
CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

Braid groups and Curvature
Talk 3: The Proof

Jon McCammond

UC Santa Barbara

Regensburg, Germany
Sept 2017



CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

Consequences of being a CAT(0) group

For those not familiar with CAT(0) groups:
When a group G has a nice action on a CAT(0) space there
are many algebraic consequences for G. Here is a list taken
from Chapter III.Γ in the book by Bridson and Haeflieger.

Remark (CAT(0) groups)

If G has a geometric action on a CAT(0) space X , then:
1 G is finitely presented.
2 G has finitely many conjugacy classes of finite subgroups.
3 Every solvable subgroup of G is virtually abelian.
4 Every abelian subgroup of G is finitely generated.
5 If G is torsion-free, then G is the fundamental group of a

compact cell complex with contractible universal cover.
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Closure Properties and Algorithmic Properties

Remark (Closure Properties)

The class of CAT(0) groups is closed under direct products,
free products with amalgamation, HNN extensions along finite
subgroups, and free products with amalgamation along virtually
cyclic subgroups.

Remark (Algorthmic Properties)

Groups that are CAT(0) have
1 a solvable word problem,
2 a quadratic Dehn function,
3 a solvable conjugacy problem,
4 an algorithm to test if an element has finite order,
5 an algorithm to test if torsion elements are conjugate.
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Semi-simple actions

Definition (Semi-simple isometries)
An elliptic isometry fixes some point, a hyperbolic isometry
moves every point at least ε > 0 and both types are semi-simple.

Remark (Semi-simple isometries)
If H is a fin. gen. group that acts properly (but not necessarily
cocompactly) by semi-simple isometries on X , then:

1 Every polycyclic subgroup of H is virtually abelian.
2 Every fin. gen. abelian subgroup of H is quasi-isometrically

embedded (with respect to any choice of word metrics).
3 H does not contain BS(p,q) subgroups with ∣p∣ ≠ ∣q∣.
4 If A ≅ Zn is central in H then there exists a subgroup of

finite index in H that contains A as a direct factor.
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Roman Wall in Regensburg
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Old Foundations

Remark (Main Goal)
The main goal of today’s talk is to outline the proof that the
braid groups are CAT(0), but like the building on the previous
slide, the foundations for the proof are very old. It is only the
final insight that is new.

Remark (Notation)

Recall that for each A ⊂ [n] of size k > 1 with B = [n] −A we
have defined a subset of vertices VA, a subdisk PA, a rotation
δA and a subgroup BRAIDA = FIX(B) isomorphic to BRAIDk .
And for every noncrossing partition Π we have defined a dual
braid δΠ that is a product of commuting rotations.
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Subsets, Subdisks, Rotations and Dual Braids
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If Π = {{{1,2,6,9},{3,5},{7,8}}, then δΠ = δ
{1,2,6,9}δ{3,5}δ{7,8}
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Dual braid complex with the orthoscheme metric

Definition (Dual braid complex with the orthoscheme metric)
The dual braid complex for BRAIDn with the orthoscheme
metric starts with the Cayley graph of BRAIDn with respect to
the dual braid generating set. The length of each edge labeled
by δΠ is

√
k where k = RANK(Π) in the noncrossing partition

lattice. An orthoscheme with the correct edge lengths is added
to each complete subgraph. The resulting PE simplicial
complex is denoted CPLX(BRAIDn).

The proof scheme is by induction and the base cases are true.

Theorem (Previous results)
The k-strand dual braid complex with the orthoscheme metric
is CAT(0) when k ≤ 6.
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Dual Parabolic Subcomplexes

So suppose that CPLX(BRAIDk) is known to be CAT(0) for all
k < n and consider the space X = CPLX(BRAIDn). We already
know several subcomplexes that are CAT(0).

Definition (Subcomplexes and Subsets)

For each S ⊂ BRAIDk let CPLX(S) be the full subcomplex of
CPLX(BRAIDk) whose vertex set is indexed by S.

Proposition (Dual parabolic subcomplexes)

For every A ⊂ [n] of size k, the isomorphism BRAIDk → BRAIDA
extends to an isometric embedding of CPLX(BRAIDk) into
X = CPLX(BRAIDn) with image CPLX(BRAIDA). In particular,
CPLX(BRAIDA) is a CAT(0) subspace of X by induction.
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Local criterion

Recall the local criterion from Talk 1.

Theorem (Local criterion)
Let G be a group acting vertex-transitively by isometries on a
connected and simply-connected euclidean cell complex X with
finitely many shapes. If X contains a CAT(0) subcomplex that
contains a neighborhood of a vertex, then X is a CAT(0) space.

If we can create such a subspace Y and vertex v , then the
induction will be complete.

Remark (Parabolics are too small)
The dual parabolic subspaces are insufficient because they
have strictly smaller dimensions than X . We need a
subcomplex Y with dim(Y ) = dim(X) to use the local criterion.
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The 3-strand dual braid complex

The copies of CPLX(BRAID2) inside CPLX(BRAID3) are lines.
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Action of δ on X : Left vs. Right

Recall that δ = δ[n] is the rotation of all the vertices of P.

Remark (Left action of δ)

For n = 3, the left action of δ on CPLX(BRAID3) translates the
vertical line through the identity vertex but rotates the 3-valent
tree through a 2π/3 rotation. For all n it is a loxodromic isometry
of CPLX(BRAIDn) with a single line as its min-set.

Remark (Right action of δ)

For n = 3 the right action of δ on the vertices of CPLX(BRAIDn)

(surprisingly!) extends to a cell map on all of CPLX(BRAIDn)

that merely moves every vertex
√

2 in the vertical direction. But
note that this map does not preserve edge labels. For all n,
right multiplication by δ extends to a cellular isometry.
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Full-dimensional Subcomplexes

Definition (Maximal Dual Parabolic Subgroups)

For each i ∈ [n] let Fi = FIX({i}) which is equal to BRAIDA with
A = [n] − {i}. These are simply the maximal dual parabolic
subgroups of BRAIDn.

Definition (Vertical Shifts)

Let ∆ = ⟨δ⟩ = {δ` ∣ ` ∈ Z} be the copy of Z generated by δ = δ[n].
Right multiplying by elements in ∆ is an isometry of
X = CPLX(BRAIDn) that we describe as a vertical shift.

Definition (Full-dimensional Subcomplexes)

For each i ∈ [n] consider the set Fi ⋅∆ = {α ⋅ δ` ∣ α ∈ Fi , ` ∈ Z}.
This is a subset but not a subgroup of BRAIDn. We define
Yi = CPLX(Fi ⋅∆) ⊂ X and note that dim(Yi) = dim(X).
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Full-dimensional subcomplex of CPLX(BRAID3))



CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

The 3-strand dual braid complex

Y = Y1 ∪Y2 ∪Y3 contain a neighborhood of the identity vertex.
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Neighborhood of the Identity Vertex

Proposition (Neighborhood of a Vertex)

The subcomplex Y = Y1 ∪⋯ ∪Yn contains a neighborhood of
the identity vertex in X = CPLX(BRAIDn).

Proof sketch.
Let v be the vertex indexed by the identity of BRAIDn. Every
simplex containing v is contained in a maximal simplex
containing v , which is part of a column, which is determined by
a maximal simplex σ starting at v . This reduction uses the fact
that X and all of the Yi are invariant under the right action by δ
and that they are unions of columns of orthoschemes.
The vertices of σ can be described by a non-crossing tree,
every non-crossing tree has a boundary edge, and from this we
show that every vertex of σ is contained in some Yi .
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The Hard Part

Recall the gluing lemma from the first talk.

Lemma (Gluing n subspaces)

Let Y = Y1 ∪⋯ ∪Yn be a metric space. If for each ∅ ≠ B ⊂ [n],
the corresponding intersection YB = ∩i∈BYi is a non-empty
complete CAT(0) space, then Y is a complete CAT(0) space.

The material up to this point is pretty well-known.

Remark (The Hard Part)

By induction there are subcomplexes Yi with i ∈ [n] that should
be CAT(0) (and they are) and their union Y contains a
neighborhood of a vertex in X = CPLX(BRAIDn). By the gluing
lemma and the local criterion, the induction will be complete IF
we can understand the intersections of the subcomplexes Yi
and show that they are CAT(0). This is the hard part.
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Lowering the Dimension

The standard approach to this problem has been to lower the
dimension of the space one needs to analyze.

Definition (Cross-section Complex)
Since every top-dimensional orthoscheme of X belongs to a
unique column of orthoschemes, the complex X splits as metric
direct product X = C ×R where C is a complex built out of Ã
Coxeter shapes. We call C the cross-section complex.

Definition (Vertex Links)
All of the vertex links in C are isometric so it is sufficient to
show that just one of them is CAT(1). Let L be the link of a
vertex in C. If L is CAT(1) then C is CAT(0), X is CAT(0) and
BRAIDn is a CAT(0) group. Note that dim(L) = dim(X) − 2.
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Dimension Lowering Distorts Metrics

Remark (Distortions)
For small values of n, L can be visualized and this is an
effective method for proving results. For general values of n,
passing from X to C to L distorts the geometry of the
subspaces Yi - for example, squares become rhombi - and this
makes the exact relationship between this subspaces hard to
analyse and understand. The intersections in the cross-section
C or in the link L look like they are CAT(0) or CAT(1) but
proving this in this context was hard.

Remark (The Structure of the Link)
The link L is covered by subcomplexes that are metric unit
spheres, it is a subcomplex of a spherical building and it can be
described as a union of apartments in this spherical building.
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Noncrossing hypertrees

Remark (The First Breakthrough)

In the summer of 2015, I found a way to simplify the cell
structure of the vertex link L using combinatorial structures I
call noncrossing hypertrees. There is a preprint on the arxiv
that discusses this simplification and its uses.

Remark (From L to C to X )
Using the noncrossing hypertree simplification, we were able to
start to understand large portions of the cross-section complex
C. Working in C instead of L has some advantages and the
arguments simplified. Eventually, we started working directly in
the orthoscheme complex X instead of the cross-section
complex C and the arguments simplified even more.
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A Strand in the Boundary

Remark (The Second Breakthrough)
The second breakthrough came this summer when Michael
computed an explicit intersection of two Yi ’s inside BRAID5. As
we tried to make sense of this concrete example, the true
nature of the set Fi ⋅∆ emerged. After the second
breakthrough, noncrossing hypertrees were no longer needed.

Recall that Fi = FIX({i}) = BRAIDA where A = [n] − {i}, ∆ = ⟨δ⟩
and Yi = CPLX(Fi ⋅∆).

Lemma (A Strand in the Boundary)
For each α ∈ Fi ⋅∆, there is a representative f of α such that the
(i , ⋅)-strand of f is contained in ∂P, the boundary of the polygon
P. In fact, this condition characterizes the braids in set Fi ⋅∆.
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Boundary Braids

Definition (Boundary Braids)

For each B ⊂ [n] let BNDRY(B) be the set of braids with a
representative f where for all i ∈ B, the (i , ⋅)-strand of f is
contained in ∂P. In other words, the strands that start in
positions VB stay in ∂P. We call BNDRY(B) the set of
B-boundary braids.

Remark ({i}-Boundary Braids)

By the lemma Fi ⋅∆ is the set of {i}-boundary braids and Yi is
the complex of the {i}-boundary braids.

One might guess that BNDRY(C) ∩ BNDRY(D) = BNDRY(C ∪D)

and this is indeed the case. From this we also prove that
YB = ∩i∈BYi is CPLX(BNDRY(B)) and that YC ∩YD = YC∪D.
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The 3-strand dual braid complex

When n = 3, YB is the same as CPLX(BNDRY(B)), and their
intersections behave as expected.
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Locally Marked Strands

The final step is to show that the intersection YB = ∩i∈BYi is
CAT(0) for each B ⊂ [n].

Definition (Locally Marked Strands)

Fix B ⊂ [n] and let α = [f ] be a braid. The strands of f that start
at VB end at a set VB′ with ∣B∣ = ∣B′∣. Let vα be the vertex of the
Cayley graph indexed by α. We assign the set B′ to this vertex
and say that VB′ is the set of locally marked strands at vα.

As we analyzed the structure of BNDRY(B), it became clear
that there were two types of basic changes: those that move
the locally marked strands and those that do not. And this
realization leads to an unexpected product structure.
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Basic Moves

Definition (Basic Moves)

Let vα be a vertex in the Cayley graph with marked strands B′.
A basic move at vα is a dual braid δΠ with three properties: (1) it
must move at least one marked strand in B′, (2) all of the
marked strands that move under δΠ must stay in ∂P, and (3) it
cannot be factored into dual braids so that one of the factors
fails to move a marked strand.

Definition (Move graph)

Fix a set B ⊂ [n] of marked strands at the identity vertex and
then locally mark strands at every vertex of X . The move graph
with respect to B is a subgraph of the Cayley graph with the
same vertex set and it contains an edge e if and only if the label
of e is a basic move at the start vertex of e.
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Move sets

Definition (Move sets)

The set MOVE(B) ⊂ BRAIDn is defined to be the set of braids α
indexing vertices in the connected component of the identity
vertex in the move graph with respect to B. In other words, α is
in MOVE(B) if and only if it can be represented as an
undirected path in the Cayley graph with respect to the dual
braid generators so that every directed edge of the path is a
basic move at its start vertex.

The braids in MOVE(B) are in some precise sense orthogonal
to those in FIX(B). This is easy to see in the full-dimensional
subcomplexes of CPLX(BRAID3).
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Full-dimensional subcomplex of CPLX(BRAID3))
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Product Structure

Proposition (Product Structure)

The set BNDRY(B) is equal to the set FIX(B) ⋅ MOVE(B). This
means that every braid γ in BNDRY(B) can be written as
product γ = α ⋅ β with α ∈ FIX(B) and β ∈ MOVE(B), and that
every braid γ = α ⋅ β ∈ FIX(B) ⋅ MOVE(B) is in BNDRY(B).

On the level of subcomplexes the structure is even nicer.

Proposition (Metric Products)
The natural map from (an orthoscheme subdivision of)
CPLX(FIX(B)) × CPLX(MOVE(B)) to CPLX(BNDRY(B)) = YB
is an isometry of metric simplicial complexes.

As a consequence CPLX(BNDRY(B)) is CAT(0) if and only if
both factor complexes are CAT(0).
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Move sets and Robots

The complex CPLX(FIX(B)) is the complex of a dual parabolic
subgroup and it is CAT(0) by our induction hypothesis. And the
complex CPLX(MOVE(B)) is one that we saw in Talk 2.

Proposition (Move sets and Robots)

The complex CPLX(MOVE(B)) is isometric to the universal
cover of the configuration space of ` = ∣B∣ robots on an n-cycle.
In particular, it can be identified with a dliated column in R` and
it is a CAT(0) space.

Remark (Universal Cover)
It is the universal cover rather than the configuration space
because moving all of the marked robots m times around ∂P
using basic moves is a non-trivial braid unless m = 0.
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A Dilated Column
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A Labeled Projection Map

δ12

δ23 δ23

δ34 δ34 δ34

δ45 δ45 δ45 δ45

δ56 δ56 δ56 δ56

δ16

δ16

δ16

δ16

δ12

δ12

δ12

δ23

δ23 δ34

δ12 δ23 δ34 δ45

δ156

δ123

δ126

δ234

δ345

δ456

F16

F26

F36

F46

F56

F12

F13 F23

F14 F24 F34

F15 F25 F35 F45

F16 F26 F36 F46 F56



CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

Assembling the Pieces

Remark (Projection Map)

There is even a projection map from CPLX(BNDRY(B)) to
CPLX(MOVE(B)) where the preimage of each vertex is the
complex of some dual parabolic subgroups.

And we can now assemble the pieces.

Proof (Assembling the Pieces).

For each B ⊂ [n], CPLX(MOVE(B)) is CAT(0) by the
proposition and CPLX(FIX(B)) is CAT(0) by our induction
hypothesis. Thus their metric product CPLX(BNDRY(B)) = YB is
CAT(0). Since every intersection YB = ∩i∈BYi is nonempty
complete CAT(0), the union Y = Y1 ∪⋯ ∪Yn is CAT(0) (Gluing
Lemma). And since Y contains a neighborhood of the identity
vertex, X is CAT(0) (Local Criterion).
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Next Steps and Future Directions

The very next step is to finish writing the article! All of the
proofs have been written down. We are currently working to
streamline the notation and improve the exposition. There
should be an article ready to post sometime this fall.

Remark (Future directions)
There are several obvious avenues to pursue.

other Artin groups
other Garside groups
other surface braid groups with boundary
other robot configuration spaces

And I can say more about each of these if there is still time.
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Thank You for your Attention!
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