
Prologue: Trefoil Knot Group

The simplest non-trivial knot is the trefoil knot shown in Figure 1. As a way
to introduce the flavor of geometric group theory we ask: What can we say about
the fundamental group of its complement? Our primary goal is to illustrate how
geometric arguments can be used to prove purely algebraic results. The arguments
are merely sketched, but the reader should be able to go back and fill in the details
as they work their way through the text.
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Figure 1. The trefoil knot.

To establish notation, let K denote the knot shown and let G be the group
π1(S3 \K). (For technical reasons it is cleaner and more symmetric to work in S3,
the 1-point compactification of R3, than in R3 itself.) The first thing to notice is that
G is the fundamental group of a compact two-dimensional complex. To show this
we construct a 2-complex D inside S3 \K and then deform S3 \K down to D. Since
deformation retractions do not alter fundamental groups, G = π1(S3 \K) ≈ π1(D).
There are two common constructions for retracting arbitrary knot complements
onto two-dimensional subspaces, usually attributed to Dehn and Wirtinger. Since
we are using Dehn’s procedure, the final result is known as a Dehn complex.

The Dehn complex for the trefoil knot shown in Figure 1 has two vertices,
five edges and three 2-cells. To construct it we think of K as living in a small
neighborhood of the xy-plane (or rather in a small neighborhood of its 1-point
compactification, an equatorial 2-sphere inside S3), and we place a vertex v+ above
K and a vertex v− below K. Next, we add an edge for each of the five regions of
the xy-plane determined by the projection of K. More concretely, the regions in
Figure 1 have been numbered and we add an edge Ei that connects v− and v+,
oriented from v− to v+, passing through region i. Finally, we add a 2-cell for each
of the three crossings. Each 2-cell is a square folded to look like Figure 2. The
boundary of the square is then identified with the four edges corresponding to the
four adjacent regions. The crossing at the top left of Figure 1, for example, creates
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Figure 2. The 2-cell at a crossing

a square whose boundary follows the path E−1
0 E3E

−1
1 E2. This can be interpretated

as claiming that the loop E−1
0 E3 based at v+ is homotopic to the loop E−1

2 E1. The
other two 2-cells are attached along E−1

0 E4E
−1
1 E3 and E−1

0 E2E
−1
1 E4, respectively.

See Figure 3.
The deformation retraction from S3 \K to D alluded to above expands away

from K like adding air into a long balloon. Parts of this retraction are easy to
visualize. In Figure 2, for example, the complement of K inside this tent clearly
retracts onto the folded square. Piecing together these local pictures, we find that
G is the fundamental group of D and, as a consequence, that G acts freely on its
universal cover D̃.
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Figure 3. The three 2-cells in D. The open circles represent v+

and the closed circles represent v−. To make these 2-cells look like
the one shown in Figure 2, fold up along the dashed lines and down
along the dotted ones.

The next key idea is that if we understand the geometry of D̃ and the way G
acts on it, then we gain insight into the the algebraic structure of G as a group.
The geometry of D̃ is quite elegant. Since D contains only three 2-cells, D̃ has only
three equivalence classes of 2-cells under the action of G. For convenience we refer
to these as the green, yellow and blue 2-cells, reading left to right in Figure 3. The
edges E0 and E1 are both contained in all three 2-cells, while the other three edges
only occur in two of the three 2-cells. In fact, if you fix a particular lift of the
green 2-cell in D̃, oriented as shown, then there is a unique yellow 2-cell below it,
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followed by a unique blue 2-cell, followed by a unique green 2-cell, and so on. The
two sides of this infinite strip consist of lifts of the edges E0 and E1, alternating on
both sides. With a bit more work one sees that the local structure of D̃ looks like
Figure 4 and that as a topological space D̃ is homeomorphic to the direct product
of the real line and an infinite, trivalent tree.

Actually, even more is true. We can add a metric to D̃ by making each 2-cell
isometric to a unit Euclidean square. The metric space D̃ still splits as a direct
product, this time of the real line with the standard metric and a metric trivalent
tree where each edge has length 1. In other words, if we let T3 denote the infinite,
trivalent tree with edges of unit length, then D̃ is isometric to T3 × R. The action
of G preserves the metric as well as the product structure on T3 × R so that by
projecting onto the first or the second factor, the group G acts by isometries on T3

and it acts by isometries on R.

Figure 4. The local structure in D̃.

The last bit of preparation we need is to find a presentation of the group G.
Any g ∈ G, acting on D̃, takes lifts of v+ to lifts of v+. In order to get a generating
set for G it suffices to pick enough elements of G so that any lift of v+ can be
moved to any other using some composition of the actions of these elements and
their inverses. Let v be a fixed lift of v+ in D̃, and let a, b and c represent the
unique elements of G that move v diagonally up and across the unique green, yellow
and blue squares, respectively, that have v as a bottom corner. To see that a, b and
c generate G, let V be the orbit of v under the action of the subgroup generated
by a, b and c. Suppose that u is in V , g is the element of G that sends v to u,
and u′ is a lift of v+ connected to u along the diagonal of a single square. Since
g sends the vertices connected to v by a diagonal to the vertices connected to u
by a diagonal, we can find an element h in the set {a, b, c, a−1, b−1, c−1} so that
gh sends v to u′. Notice that we are precomposing g with h which involves right
multiplication by h. This is because we always assume that our groups act on the
left. See Appendix A. In any case, this shows that the vertices in V are closed
under adjacency. Geometrically, it is now clear that every lift of v+ lies in V , and
thus a, b and c generate all of G.

Finally, suppose that v is the open circle on the bottom of Figure 4 slightly to
the right of center. The reader can check that the words ab, bc and ca all move v to
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the open circle directly above it, so these words all represent the same element in
G. When projected to D, the products ab, bc and ca are homotopic, and represent
the loop that passes through the central region of the trefoil knot and then returns
to v+ via the exterior region. With only a bit more work, one can show that the
presentation 〈a, b, c | ab = bc = ca〉 is a presentation for G.

The group G acts freely and cocompactly on a contractible complex D̃. We
understand the structure of D̃ and the action of G, and we have “words” we can
use to describe the elements of G. We can now establish the following:

Theorem. If G is the fundamental group of the trefoil knot complement then

1. We can efficiently determine whether a word in the generators represents
the identity;

2. The group G contains no nontrivial element of finite order;
3. The kernel of the map f : G � Z sending a, b and c to 1 ∈ Z is a free

group of rank two;
4. The element z = (ab)3 = (bc)3 = (ca)3 is central in G;
5. The group G contains a finite index subgroup isomorphic to F2 × Z;
6. The group G is residually finite, meaning that the intersection of all finite

index subgroups of G is the trivial subgroup {1}.
7. The element z generates the center, so that Z(G) = 〈z〉;
8. The quotient G/Z(G) is isomorphic to PSL2(Z);

How are such claims established? We outline one approach and completely
ignore the technical details.

Sketch of proof: To tell whether an element in the generators represents
the identity, simply trace out its effect on a lift of v+ inside D̃. If this lift ends
where it started then this word represents the identity; otherwise, it does not.
The reason this works is because the process of constructing the universal cover D̃
secretly encodes a solution to the “word problem” for G. See Chapter 3 for details.

To prove 2 we combine the action of G on the factors of D̃ ≈ T3 × R with the
fact that any finite order isometry of a metric tree must fix a point. (This fact is
proved in Chapter 5.) Thus, any g ∈ G of finite order fixes a point in T3 and it
fixes a point in R, so it fixes a point in D̃. But the action of G on D̃ is free so g is
the identity.

Let H be the kernel of the map f : G→ Z described in item 3. Since the action
of H on D̃ projects to a free action on the tree T3, the fundamental group of the
quotient of T3 by this action is isomorphic to H. This quotient has two vertices,
three edges and its fundamental group is F2.

The action of the element z = (ab)3 = (bc)3 = (ca)3 on D̃ is a rotationless
vertical translation. It can then be checked that pre- and post-composing any
g ∈ G with z results in the same action on D̃, hence both expressions describe the
same element of G. (Actually, it is sufficient to check that this is true for a, b, and c
since they generate G.) This proves 4. Item 5 is now immediate since the subgroup
generated by H and z is isomorphic to F2 × Z and index 6 in G.

Next, the easiest way to prove 6 is to combine item 5 with two easily proved
facts: free groups are residually finite, and the class of residually finite groups is
closed under direct product and finite extension.
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To prove 7, let v be a particular lift of v+ inside D̃ and consider the orbit of v
under the action of Z(G). Because of the symmetry of the situation with respect
to a, b and c, the orbit of Z(G) must be invariant under a 2π/3 rotation around the
vertical line through v. On the other hand, since the free group of rank 2 has trivial
center, Z(G) ∩ H only contains the identity element and thus the orbit of v can
have at most one element at each height. Combining these two ideas shows that 1)
the orbit of v under the action of Z(G) is contained in the vertical line through v,
and 2) Z(G) must be generated by the element that produces the smallest possible
positive vertical change when applied to v. By 4, z is central and it moves v up
six steps. There are exactly two elements of G, namely ab and (ab)2, that move
v to a lift of v+ that is both on the vertical line through v and between v and its
image under z. After checking that ab and (ab)2 are not central, we conclude that
Z(G) = 〈z〉.

Finally, to prove 8 we note that the action of Z(G) on the T3 factor is trivial.
Thus, we get a well-defined action of the quotient group G/Z(G) on the trivalent
tree T3. There is a well-known action of PSL2(Z) on T3, and, by comparing the two
actions, we can see that the groups are identical. �

Exercises

1. (Details) Fill in as many of the details of the proof of the theorem as you
can. Alternatively, make a list of the arguments that seem unclear to you
or imprecise at this point.

2. (Figure 8 knot) Let K be the knot shown in Figure 5.
a. Construct the Dehn complex D for K.
b. Draw a small portion of D̃ and try to understand its structure. Be

forewarned that this is more difficult than it was for the trefoil knot.
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Figure 5. The figure 8 knot


