
Prologue: Regular polytopes
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January 1, 2005To motivate the study of finite reflection groups and Coxeter groups more gen-
erally, I’ll begin by briefly sketching the classification of regular polytopes. Convex
polytopes are fundamental objects in mathematics which can be viewed in a num-
ber of equivalent ways: as the convex hull of a finite set of points in R

n, as the
intersection of a finite number of half-spaces whose intersection is compact, or as
the image of a high-dimensional simplex under a linear transformation. Within the
class of convex polytopes, those which are “completely symmetric” are particularly
beguiling; they also have a tendency to play a major role in seemingly disparate ar-
eas of mathematics. These highly symmetric polytopes are more commonly known
as regular polytopes. Before giving a precise definition of a regular polytope, let’s
consider some familiar, low-dimensional examples.

Figure 1. Regular m-gons for m = 3, 4, 5, 6, 7.

Example 0.1 (Regular polytopes in low dimensions). Regardless of the exact
definition, it is clear that the class of regular polytopes should at the very least
include the regular m-gons (i.e. those m-sided polygons which are equi-lateral
and equi-angular) and the 5 Platonic solids (i.e. the regular tetrahedron, cube,
octahedron, dodecahedron, and icosahedron). See Figures 1 and 2. Technically, a
closed interval of the reals will qualify as the only 1-dimensional regular polytope.
That these examples are the only regular polytopes in dimensions up to 3 is one
consequence of the classification theorem established below.

Associated to any convex polytope is a natural simplicial subdivision called
its barycentric subdivision. Since we are primarily interested in those polytopes
which are highly symmetric, we define this subdivision using the circumcenters of
the faces of the polytope.

Definition 0.2 (Circumcenters). Given a bounded set A in R
n and a point

x ∈ R
n there is some minimum radius, radA(x), such that the closed ball around

x of radius radA(x) contains all of A. The collection of all such minimal radii has
an infimum and any point x ∈ R

n such that radA(x) attains this infimum is called
a circumcenter of A.
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Figure 2. The 5 Platonic solids.

That unique circumcenters exist is a consequence of the non-positively curved
nature of R

n. We will return to this theme in Chapter 2.

Proposition 0.3 (Circumcenters exists). Any bounded set in R
n has a unique

circumcenter.

Proposition 0.3 is a special case of a theorem which holds much more generally.
Since the full version is proved later, the argument here is merely sketched. Exis-
tence essentially follows from the completeness of R

n and uniqueness is immediate
once it is noticed that for any three distinct collinear points x, y and z with y
between x and z, radA(y) < max{radA(x), radA(z)}. In particular, supposing x
and z to be distinct circumcenters leads to an immediate contradiction. Finally,
notice that this uniqueness argument only relies on a very elementary fact about
the curvature of R

n.

Definition 0.4 (Barycentric subdivision). The barycentric subdivision of a
convex polytope P introduces a new vertex at the circumcenter of each i-dimensional
face and then subdivides appropriately. More specifically, there is a simplex in the
subdivision if and only if the faces to which the vertices correspond form a partial

flag, i.e. given any two faces in the list, one is contained in the boundary of the
other. For convenience later, we think of every vertex of the subdivision as hav-
ing an integer assigned which records the dimension of the cell of which it is the
circumcenter. Notice that under this scheme, distinct integers are assigned to each
of the vertices in a simplex of the subdivision. The barycentric subdivision of a
regular pentagon is shown in Figure 3.

The regularity of the regular m-gons and the Platonic solids is quite apparent
when we barycentrically subdivide. In each case, all of the top-dimensional simplices
in the subdivision are isometric. This is, in fact, almost exactly the definition of a
regular polytope.

Definition 0.5 (Regular polytopes). Let P be an n-dimensional convex poly-
tope. A (complete) flag in P is a sequence of i-dimensional faces in P , one for
each i = 0, . . . , n, ordered by inclusion. In other words, a flag consists of a vertex
which is contained in an edge which is contained in a 2-cell, etc. The polytope P
is called regular if its isometry group acts transitively on its flags. An alternative
definition can be given using the barycentric subdivision of P . First note that there
is a one-to-one correspondence between the top dimensional cells in the subdivided
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Figure 3. The barycentric subdivision of a regular pentagon with
a fundamental chamber highlighted. The basic reflections are
marked with dashed lines.

complex (sometimes called chambers) and the complete flags in P . Since any isom-
etry of P must take the circumcenter of a face to the circumcenter of its image,
all of the isometries of P induce simplicial maps from the barycentric subdivision
of P to itself. The integers assigned to the vertices are, of course, preserved under
these maps. As a consequence, P is regular if and only if its isometry group acts
transitively on the chambers of the subdivision.

It is straightforward to check that any particular example is a regular polytope
according to this definition. The difficult part of the classification theorem (as
in any classification theorem) is to show that we have found a complete list of
examples. The easy part will be done first. In order to ease the introduction
of high-dimensional examples, we disgress for a moment to discuss the dual of a
polytope.

Definition 0.6 (Dual polytopes). If P is a n-dimensional regular polytope,
then the convex hull of the circumcenters of its (n − 1)-dimensional faces will be
another regular polytope called its dual.

Although it is not clear from the definition, the dual of a regular polytope is,
as claimed, once again regular and the dual of the dual gives a rescaled version
of the original. Both of these facts are readily checked in the concrete examples
we are presenting so the general theory of polytopal duals will not be rigorously
developed. We should note, however, that the polar dual of a generic polytope is
defined using linear functionals rather than circumcenters; it is only in the case
of regular polytopes, that the general definition agrees with the one given above.
Among the examples already introduced, a regular m-gon is self-dual (i.e. dual to
itself), the tetrahedron is self-dual, the cube and the octahedron are dual to each
other, and the dodecahedron and icosahedron are dual to each other.

Example 0.7 (High dimensions). There are several high-dimensional regular
polytopes with which the reader is probably already familar, including n-simplices
and n-cubes. The dual of an n-cube is a generalized version of an octahedron
called the n-dimensional cross-polytope. All three families of examples are easy
to describe explicitly using coordinate systems. Let ~ei, i ∈ {1, . . . , n} denote the
standard orthonormal basis of R

n. The convex hull of the tips of the vectors ~ei
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form a regular (n− 1)-simplex. The space [−1, 1]n is an n-cube, and its dual is the
convex hull of the vectors ±~ei.

There are two slightly more exotic examples of regular polytopes in dimension 4
which are closely related to the Poincaré homology 3-sphere.

Example 0.8 (120-cell and 600-cell). The Poincaré homology sphere is the
name given to the counterexample which Poincaré found that violated his fa-
mous conjecture in its original form. Poincaré originally suggested that any 3-
diimensional manifold with the homology groups of the 3-sphere might be home-
omorphic to the 3-sphere. After finding a counterexample, he reformulated the
conjecture with “homotopy groups” in place of “homology groups”. The construc-
tion of his counterexample goes as follows. Start with a solid dodecahedron and
identify antipodal 2-cells with a slight clockwise twist (a π/5 twist to be precise).
The result is a 3-manifold which can be given a metric with constant curvature +1
and a universal cover which is isometric to S

3. Since the fundamental group of the
original 3-manifold has size 120, the universal cover is tiled with 120 regular (spher-
ical) dodecahedra. Thinking of S

3 as sitting inside of R
4 we can take the convex

hull of the 600 vertices of this tiling and get a regular 4-polytope known as the
120-cell, named after its 120 dodecahedra. Its dual is another regular 4-polytope
with 120 vertices and 600 regular tetrahedra. It is called, of course, the 600-cell.

Our last example is easiest to describe via direct construction.

Example 0.9 (24-cell). The sphere of radius 2 centered at the origin in R
4

contains exactly 24 vectors whose coordinates are integers. There are 16 vectors of
the form (±1,±1,±1,±1) and 8 vectors which are ±2 times a standard basis vector.
The regularity of the convex hull of these 24 vectors is hinted at once it is observed
that the 16 vectors of the form (±1,±1,±1,±1) can be split into two groups with
8 vectors each so that any two vectors in the same group are either orthogonal or
parallel. Moreover, it can also be checked that these three groups of 8 vectors which
look like the vertices of a 4-cross-polytope are symmetrically arranged with respect
to one another. At this point, it should at least seem plausible that these 24 points
form the vertices of a regular (and self-dual) 4-polytope.

Perhaps surprisingly, the examples given above form a complete list of regular
polytopes in all dimensions. Verification that these examples are indeed regular
polytopes is left to the reader. As was mentioned earlier, the real difficulty is
showing that no other examples exist. The trick in this case is to shift our attention
from the polytope itself to its isometry group and a fundamental domain of its
action.

As a first step we show that the isometry group of a regular polytope is always
a finite group generated by reflections. Recall that a reflection is an isometry of R

n

which fixes an (n − 1)-dimensional hyperplane H and sends vectors perpendicular
to H to their negatives. We begin by establishing some additional notation.

Definition 0.10 (Fundamental chamber). Let P be a regular n-dimensional
polytope which has been barycentrically subdivided. One of its chambers C (i.e. a
top-dimensional simplex) is selected and called the fundamental chamber of P . Let
vi, i ∈ {0, . . . , n} be the unique vertex of C labeled i. Without loss of generality
we may assume that P is situated in R

n so that the circumcenter of P itself, vn, is
located at the origin.
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Notice that the vectors from the origin out to the other n vertices in C form
a basis of R

n. Thus, their image under an isometry determines that isometry
uniquely. Because each isometry of P sends chambers to chambers and the isometry
is completely determined by the image of the fundamental chamber, the number
of chambers in the barycentric subdivision of P are in one-to-one correspondence
with the elements of the isometry group.

Definition 0.11 (Basic reflections). Since the boundary of P is (topologically)
an (n−1)-sphere and, in particular, an (n−1)-dimensional manifold, for each (n−1)-
dimensional face of C there is a unique chamber C ′ distinct from C which contains
this face. Because P is a regular polytope, by definition there is an isometry of P ,
which we call ri, which takes the fundmental chamber C to the unique chamber
containing all of the vertices of C except vi. Since ri must preserve the labeling
of the vertices, the image of vi under ri is another vertex labeled i. The thing to
notice is that ri is a reflection. To see this, note that it fixes the (n−1)-dimensional
hyperplane H spanned by the vectors from the origin to vj , j 6= i. Moreover, being
an isometry, it sends vectors perpendicular to H to vectors perpendicular to H
and since it isn’t the identity, it sends them to their negative. See Figure 3. The
reflections ri, i = {0, 1, . . . , n− 1} are called the basic reflections of P with respect
to C.

As promised, the isometry group is generated by these basic reflections.

Lemma 0.12 (Generators). If P is a regular n-dimensional polytope, then the

isometry group of P is a finite group generated by n reflections. More precisely

the basic reflections of P with respect to any fundamental chamber C generate the

isometry group.

Proof. Because there is a bijection between the isometry group of G and the
chambers of P , it is sufficient to show that products of the basic reflections can
send C to any chamber of P . Consider the orbit of C under the group of isometries
generated by the reflections ri. Let C ′ be a chamber in this orbit and let w be a
sequence of basic reflections which move C to C ′. Applying ri prior to applying
this sequence will send C to the neighbor of C ′ which shares all of its vertices with
C ′ except for the vertex labeled i. Doing to for all i shows that all of the chambers
which share an (n−1)-dimensional face with C ′ also belong to the orbit of C. This
completes the proof since the only subcomplex of P which contains C and is closed
under the taking of neighbors which share a codimension 1 face is all of P . �

Because the basic reflections generate the isometry group, the entire regular
polytope P can be reconstructed from the shape of the fundamental chamber C by
simply iteratively reflecting in its maximal proper faces. The fundamental cham-
ber, in turn, can be reconstructed from the collection of dihedral angles between
the basic reflections. It might seem that these angles only encode the shape of the
polyhedral cone emanating from the origin, but the final side is an affine hyper-
plane perpendicular to the vector from vn to vn−1. One fact which makes regular
polytopes easy to analyze is that most pairs of basic reflections have orthogonal
normal vectors.

Lemma 0.13 (Orthogonality relations). Let P be a regular polytope with funda-

mental chamber C and let ri, i = {0, . . . , n− 1}, be its basic reflections with respect
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Common name Schläfli symbol Cartan-Killing type

n-simplex {3n−1} An

n-cross-polytope {3n−2, 4} Bn

n-cube {4, 3n−2} Bn

4-simplex {3, 3, 3} A4

4-cross-polytope {3, 3, 4} B4

4-cube {4, 3, 3} B4

24-cell {3, 4, 3} F4

600-cell {3, 3, 5} H4

120-cell {5, 3, 3} H4

tetrahedron {3, 3} A3

octohedron {3, 4} B3

cube {4, 3} B3

icosahedron {3, 5} H3

dodecahedron {5, 3} H3

m-gon {m} I2(m)

Table 1. Translating between the various notations for the regu-
lar polytopes.

to C. If |i− j| > 1 then the reflections ri and rj commute and their normal vectors

are orthogonal.

Proof. Let k be an integer with i < k < j and let F be the face of P whose
circumcenter is vk. The basic reflection ri sends the vertex vi in the fundmental
chamber C to the circumcenter of a different i-dimensional face of F . In particular,
the line segment joining vi and its image (whose direction is parallel to the normal
vector of ri) lies in the face F . On the other hand, the basic reflection rj fixes
the face F pointwise and hence fixes its entire span. As a consequence, the normal
vector for rj is perpendicular to the face F . Since the normal vectors of ri and rj

are perpendicular, the reflections commute. �

The converse of the above statement is also true (and an easy proof of this will
be added at some point).

Definition 0.14 (Schläfli symbols). Since almost all of the dihedral angles
between codimension 1 faces in the fundamental chamber are π/2, it makes sense
to only record the remaining angles. In other words, we should record the dihedral
angles between the basic reflections ri−1 and ri for i = 1, . . . , n − 1. Since each of
these angles is π/m for some integer m, it makes sense to encode all of the necessary
information into a short sequence of positive integers. In preparation for the general
situation introduced in Chapter 1, each hyperplane containing a codimension 1
face of C will be replaced with its unit normal vector which selects the side of the
hyperplane containing C. If the dihedral angle between to faces is π/m, then the
angle between their inward points normal vectors will be π − π/m. The Schläfli

symbol for a regular n-dimensional polytope is the sequence {m1,m2, . . . ,mn−1}
where the dihedral angle between the inward pointing normal vectors of the basic
reflections ri and ri−1 is π − π/mi. The Schläfli symbol for a cube, for example, is



PROLOGUE: REGULAR POLYTOPES 7

An

....
1 2 3 n

Bn
....

1 2 3

4

n

F4

1 2 3 4

4

H4

1 2 3 4

5

H3

1 2 3

5

I2(m)
1 2

m

Figure 4. Dynkin diagrams for the regular polytopes.

{4, 3} since there is a π−π/4 angle between r0 and r1 and a π−π/3 angle between
r1 and r2.

A more flexible notation containing essentially the same information is the
Dynkin diagram. One key advantage of Dynkin diagrams over Schläfli symbols is
that they retain their usefullness even after we leave the world of regular polytopes.

Definition 0.15 (Dynkin diagrams). Let P be a regular polytope with fun-
damental chamber C. The Dynkin diagram of P records the angles between the
inward-pointing unit normal vectors of the codimension 1 faces of C in a finite
labeled graph. The vertices correspond to the basic reflections. If two basic reflec-
tions commute, then no edge is drawn connecting the corresponding vertices. If
the angle between them is π − π/m for m > 2 then an edge labeled m is drawn
between their vertices. Because edges labeled 3 are quite common, these particular
labels are usually suppressed. The Dynkin diagrams for the isometry groups of
the regular polytopes are shown in Figure 4. The conversions between their com-
mon names, their Schläfli symbols and the Cartan-Killing type of their associated
Dynkin diagrams are given in Table 1

The main difficulty of the classification theorem can now be restated using
Dynkin diagrams. Every regular polytope is completely encoded in the geometry
of its fundamental chamber, which is determined by the dihedral angles between
its codimension 1 faces containing the central vertex. These angles can be encoded
in a Dynkin diagram which, by Lemma 0.13 is a linear string of edges. The main
question is which sequences of edge labels are possible? The answer uses linear
algebra.

Definition 0.16 (Positive definite matrices). Recall that if M is a real sym-
metric matrix, then all of its eigenvalues are real and it has an orthonormal basis
of eigenvectors. Such a matrix is called positive definite when all of its eigenvalues
are positive.

Positive definite matrices are relevant because of their close connection with
arrangements of vectors in space. The key result we need is the following.
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Figure 5. Some Dynkin diagrams which are not positive definite.

Theorem 0.17 (Vector arrangements and positive definite matrices). If ~vi,

i = 1, . . . , n is a set of linearly independent vectors in R
n, then the real symmetric

matrix M whose (i, j)-entry is ~vi · ~vj is positive definite. Conversely, given a real

symmetric positive definite matrix M , there exist an ordered n-tuple of linearly

independent vectors in R
n whose dot products are described by M .

There is an easy and well-known criterion which determines whether or not a
matrix is positive definite.

Proposition 0.18 (Positive definite test). An n×n matrix is positive definite

if and only if all of its principal minors has positive determinants.

In our case, we are starting with a Dynkin diagram and we are trying to create
an arrangement of vectors in space with the right angles. The prescribed angles
between the inward pointing normal vectors will be π−π/m for m ≥ 2 so the values

of cosine we need to consider are 2 cos(π/2) = 0, 2 cos(π/3) = 1, 2 cos(π/4) =
√

2,

2 cos(π/5) = τ (where τ is the golden ratio, (1 +
√

5)/2), and 2 cos(π/6) =
√

3.
Because most of these values have 2 in the denominator, it is easier to test whether
2M is positive definite, rather than M itself.

Example 0.19 (Determinant calculations). Using these values it is easy to
calculate the determinants of the matrices corresponding to the graphs in Figure 4
and see that they really are positive. As an example, consider the matrix 2M for
the Dynkin diagram of type A4. The calculation is as follows.

det




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 = 2 · det




2 −1 0
−1 2 −1
0 −1 2


 − (−1)2 det

[
2 −1
−1 2

]

which simplifies to 2(4) − 3 = 5. More generally, an easy induction shows that
for the diagram of type An the determinant of 2M is n + 1. As a consequence,
the matrix associated to An is positive definite and there exist vectors arranged
with the necessary angles. Using these values (and the fact that τ2 = τ + 1), the
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determinants assoicated with H3, H4 and Z5 simplify to 4− 2τ , 5− 3τ , and 6− 4τ ,
respectively. Since τ ∼ 1.618, the first two are positive while the third is negative,
thereby establishing that the H3 and H4 describe a possible arrangement of vectors
in space, but that Z5 does not.

In some sense, we already knew these Dynkin diagram produced positive def-
inite matrices since they were derived from the shapes of fundamental chambers
for the explicit regular polytopes constructed earlier. More importantly, it is also
easy to calculate the determinants associated with the 5 Dynkin diagrams shown
in Figure 5 and verify that they are not positive definite, and thus do not describe
any arrangement of vectors in space.

Corollary 0.20 (Forbidden subgraphs). If Xn is the Dynkin diagram of a

regular polytope, then Xn cannot contain any of the graphs shown in Figure 5 as a

subgraph.

Using Corollary 0.20, it is now straightforward to complete the classification of
regular polytopes.

Theorem 0.21 (Classification of regular polytopes). Every regular polytope is

1. a closed interval,

2. a regular m-gon with m ≥ 3,
3. one of the 5 platonic solids,

4. one of the 6 regular 4-polytopes, or

5. an n-dimensional simplex, cube or cross-polytope with n > 4.

Proof. Let P be a regular polytope and Xn be its Dynkin diagram. Since
there exist regular polytopes for each of the Dynkin diagrams listed, it only remains
to show that this list is complete. By Corollary 0.20, it is sufficient to show that the
only linear Dynkin diagrams which avoid the 5 types of graphs shown in Figure 5
are the ones we have listed. The outline of the proof is given in Figure 6.

If Xn diagram has at most 2 vertices then Xn is either a trivial graph (and P
is an interval) or Xn is of type I2(m) (and P is a regular m-gon). Thus we may
assume n > 2. If Xn has no edges with a label larger than 3, then Xn is of type An

(and P is a regular n-simplex). On the other hand, if Xn has more than one such

edge label, then it contains C̃n as a subgraph, contradiction. Thus we may assume
that Xn contains exactly one label bigger than 3. If this label is 6 or more, then

Xn contains G̃2 as a subgraph, contradiction, so we may assume the label is either
4 or 5.

Suppose the label is 4. If this label occurs at either end of Xn, then Xn is of
type Bn (and P is either an n-cube or an n-cross-polytope). If it does not occur at

an end, then either Xn is F4 (and P is the 24-cell), or it contains F̃4 as a subgraph,
contradiction. Finally, consider the case where the label is 5. If it does not occur
at an end of Xn, then Xn contains Z4 as a subgraph, contradiction. On the other
hand, if it occurs at one end, then Xn is either H3 (making P a dodecahedron
or an icosahedron), H4 (making P a 120-cell or a 600-cell), or it contains Z5,
contradiction. �
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Figure 6. Outline of the proof of Theorem 0.21.


