\X is compact, or equivalently, if there is a
compact fundamental domain.

Proposition A.3.5 (Free actions have quotients). If G y X is a free left
action of a group G on a cell complex X where, by convention, the action respects
the cell structure, then there is a well-defined cell structure on its quotient G\X.

A.3.1. Covering spaces. A map f : Y → X between path-connected topo-
logical spaces X and Y is called a covering map when for every x ∈ X there
exists an open set U containing x such that f−1(U) can be written as a disjoint
union of open sets Uα where f restricted to each Uα is a homeomorphism. When
f : Y → X is a covering map then Y is called a cover of X. A covering map must
be a local homeomorphism, but in general this is not sufficient (Exercise 8). For
cell complexes, however, the two concepts are equivalent.

Proposition A.3.6 (Recognizing covers). If X and Y are connected cell com-
plexes, then f : Y → X is a covering map if and only if f is a local homeomorphism.
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If f : Y → X, g : Z → X, and h : Z → Y are maps such that f ◦ h = g, then h
is called a lift of g through f . When f and g are based maps, then we additionally
require h to be a based map taking the base point of Z to the basepoint of Y . The
definition of a cover is designed to facilitate the creation of lifts.

Theorem A.3.7 (Map lifting). Let (X,x), (Y, y) and (Z, z) be path connected
based spaces, let f : (Y, y) → (X,x) be a cover and let g : (Z, z) → (X,x) be an
arbitrary map. When Z is a cell complex there exists a based map h : (Z, z)→ (Y, y)
such that f ◦ h = g iff g∗(π1(Z, z)) ⊂ f∗(π1(Y, y)). Moreover, when such a map
exists, it is unique.

Special cases of Theorem A.3.7 have their own names. When Z is a 1-cell, it
is called path lifting and when Z is a 2-cell it is called homotopy lifting. In both
cases the condition is trivially satisfied since g∗(π1(Z, z)) is the trivial subgroup of
π1(X,x). Homotopy lifting is used to show that if f is cover then f∗ is injective.

Proposition A.3.8 (Covers and subgroups). If f : Y → X is a covering
with f(y) = x, then f∗ : π1(Y, y) → π1(X,x) is an injection. In particular, the
fundamental group of Y at y can be viewed as a subgroup of the fundamental group
of X at x.

Let f : Y → X be a covering and let f(y) = x. The right stabilizers of f (i.e.
the maps g : Y → Y such that f ◦ g = f), are called deck transformations and
they form a group of deck transformations under composition. When the group of
deck transformations of f acts transitively on the preimages of x, then f is called
a regular covering and Y is a regular cover of X. Regular covers correspond to
normal subgroups.

Proposition A.3.9 (Regular covers and normal subgroups). If f : Y → X is
a covering with f(y) = x, then Y is a regular cover of X iff f∗(π1(Y, y)) is a normal
subgroup of π1(X,x). Moreover, when Y is a regular cover of X the quotient of
π1(X,x) by f∗(π1(Y, y)) is isomorphic to the group of deck transformations.

If f : Y → X is a covering, X and Y are connected spaces, and Y is sim-
ply connected, then Y is called the universal cover of X. An easy application of
Theorem A.3.7 shows that universal covers are unique (up to the natural notion
of equivalence defined by lifts in both directions whose compositions are identity
maps).

Theorem A.3.10 (Fundamental theorem of covering spaces). If X is connected
topological space that has a universal cover X̃, then there is a natural bijection
between the connected covers of X and the subgroups of π1(X,x).

(indicate the proof since this uses the quotient by the H-action defined earlier)
Cell complexes, as usual, are extremely well behaved.

Proposition A.3.11 (Recognizing universal covers). Every connected cell com-
plex has a universal cover. Moreover, if X and Y are connected cell complexes,
then Y is the universal cover of X iff Y is simply connected and there exists a local
homeomorphism f : Y → X.

A.4. Homotopy invariants and Whitehead’s theorem

(homotopy type, contractibility, n-connected)
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Definition A.4.1 (Homotopy equivalences). A map f : X → Y is a homotopy
equivalence if there exists a map g : Y → X such that both compositions are
homotopic to the appropriate identity map. In symbols this requires fg ∼= 1Y
and gf ∼= 1X . Two spaces X and Y are homotopy equivalent and have the same
homotopy type if there exists a homotopy equivalence f : X → Y . A homotopy
invariant of a space X is something defined using X where the resulting answer or
object depends only on the homotopy type of X.

Proposition A.4.2 (Fundamental groups are homotopy invariants). If f :
X → Y is a homotopy equivalence and f(x) = y, then f∗ : π1(X,x) → π1(Y, y) is
an isomorphism. In particular, connected spaces with the same homotopy type have
isomorphic fundamental groups.

Remark A.4.3. It is a basic result from algebraic topology that the Euler
characteristic of a finite cell complex only depends on its topology and not on
details of its cellular structure. Using cellular homology the alternating sum of the
ci is easily seen to be equal to the alternating sum of the betti numbers of X. But
since all homology theories agree on finite cell complexes, and singular homology is
insensitive to the cell structure of X, the Euler characteristic only depends on the
topology of X.

Theorem A.4.4 (Invariance of χ(X)). Euler characteristic is a homotopy in-
variant. If X and Y are homotopy equivalent spaces and χ(X) and χ(Y ) can be
defined, then χ(X) = χ(Y ).

Homology and cohomology are also homotopy invariants, and we will on oc-
casion make use of them. However we do not review their definitions and basic
properties as topics such as group cohomology are not a central focus of this book.

There are two common ways to modify a cell complex without changing its
homotopy type. One is to collapse a contractible subcomplex and the other is to
replace an attaching map with an alternate map homotopic to it. This section is
devoted to an application of the first; discussion of the second is postponed until
Section 1.1. For a proof of the following results see Chapter 0 in [16].

Theorem A.4.5 (Collapsing contractible subcomplexes). If A is a contractible
subcomplex of a cell complex X, then the quotient map X → X/A is a homotopy
equivalence.

Theorem A.4.6 (Modifying the attaching maps). If A is a subcomplex of a
cell complex X1 and f, g : A→ X0 are homotopic maps, then the spaces X0 tf X1

and X0 tg X1 are homotopy equivalent.

Theorem A.4.7 (Contractibility). If X is a connected topological space, then
the following conditions are equivalent.

1. X has the homotopy type of a point (i.e. X is contractible)
2. the identity map 1 : X → X is null-homotopic
3. every map Y → X is null-homotopic

A space satisfying these conditions is said to be contractible, and contractibility is
a homotopy invariant.

Proof. Exercise 13. �
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Theorem A.4.7 is true for arbitrary topological spaces. For connected cell
complexes, it is sufficient to show that every map Y → X where Y is compact is null-
homotopic. In fact, it is sufficient to show that for every n ≥ 0 and each map Sn →
X is null-homotopic. That this is implied by the above is clear. That it is sufficient
to show contractibility is a part of a nontrivial theorem due to J.H.C. Whitehead.

Theorem A.4.8 (Whitehead’s theorem). A cell complex X is contractible iff
for every n ≥ 0, each map Sn → X is null-homotopic.

Proposition A.4.9. The nested union of n-connected cell complexes is n-
connected. More specifically, if A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ · · · is a nested sequence of
n-connected subcomplexes of a cell complex X and A = ∪k≥0Ak, then A itself is
n-connected. As a consequence, the nested union of contractible cell complexes is
contracible.

Proof. Any map f : Sm → A with m ≤ n is contained in a finite subcomplex
B. Since each cell of B is contained in some Ai and there are only finitely many cells
in B, all of B is contained in some Ai. The fact that Ai in n-connected now implies
that f is homotopic to a constant map inside Ai ⊂ A. Thus A is n-connected. The
final assertion follows by Theorem A.4.8. �

There is a family of homotopy invariant properties that sits between being
connected and being contractible. The most common is being simply connected,
that is being path connected and having trivial fundamental group (although some
do not require simply connected spaces to be path connected).

Definition A.4.10 (Connectivity). A topological space X is n-connected if for
all k ≤ n, each map Sk → X is null-homotopic. Being 0-connected is the same as
path connected, and 1-connected is the same as simply connected.

Remark A.4.11 (πn(X,x)). For those familiar with the definition of the higher
homotopy groups, πn(X,x), it is easy to prove that our definition of n-connectivity
is equivalent to the condition that πi(X,x) is trivial for i ≤ n. See Exercise XXX.
(add an exercise where we hint how to make a tail and let it wiggle.

A.5. Classifying spaces and Hurewicz’s theorem

In the prologue we illustrated how one can understand certain facts about
certain groups G via their actions on contractible complexes X̃. In that particular
case it was helpful that the action was free and the complex was contractible. An
Eilenberg-MacLane space for a group G is a cell complex whose fundamental group
is G and whose universal cover is contractible. Such a space is also referred to as a
K(G, 1) and as a classifying space for G.

Theorem A.5.1 (Eilenberg-MacLane spaces). For every group G there exists
a connected cell complex X whose universal cover is contractible and whose funda-
mental group is G. Moreover, if X and Y have contractible universal covers and
isomorphic fundamental groups, then X and Y are homotopy equivalent.

The proof that any two K(G, 1)s are homotopy equivalent (Hurewicz’s Theo-
rem) is a bit too long of a distraction for us. (See Theorem 1B.8 in [16].) The
existence claim can be viewed as a topological variation of Cayley’s Theorem. Cay-
ley’s Theorem states that every group can be faithfully represented as a group of
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permutations. The proof constructs an action of G on its own elements via left
multiplication. The proof we use below extends this action of G on its own el-
ements, and in the end yields a faithful representation of G as a group of deck
transformations of a contractible topological space.

proof of existence. To prove the existence of K(π, 1)s, start with a vertex
set of the form G×N and think of the second coordinate as describing the “column”
to which the vertex belongs. Extend this vertex set to a simplicial complex by
declaring that any finite set of vertices drawn from distinct columns forms the
vertex set of a simplex. Call this complex X and notice that it is just the countable
join of discrete sets of vertices, each of cardinality |G|. In particular, if |G| = |H|,
then the simplicial complexes built from G and H are the same. Standard tools
from algebraic topology, like the Künneth formulas, prove that X is contractible.

Since G acts on itself by left multiplication (Cayley’s Theorem), it also acts on
G × N by left multiplication applied to the first coordinate. This action preserves
columns and any n-tuple of vertices coming from distinct columns will be taken to
another n-tuple of vertices coming from (the same) distinct columns. As the action
is free when restricted to any column, the action of G on X is also free. Thus the
quotient G\X is a K(G, 1). �

These facts enable one to apply homotopy invariants in the study of groups.
We say that a homotopy invariant assertion is true of a group G iff it is true of any
(and thus every) Eilenberg-MacLane space for G. In particular, one can declare the
homology and cohomology groups of a group to be the homology and cohomology
groups of any K(G, 1).

Definition A.5.2 (Finite type). A group G is of finite type if it admits a
finite K(G, 1)-complex. Equivalently, a group G is of finite type if there is a free,
cocompact action of G on a finite dimensional, contractible cell complex.

Definition A.5.3 (Euler characteristics of groups). If G is a group of finite
type, then the Euler characteristic of G is Euler characteristic of any finite K(G, 1).
(If you happen to have a non-finite K(G, 1), when G is in fact of finite type, then the
Euler characteristic can still be computed by taking the alternatinig sum of the betti
numbers, which are homotopy invariants.) For example, the fundamental group G
of the complement of the trefoil knot has a K(G, 1) described in the prologue. This
complex has two vertices, five edges, and three faces, hence χ(G) = 0.

Proposition A.5.4. Let G be a group with a finite K(G, 1), X. If H is a finite
index subgroup of G, then χ(H) exists, and

χ(H) = [G : H] · χ(G)

Proof. The cover X of X whose fundamental group is H is a K(H, 1). Since
it is a [G : H]-fold cover, if X contains ci i-cells, then X contains ci = [G : H] · ci
i-cells. Thus

χ(X) =
∑

(−1)ici = [G : H]
∑

(−1)ici = [G : H]χ(X).

�

We leave the following corollary as a (fun) exercise.



A.5. CLASSIFYING SPACES AND HUREWICZ’S THEOREM 99

Corollary A.5.5. Let Sg be the closed orientable surface of genus g, and fix
two integers g and h, both greater than 1. Then π1(Sg) is a finite index subgroup
of π1(Sh) if and only if g − 1 is a multiple of h− 1.

Proposition A.5.6. Let G be a group of finite type. Then G contains no
non-trivial finite subgroup.

Proof. Let X be a finite K(G, 1), of dimension d, and let X̃ be its univer-
sal cover. Assume to the contrary that G has a non-trivial finite subgroup, and
therefore that G has a subgroup isomorphic to a finite cyclic group Zn. Since G
acts freely on X̃, Zp y X̃. It follows that Hi(Zn) = Hi(Zn\X̃) and in particular,
Hi(Zn) = 0 for all i > d. But H2j+1(Zn) ≈ Zn for all j ≥ 0. �

Avoiding groups with torsion is often overly restrictive. For example, consider
the group G of isometries of the Euclidean plane, generated by reflections in the
sides of an equilateral triangle. The This action is not free, but it is cocompact and
proper. As we will see, such actions are often more than sufficient for one to derive
deep facts about the group.
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Exercises

Cell complexes
1. Let X be a cell complex, let x and y be 0-cells of X and let A be a connected

finite subcomplex containing x and y with a minimum number of cell. Prove
that A is the image of an embedded interval f : I → X starting at x and
ending at y.

2. Let X be a 1-complex that contains a 1-disc where both endpoints are
attached to the same 0-cell. Use a retraction to show that X is not simply-
connected.

3. Let X be a 1-complex and let f : S1 → X be an embedding. Show that X
is not simply-connected by collapsing all but one 1-cell of the image of f
and applying the previous exercise.

4. Let f : [0, 1] → [0, 1] be an infinitely oscillating function like that shown
on the left in Figure 3. Use this function as part of an attaching map
(as indicated on the right in Figure 3) to create a 2-complex with three
vertices, three edges, and a single 2-cell. Show that this “shower curtain
complex” is not homeomorphic to any simplicial complex.

0
0

1

1

Figure 3. The “shower curtain complex” is not homeomorphic to
any simplicial complex.

5. Prove that every combinatorial cell complex is homeomorphic to a simpli-
cial complex.

6. (Classifying compact surfaces) (sketch out how to classify compact surfaces)
Here are the main steps.
a. show that you only need a single 2-cell.
b. make all moebius edges adjacent
c. isolate crossing annular edges
d. remove noncrossed annular edges
e. eliminate the mixed case
f. use the abelianizations to distinguish the remaining cases

7. Prove Corollary A.5.5.
8. Let Y be the image of the map g : R→ R3 defined by g(t) = (cos t, sin t, et)

and turn Y into a path connected topological space by giving it the subspace
topology. There is a map f : Y → S1 that comes from projecting onto the
first two coordinates. Prove that f is a local homeomorphism but not a
covering map.

9. Show that every one-relator Artin group is a torus knot group. Which
torus knot groups arise in this way?

Group actions and covering spaces
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10. Add an exercise that covers the Hawaiian earring.(Figure 4) (fix: do not
have universal covers. Identifying a single point in a simply connected
metric space with a single in another simply connected metric space does
not need to result in a simply connected space. This space, which is the
union of the circles centered at (0, 1/n) and tangent to the x-axis...)

Figure 4. Hawaiian earring.

11. (Normal subgroups) Let H be a subgroup of G, let A := G/H be the set
of left H-cosets, let κ := |A| be the index of H in G, and let κ! denotes the
size of SymA (the bijections A→ A under composition). Prove that there
is a normal subgroup N of G contained in H whose index in G is at most
κ!.

12. (Infinite Index) Let A be a set and let G = SymA be the group of all
permutations (i.e. bijections) f : A → A under function composition.
Choose an element a ∈ A and let H be the subgroup of permutations that
fix a. Prove that index of H in G is κ = |A| and that the only normal
subgroup of G in H is the trivial subgroup (index κ!).

Homotopy invariants and Whitehead’s theorem
13. (Contractibility) Prove that the characterizations of contractibility list in

Theorem A.4.7 are equivalent.





APPENDIX B

Hints

This appendix collects hints to the exercises.

Chapter 1

1. Find an explicit procedure that contracts arbitrary closed paths in Y (1).
3. Make each edge in X isometric to a unit interval [0, 1].
4. Suppose f : RA → RB is a homotopy equivalence. Prove that f(RA) is

contained in a finite subcomplex of RB , and then use a retraction to show
that f∗ is not onto.

16. Find elements in Zn that cannot be part of a basis of Zn as a free Z-module
and then use Exercise 15.

27. Consider a non-trivial surface with boundary.
29. Find the 1-skeleton first.
(re)move. Consider the following method of converting a factorization of g into

its free product normal form. Let g be a non-trivial element of π1(X,x) and let
f : I → X(1) be an immersed loop based at x that represents g (Proposition 1.1.2).
Since every 1-cell in X belongs to a unique Xα and these subcomplexes overlap
only at x, the maximal connected nontrivial subintervals of I sent into a single Xα

partition f into a finite concatentation of loops f1, f2, up to fk, all based at x,
such that consecutive fi represent elements gi in distinct groups π1(Xα, xα). Fi-
nally, if any of the elements gi are trivial, then the corresponding paths fi can be
excised from f and the new path still representing g but with strictly fewer con-
catenations. Repeating this procedure (reparsing the path into maximal subpaths
and then eliminating subpaths representing trivial elements) eventually results in
a finite product of non-trivial elements satisfying the lemma since the number of
concatenations strictly decreases each time this process is carried out.

Appendix A

12. Characterize the permutations in the left coset fH and in the subgroup
fHf−1. Then show that these conjugates of H have trivial intersection.
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[9] M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–144, 1911.

[10] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson,

and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston,
MA, 1992.

[11] Benson Farb and Lee Mosher. A rigidity theorem for the solvable Baumslag-Solitar groups.
Invent. Math., 131(2):419–451, 1998. With an appendix by Daryl Cooper.

[12] S. M. Gersten. Reducible diagrams and equations over groups. In Essays in group theory,

pages 15–73. Springer, New York-Berlin, 1987.
[13] S. M. Gersten and H. B. Short. Small cancellation theory and automatic groups. Invent.

Math., 102(2):305–334, 1990.

[14] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst.
Publ., pages 75–263. Springer, New York, 1987.

[15] Marshall Hall, Jr. The theory of groups. The Macmillan Co., New York, N.Y., 1959.

[16] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[17] A. G. Kurosh. The theory of groups. Vol. I. Chelsea Publishing Co., New York, N.Y., 1955.

Translated and edited by K. A. Hirsch.
[18] A. G. Kurosh. The theory of groups. Chelsea Publishing Company, New York, N.Y., 1956.

Translated from the Russian and edited by K. A. Hirsch.

[19] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Classics in Mathematics.

Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
[20] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory. Dover

Publications Inc., New York, revised edition, 1976. Presentations of groups in terms of gen-
erators and relations.

[21] Jonathan P. McCammond and Daniel T. Wise. Fans and ladders in small cancellation theory.

Proc. London Math. Soc. (3), 84(3):599–644, 2002.
[22] Charles F. Miller, III. Decision problems for groups—survey and reflections. In Algorithms

and classification in combinatorial group theory (Berkeley, CA, 1989), volume 23 of Math.

Sci. Res. Inst. Publ., pages 1–59. Springer, New York, 1992.

105



106 BIBLIOGRAPHY

[23] Robert Oliver. Fixed-point sets of group actions on finite acyclic complexes. Comment. Math.

Helv., 50:155–177, 1975.

[24] S. J. Pride. Small cancellation conditions satisfied by one-relator groups. Math. Z.,
184(2):283–286, 1983.

[25] John Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. American

Mathematical Society, Providence, RI, 2003.
[26] Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.

Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980

English translation.
[27] A. J. Sieradski. A coloring test for asphericity. Quart. J. Math. Oxford Ser. (2), 34(133):97–

106, 1983.

[28] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by

Gian-Carlo Rota, Corrected reprint of the 1986 original.
[29] John Stillwell. Classical topology and combinatorial group theory, volume 72 of Graduate

Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

[30] K. Whyte. The large scale geometry of the higher Baumslag-Solitar groups. Geom. Funct.
Anal., 11(6):1327–1343, 2001.


