
Introduction

Geometric group theory classifies groups by the nature of the spaces
on which the groups act geometrically.

James W. Cannon [7]

Geometric group theory is a relatively young field, but it has deep roots in
the study of groups from combinatorial and topological perspectives. For almost
one hundred years combinatorial group theorists have viewed groups as essentially
topological objects and they have used the topological invariants of combinatorial
cell complexes to study their associated fundamental groups. Since the mid-1980s,
spurred on by the seminal ideas of Jim Cannon and Misha Gromov, group theorists
have paid increasing attention to the geometric structures these cell complexes can
carry. Finitely generated groups are now also viewed as inherently metric objects.

The addition of a geometric perspective has been tremendously successful at
solidifying previously disparate results, generating new questions for researchers to
investigate, and enabling rapid progress on many fronts. An unfortunate corollary
of this rapid expansion has been a separation between the background acquired
by graduate students in their standard courses and the conceptual tools used by
current researchers in the field. This book is my attempt to partially fill this gap.

Groups as Actions

One way to appreciate the naturalness of the geometric group theory approach
is to take a step back and consider the way in which groups arise in mathematics
more generally. Group theory comes from the study of symmetry, where a sym-
metry of an object P (or an equation, or a geometric configuration, or any other
mathematical structure) is a non-trivial invertible map f from P to P that pre-
serves the properties we wish to consider. The collection of all such maps, trivial
or not, is clearly closed under function composition (automatically an associative
operation), it includes the identity map, and it includes the inverses of these maps
by definition. These symmetry groups are where the subject began. To this day,
groups are often first introduced through a careful examination of the symmetry
groups of specific geometric objects, such as regular n-gons, regular n-simplices, or
the unit n-sphere. The resulting groups are the dihedral, symmetric, and orthogo-
nal groups in our examples, or, if we restrict our attention to only those symmetries
realizable as continuous motions inside R2, Rn, or Rn+1, respectively, we get the
cyclic, alternating, and special orthogonal groups. Geometric objects, of course, are
not the only mathematical structures that have symmetry groups. The symmetries
of a vector space V form the general linear group GL(V ) and, more generally, the
symmetries of any mathematical structure is called its automorphism group.
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But if the abstractions pursued by twentieth century mathematicians have
taught us anything, it is that mathematical structures should always be considered
in conjunction with their structure-preserving homomorphisms and these maps also
have symmetry groups! If f : P → Q is any structure-preserving homomorphism,
then the collection of all invertible structure-preserving maps g : P → P such that
f ◦ g = f form a group, as do the collection of all invertible structure-preserving
maps h : Q→ Q such that h◦f = f . We can think of these groups as the right and
left stabilizer groups of the map f , respectively. These types of groups also occur
throughout mathematics. If f : k → K is a (necessarily injective) field homomor-
phism, for example, then its left stabilizer is better known as the Galois group of K
over k. A second example, and one that is particularly important in our context,
is when X is a path-connected topological space that has a universal cover X̃ and
p : X̃ → X is the natural covering projection. The right stabilizer of p is the group
of deck transformations of p, and it happens to be isomorphic to the fundamental
group of X.

In each of the situations described above, the group under consideration is
acting on some mathematical object via structure-preserving maps. The structure
of the object upon which the group is acting can then be used to extract detailed
information about the group itself. In some sense, this is the main way that groups
occur “in nature”, as mathematicians like to say, and it is primarily through such
actions, or representations, that groups are studied.

Finitely Presented Groups

Groups are investigated via representations as actions, but the type of rep-
resentation varies with the type of group under consideration. For finite groups,
group actions on finite sets (called permutation representations) or on vector spaces
(known as linear representations) are highly effective and extensively used.1 Geo-
metric group theorists, on the other hand, focus their attention on groups that can
be analyzed using actions on topological spaces—particularly cell complexes and
metric spaces—and these often have infinitely many elements.

Infinite groups remain mysterious to many mathematics majors, since the
groups encountered in a typical abstract algebra course are mostly finite. This
is partly out of necessity: the main tools used to study infinite groups require
more topology and geometry than can be presumed at that point. Moreover, when
studying infinite groups, the algebraic structure often recedes into the background
as topological, geometrical and logical considerations play a greater role.

Once infinite groups are under consideration, logical and informational issues
immediately arise. Which infinite groups should be studied? If we are too inclusive
in our scope, set theoretic issues could easily play a dominating role. On the other
hand, the scope should be broad enough to include interesting examples, such as the
fundamental groups of compact manifolds with or without boundary. One approach
would be to limit our attention to precisely these groups. The obvious follow-up
question is which groups are these? It turns out that this particular class of groups
has several equivalent characterizations. Algebraically, they are the groups G that

1These types of representations have been particularly important in the classification of the
finite simple groups. See Michael Aschbacher’s book on finite group theory [1] for an excellent

illustration of this approach and its benefits.
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can be finitely presented in the following sense: (1) there exists some finite set of
elements that generate all of G and (2) the relations that hold among the words
in these generators can be derived from a finite list of basic rules or relations.
Two other descriptions that describe the same class of groups are the fundamental
groups of compact cell complexes and the fundamental groups of finite simplicial
complexes. In other words, the following four collections of groups are identical.

{ finitely presented groups } = { π1 of compact manifolds }
= { π1 of compact cell complexes}
= { π1 of finite simplicial complexes }

This natural class of groups will be our primary focus, although it is sometimes
convenient to consider groups that are finitely generated but not finitely presented,
or even groups where no finite subset generates the whole group.

While it is certainly possible to develop the theory of finitely presented groups
using the algebraic description with only a passing mention of topology and ge-
ometry, doing so makes many of the fundamental properties of infinite groups un-
necessarily difficult to express and even harder to establish. As a geometric group
theorist, I have tried instead to highlight the geometric and topological aspects as
much as possible.

Scope and Prerequisites

As it has grown over the past twenty years, geometric group theory has devel-
oped strong connections with geometry, topology, analysis and logic and each of
these facets is currently undergoing rapid development. It would be nearly impos-
sible at this point to give a truly comprehensive introduction to geometric group
theory in a single volume and the text you have before you is not intended as one.2

I have tried instead to produce a book that thoroughly covers a cohesive subset of
fundamental ideas, focusing on a selection of elementary and intermediate topics
that I feel are absolutely essential. Such a selection is, of course, highly subjective.
While I am confident about the centrality of the included topics, the reader should
not infer that excluded ones are less important.

The foundational ideas in geometric group theory are fairly accessible and the
required prerequisites are correspondingly minimal: the algebraic topology covered
in Hatcher’s book [16] is more than sufficient. In fact, if the reader is willing to
take a few of the theorems listed in Appendix A on faith, the entire book can be
understood after completing a course on fundamental groups and covering spaces.

2In fact, extensive volumes already exist or are nearing completion on several topics that are
mentioned here only in passing. See the Epilogue for an extended discussion of these additional

resources.
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Structure of the Text

The structure of the text is relatively straightforward. After a prologue designed
to whet the reader’s appetite, there is one introductory chapter, two chapters that
present the core philosophy behind geometric group theory, two chapters that ex-
amine the special role played by hyperbolic metrics, and two chapters that cover
more advanced topics. Finally, there is an epilogue that tries to ease the transition
into the research literature, and an appendix that reviews those aspects of basic
algebraic topology that serve as a foundation for the subject.

Acknowledgements

(These acknowledgements listed below are as preliminary and incomplete as
the book itself.) Many people have had a hand in shaping this text, but foremost
among them has been John Meier. Early on John and I had many long and fruitful
conversations about structure, content, level and tone, and many of his ideas have
been incorporated into the final text. A second source of inspiration has been
(and will be) the UC Santa Barbara graduate students in the courses based on this
material in Spring 2005 and Fall 2009. And finally, the dedication (of course) will
be to my partner Mary Bucholtz.

Jon McCammond

Santa Barbara, CA
September 2009


