
CHAPTER 1

Coxeter groups

Current Version

April 14, 2004Now that the flavor of the subject is clear, let’s start back at the beginning
in a slightly more general context. Let W be a finite group of isometries of R

n

generated by reflections. The fact that W is finite is its most important property
and this imposes enormous restrictions on the structure of the group W . Once the
structure these finite reflection groups have been classified (and shown to be finite
Coxeter groups) the discusssion will broaden once again to the class of all Coxeter
groups.

1. Reflections and root systems

Definition 1.1 (Reflections). Each vector α ∈ R
n determines a line Rα and

a reflection sα which acts on R
n by fixing the vectors perpendicular to α and

reversing the line Rα. Algebraically, if 〈·, ·〉 denotes the standard inner product on
R

n, then sα(β) is found by subtracting off twice the projection of β onto α, in other

words,sα(β) = β − 2 〈α,β〉
〈α,α〉α. See Figure 1.

α

β
H

sα(β)

projα(β) = 〈α,β〉
〈α,α〉α

Figure 1. Reflecting β through the hyperplane H perpendicular
to α.

Proposition 1.2 (Reflections under restriction). A linear transformation s :
R

n → R
n is a reflection if and only if there is an orthogonal basis of R

n such that

the matrix of s relative to this basis is a diagonal matrix with all 1s on the diagonal

except for one −1. As a consequence, if s = sα is a reflection of R
n and V is any

subspace of R
n which contains the line Rα, then s restricted to V is a reflection of

V .
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12 1. COXETER GROUPS

Proof. If s is a reflection the picking an orthogonal basis for R
n which includes

α creates a matrix of the proper form, and conversely, it is clear that an orthogonal
basis which produces a matrix of the proper form describes a reflection since the
span of the special basis element is flipped by s, the span of the remaining basis
elements is fixed by s, and these are perpendicular. For the second assertion simply
pick an orthogonal basis for V containing α and then extend this to an orthogonal
basis for R

n. The matrix of the restriction of s to V is now seen to be of the right
form. �

Definition 1.3 (Root system). A root system is a finite collection Ω of vectors
in R

n such that (1) Rα ∩ Ω = {α,−α} and (2) sαΩ = Ω for all α ∈ Ω.

One tool which helps facilitate several of the algebraic proofs is the notion of
a total ordering of a real vector space which is compatible with the vector space
structure.

Definition 1.4 (Total orderings). Let V be a real vector space. For our
purposes, a total ordering (define total orderings, lexicographic ordering, etc)

Figure 2. The barycentric subdivision of an equilateral triangle
with a fundamental chamber selected, its 3 reflecting hyperplanes
and its 6 root vectors.

Definition 1.5 (Positive system). Let Φ be a root system. A positive system

Φ+ is a selection of a positve root along each line Rα which is consistent with
some total ordering. Given a set of vectors such as Φ+, its positive cone is the
set of nonnegative linear combinations of the vectors in Φ+. Because the set of
vectors which are nonnegative in the total ordering is closed under nonnegative
scalar multiples and vector addition, the positive cone of any positive system does
not include any vectors which are less than the zero vector.

Definition 1.6 (Simple system). Let Φ be a root system and let Φ+ be one
of its positive systems. A simple system ∆ for Φ+ is a minimal subset of Φ+ which
generates the same positive cone as Φ+.
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Lemma 1.7 (Angles in simple systems). Let Φ be a root system, let Φ+ be a

positive system and let ∆ be a simple system for Φ+. For all a, b ∈ ∆, 〈a, b〉 ≤ 0.
In other words, the vectors in ∆ are “spread out”.

Proof. The claim is easy to check for 2-dimensional (i.e. dihedral) root sys-
tems and the general case quickly reduces to the 2-dimensional case. More specifi-
cally, look at the roots in the plane spanned by a and b. By assumption there are
only finitely many such roots and because the corresponding reflections send this
plane to itself, they form a root system of their own. �

Proposition 1.8 (Simple systems are bases). Every simple system is a basis

of R
n. As a consequence, any simple system has n elements.

Proof. Let ∆ be a simple system in the root system Φ. It’s already clear that
the vectors in ∆ span R

n so the only question is whether
If |∆| Suppose �

2. Cayley graphs and permutahedra

Definition 2.1 (Cayley graphs). If G is a group generated by a set A, then
the right Cayley graph Cayley(G,A) is the labeled directed graph whose vertices
are labeled by elements of G and whose edges are in one-to-one correspondence
with the set G × A where the edge corresponding to the ordered pair (g, a) starts
at the vertex g, ends at the vertex labeled g · a and has an edge label of a. The left

Cayley graph is defined similarly except that the edge corresponding to (g, a) ends
instead at the vertex a · g.

Lemma 2.2 (Left actions on right Cayley graphs). If G is a group generated

by a set A, then G acts on the left on the right Cayley graph Cayley(G,A), and

G acts on the right on the left Cayley graph.

Proof. This result follows from associativity of the multiplication. Let e be
an edge of the right Cayley graph labeled by a ∈ A connecting g to g ·a. If h is any
element of G, then the left action of h on the Cayley graph is the map denoted h·
which sends a vertex labeled g to h · g and an edge such as e to the edge labeled by
a connecting h · g and h · (g · a). Since h · (g · a) = (h · g) · a there really is an edge
labeled by a connecting these vertices. �

Almost as important as the lemma itself is the observation that there does not
exist a left action of G on the left Cayley graph when G is nonabelian. This is
because there is at least one instance where h · (a ·g) and a · (h ·g) describe different
elements of G. Thus, the switch between left and right is essential to the assertion.

Definition 2.3 (Permutohedra). (define)

Example 2.4. For the isometry group of the n-simplex, i.e. the finite reflection
group of type An−1, the resulting shape (using the standard coordinate system) is
the convex hull of the n! vectors in R

n with coordinates 1 through n in some
order. In the convex hull, the 1-cells connect those vertices which differ by a single
transposition which switches two positions containing successive integers. Thus
(2, 3, 5, 1, 4) is connected by edges with (1, 3, 5, 2, 4), (3, 2, 5, 1, 4), (2, 4, 5, 1, 3) and
(2, 3, 4, 1, 5).
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Definition 2.5 (Minkowski sum). Let P and Q be two convex polytopes sit-
uated in a common vector space such as R

n. The Minkowski sum of P and Q is
defined as follows.

P + Q = {~u + ~v | ~u ∈ P and ~v ∈ Q}

It is straightforward to check that P + Q is also a convex polytope in Rn, its faces
are products of particular faces of P and Q, and that this operation is commutative
and associative since vector addition has these properties.

Proposition 2.6 (Sum of the root system). If W is a finite reflection group

with root system Φ, then the W -permutahedron is a Minkowski sum of the root

vectors in Φ.

Proof. It is easy to check that the Minkowski sum of the root vectors has
all of the properties defining the W -permutahedron. It’s clearly a convex polytope
which is invariant under the action of W , etc. (finish this) �

Proposition 2.7. Let W be a finite reflection group with root system Φ and

let P be its W -permutahedron. If ∆ is a simple system in Φ, then, with proper

labeling, the 1-skeleton of P can be identified with the right Cayley graph of W with

respect to the reflections corresponding to ∆.

The notions of a positive system and a simple systems can be reinterpreted
geometrically.

Theorem 2.8. Let W be a finite reflection group with root system Φ, let H be

its hyperplane arrangement, and let P be its W -permutahedron. There are natural

bijections between the following sets:

1. elements of W ,

2. chambers of H,

3. vertices of P ,

4. small neighborhoods of the vertices of P ,

5. the sets of directed edges leaving each vertex of P ,

6. simple systems of Φ,

7. positive system of Φ,

8. the positive cones associated to each positive system.

Definition 2.9 (Length). If we identify the 1-skeleton of the W -permutahedron
with the right Cayley graph of W .

3. Finite Coxeter groups

Definition 3.1 (Coxeter groups).

Lemma 3.2 (Reflection ⇒ Coxeter). Every finite reflection group is a finite

Coxeter group. In particular, if W is a finite reflection group and S is a set of simple

reflections in W , then the Coxeter presentation generated by S whose relations

record the product of each pair of elements in S is, in fact, a presentation of the

group W .

Proof. Viewing the W -permutahedron as a cell complex, it is clear that it’s
2-skeleton is simply-connected (since it is the 2-skeleton of a topological ball). As
noted above the 1-skeleton is isomorphic to the Cayley graph of W with respect to
S and each 2-cell has a boundary cycle labeled by (ab)m for some a, b ∈ S with m
being their order. �
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Ever since Moussong’s dissertation it has been known that all Coxeter groups
are CAT(0) groups. The situation for Artin groups, however, remains far from
clear.

Coxeter groups first arose in the classification of finite groups acting on Eu-
clidean space which are generated by reflections (i.e. isometries fixing a codimen-
sion 1 hyperplane). In fact, the collection of finite Coxeter groups is the same as
the collection of finite reflection groups. The well-known classification of irreducible
Coxeter groups divides them into type An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4), E6,
E7, E8, F4, H3, H4 and I2(m) (m ≥ 2). The corresponding diagrams (using the
alternative convention) are shown in Figure 3. For more details see some of the
standard references for Coxeter groups such as Bourbaki [2], Humphreys [12] or
Kane [13].

Theorem 3.3 (Finite Coxeter groups). Every finite Coxeter group is a finite

reflection group. In particular, every finite Coxeter group is either the isometry

group of a regular polytope, or it is described by one of the Dynkin diagrams shown

in Figure 3.

Proof. (how? I need to show that not being positive definite implies infinite
group) �

Dn
....

1

2

3 4 n − 1n − 2 n

E8

1 2 3

4

5 6 7 8

E7

1 2 3

4

5 6 7

E6

1 2 3

4

5 6

Figure 3. Additional diagrams for the irreducible finite Coxeter groups.

The classification goes as follows (1) no infinite edge labels (2) no loops so tree,
(3) if not a regular polytope then there exists a branch point

(4) no two branch points and (5) no high labels with branch point so small type
tripod. At this point calculate determinant to see that 1

I + 1

J + 1

K > 1. Thus, either
two 2’s (Dn) or (2, 3, 3), (2, 3, 4), or (2, 3, 5) which are E6, E7, and E8 respectively.

Include constructions of Dn and E8.
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4. Numerology

There is quite a bit of numerology surrounding the finite Coxeter groups. For
example, let W be a finite Coxeter group acting on R

n by reflections with root
system Φ and let S be the elements in W corresponding to a simple system in Φ.
To fix notation, let N be the size of Φ+, i.e. the number of reflections and let n be
the size of ∆, i.e. the number of basic reflections.

The product of the elements in S is called a Coxeter element. Coxeter elements
are not unique since changing the order changes the result, but all Coxeter elements
have many properties in common. First, they are all conjugate to each other and
thus all have the same order. This order, h, is called the Coxeter number. Let
w be a particular Coxeter element of W . There is a special 2-plane in R

n which
is invariant under the action of w. Moreover, the action of w on this plane is
rotation by 2π/h. Because w has order h, all of the eigenvalues of the matrix Mw

representing the action of w are hth roots of unity. In particular, is ζ = e2πi/h is
a primitive hth roots of unity then all of the eigenvalues of Mw are powers of ζ.
The list of these powers are called the exponents of W . Perhaps surprisingly, the
numbers in this list are distinct. When listed in order they are called e1, e2, . . . , en.
The degrees of W , technically, are the degrees of a basis of W -invariant polynomials
in R[x1, . . . , xn]. For our purposes, it suffices to remark that di = ei + 1. Thus, for
example, the exponents of H3 are 1, 5, 9 and its degrees are 2, 6, 10. The basic data
for the finite reflection groups is shown in Figure 4.

Some of the equations which are known to hold between these basic data are
as follows. (say more)

5. General Coxeter groups

(this needs lots of work. Current version simply pulled from elsewhere)

Definition 5.1 (Artin groups and Coxeter groups). Let Γ be a finite graph
with edges labeled by integers greater than 1, and let 〈a, b〉

n
denote the length n

prefix of (ab)n. The Artin group AΓ is the group generated by a set in one-to-one
correspondence with the vertices of Γ with a relation of the form 〈a, b〉

n
= 〈b, a〉

n

whenever a and b correspond to vertices joined by an edge labeled n. The Coxeter

group WΓ is the Artin group AΓ modulo the additional relations a2 = 1 for each
generator a. There is also an alternative convention for associating diagrams with
Coxeter groups and Artin groups which is derived from a consideration of the finite
Coxeter groups. In that case, the graph Γ (using the above convention) is always
a complete graph with most of the edges labeled 2 or 3. The alternate convention
simplifies the diagram by removing all edges labeled 2 and leaving the label implicit
for the edges labeled 3.

Example 5.2. Let Γ denote the labeled graph shown in Figure 7. The presenta-
tion of the Artin group AΓ is 〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉 and the presen-
tation

〈

a, b, c|aba = bab, ac = ca, bcbc = cbcb, a2 = b2 = c2 = 1
〉

defines the Coxeter
group WΓ.

6. Davis complex

This section shows how to build a nice complex out of permutahedra on which
an arbitrary Coxeter group acts by isometries. The basic idea is that the Cayley
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Xn h 2N N Exponents Degrees Size

A2 3 6 3 1,2 2,3 6
B2 4 8 4 1,3 2,4 8
A3 4 12 6 1,2,3 2,3,4 24
B3 6 18 9 1,3,5 2,4,6 48
H3 10 30 15 1,5,9 2,6,10 120
A4 5 20 10 1,2,3,4 2,3,4,5 120
D4 6 24 12 1,3,5,3 2,4,6,4 192
B4 8 32 16 1,3,5,7 2,4,6,8 384
F4 12 48 24 1,5,7,11 2,6,8,12 1,152
H4 30 120 60 1,11,19,29 2,12,20,30 14,400
A5 6 30 15 1,2,3,4,5 2,3,4,5,6 720
D5 8 40 20 1,3,5,7,4 2,4,6,8,5 1,920
B5 10 50 25 1,3,5,7,9 2,4,6,8,10 3,840
A6 7 42 21 1,2,3,4,5,6 2,3,4,5,6,7 5,040
D6 10 60 30 1,3,5,7,9,5 2,4,6,8,10,6 23,040
B6 12 72 36 1,3,5,7,9,11 2,4,6,8,10,12 46,080
E6 12 72 36 1,4,5,7,8,11 2,5,6,8,9,12 51,840
A7 8 56 28 1,2,3,4,5,6,7 2,3,4,5,6,7,8 40,320
D7 12 84 42 1,3,5,7,9,11,6 2,4,6,8,10,12,7 322,560
B7 14 98 49 1,3,5,7,9,11,13 2,4,6,8,10,12,14 645,120
E7 18 126 63 1,5,7,9,11,13,17 2,6,8,10,12,14,18 2,903,040
A8 9 72 36 1,2,3,4,5,6,7,8 2,3,4,5,6,7,8,9 362,880
D8 14 112 56 1,3,5,7,9,11,13,7 2,4,6,8,10,12,14,8 5,160,960
B8 16 128 64 1,3,5,7,9,11,13,15 2,4,6,8,10,12,14,16 10,321,920
E8 30 240 120 1,7,11,13,17,19,23,29 2,8,12,14,18,20,24,30 696,729,600
A9 10 90 45 1,2,3,4,5,6,7,8,9 2,3,4,5,6,7,8,9,10 3,628,800
D9 16 144 72 1,3,5,7,9,11,13,15,8 2,4,6,8,10,12,14,16,9 92,897,280
B9 18 162 81 1,3,5,7,9,11,13,15,17 2,4,6,8,10,12,14,16,18 185,794,560

Figure 4. The basic data for the finite type Coxeter groups.

Type h 2N N

An n − 1 n(n − 1) n(n − 1)/2
Dn 2(n − 1) 2n(n − 1) n(n − 1)
Bn 2n 2n2 n2

Figure 5. The basic data for the infinite families of finite Coxeter
groups, Part I.

graph of an arbitrary Coxeter group with respect to its standard generating set
contains the 1-skeleta of certain obvious permutahedra. In particular, if a subset
of the standard generating set generate a finite Coxeter group W , then there the
portion of the Cayley labeled by these generators form a disjoint union of 1-skeleta
of W -permutahedra. We attach a W -permutahedron to each of these to produce
the Davis complex. Since each permutahedron comes equipped with the metric of
a Euclidean polytope and these metrics agree on overlaps, there is a well-defined
intrinsic metric on the entire complex.
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Type Exponents Degrees Size

An 1, 2, . . . , n − 1 2, 3, . . . , n n!
Dn 1, 3, . . . , 2n − 3, n − 1 2, 4, . . . , 2n − 2, n 2n−1 · n!
Bn 1, 3, . . . , 2n − 3, 2n − 1 2, 4, . . . , 2n − 2, 2n 2n · n!

Figure 6. The basic data for the infinite families of finite Coxeter
groups, Part II.

a

b

c
2

3 4

Figure 7. A labeled graph used to define a Coxeter group and an
Artin group.


