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1. Introduction

Small cancellation theory and its various generalizations have proven to
be powerful tools in the study of infinite groups, particularly for the con-
struction of examples of groups exhibiting specific properties. In this article
we derive statements which are similar to but significantly stronger than the
usual small cancellation formulations. These stronger results are presented
using the notion of a fan, which is introduced here for the first time.

The main geometric conclusion in small cancellation theory is essentially
that disc diagrams contain a 2-cell most of which lies on the very outside
of the diagram, as illustrated on the left in Figure 1. In studying this
situation, we found that it can be strengthened. Specifically, we show that
disc diagrams satisfying small cancellation conditions have a sequence of
consecutive cells all of which lie near the outside of the diagram. We call
the union of these cells in the diagram a fan. The diagram on the right in
Figure 1 contains a fan which is the union of four 2-cells. The first manner
in which our results augment the traditional results of small cancellation
theory is that when the small-cancellation conditions are sufficiently strict,
the disc diagram will contain fans consisting of longer and longer chains of
2-cells.

Our second contribution to this subject is a classification result for disc
diagrams. We show that either a disc diagram is small and round and
contains fans in all directions, or it is long and relatively thin like a ladder
and contains disjoint fans at each end, or in the generic case, it contains
at least three sharp turns along three disjoint fans. This trichotomy is
analogous to the trichotomy for finite trees: A finite tree either consists of a
single point, or it is homeomorphic to a real interval, or it has at least three
leaves.
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Figure 1.

We will state our two main results below but we first state an impor-
tant special case, which is our refinement of the main theorem of small-
cancellation theory as a trichotomy. All of the undefined terminology (namely:
i-shell, spur, wheel of width k, ladder of width k, separate fans of type k)
will be explained in the course of the article. Informally, a spur is a 1-cell
which is not in the boundary of a 2-cell and which is attached to the rest of
the diagram at only one end, and an i-shell is a 2-cell with exactly i maximal
arcs of its boundary lying in the interior of the diagram.

Theorem 9.4. If D is a C(4)-T (4) [C(6)-T (3)] disc diagram, then one of
the following holds:

(1) D contains at least three spurs and/or i-shells with i ≤ 2 [i ≤ 3].
(2) D is a ladder of width ≤ 1, and hence has a spur or 1-shell at each

end.
(3) D consists of a single 0-cell or a single 2-cell.

Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a spur
or an i-shell with i ≤ 2 [i ≤ 3] which avoids v, and if the cut-tree of D has
` leaves, then D contains at least ` separate such spurs and i-shells.

There is a similar theorem for annular diagrams. In this article we provide
improved versions of both of these theorems. In order to concisely state our
results we will use the following conventions.

Convention 1.2 (Restrictions). Let D be a C(p)-T (q) diagram and let k
be a nonnegative integer. By Euclidean restrictions we will mean that p, q,
and k satisfy one of the following sets of conditions:

(1) p ≥ 6, q = 3, and k is odd
(2) p ≥ 4, q ≥ 4, and k is arbitrary
(3) p = 3, q ≥ 6, and k is even

The Euclidean restrictions will typically be used for disc diagrams. The
hyperbolic restrictions are slightly more stringent and will typically be used
for annular diagrams. In particular, we will assume that p, q, and k satisfy
one of the following sets of conditions:

(1) p ≥ 7, q = 3, and k is odd
(2) p ≥ 5, q ≥ 4, and k is odd
(3) p ≥ 4, q ≥ 5, and k is even
(4) p = 3, q ≥ 7, and k is even
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Figure 2. Each of the four collections of diagrams above
contains a wheel of width k, a ladder of width k, and a disc
diagram with three fans of type k.

Our two main results are as follows:

Theorem 9.2. If D is a C(p)-T (q) disc diagram and p, q, and k satisfy the
Euclidean restrictions, then one of the following holds:

(1) D contains at least 3 separate fans of type k.
(2) D is a ladder of width ≤ k.
(3) D is a wheel of width ≤ k.

We refer the reader to Figure 2 for an accurate but idealized family of di-
agrams illustrating this theorem in the C(6)-T (6) case. The annular version
is as follows:

Theorem 10.6. If A is a C(p)-T (q) annular diagram and p, q, and k satisfy
the hyperbolic restrictions then either A contains a fan of type k or A has
width ≤ k + 1.

Intuitively, a fan is an array of 2-cells along the boundary of a disc dia-
gram, a ladder is a long thin diagram, and a wheel is a very small disc-like
diagram. As the value of k increases, the fans of type k become more and
more restricted and the trichotomy gives more detailed information about
small cancellation diagrams. Finally, note that Theorem 9.4 is the special
case of Theorem 9.2 with k = 1. Specializing to the case k = 2 yields the
following small cancellation theorem for C(3)-T (6) presentations:

Theorem 9.5. If D is a C(3)-T (6) disc diagram, then one of the following
holds:

(1) D contains at least three spurs, 1-shells, and/or pointed fans with
two consecutive 2-shells.

(2) D is a ladder of width ≤ 2.
(3) D is a wheel of width ≤ 2. That is, D is either a single 0-cell, a

single 2-cell, or a nonsingular diagram whose dual is a single 2-cell.

Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a spur,
a 1-shell, or a pointed fan with two 2-cells which avoids v, and if the cut-tree
of D has ` leaves, then D contains at least ` separate such spurs, 1-shells,
and pointed fans.
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The main application of traditional small cancellation theory has been to
solve the word problem and conjugacy problem. Thus far, the main applica-
tions of the theorems presented in this paper are towards understanding the
finitely generated subgroups of small cancellation groups. In [14] and [15],
we have used these stronger results in conjunction with our perimeter re-
duction method to prove that many small cancellation groups are coherent,
have the finitely generated intersection property, have decidable membership
problem in finitely generated subgroups, or are even locally quasiconvex.

The local quasiconvexity theorem in [15] relies heavily upon the existence
of ladders in the trichotomy, and could not be obtained using the traditional
small cancellation theory. While the coherence proofs in [14] already work in
conjunction with traditional small cancellation theory, the method applies
to a significantly larger class of groups when combined with the results of
this paper asserting the existence of fans. Furthermore, a family of examples
produced in [15] demonstrates that the coherence and local quasiconvexity
results proven using fans are asymptotically sharp. However, the theorems
one obtains by combining the perimeter reduction method with the tradi-
tional small cancellation theory are not sharp. We are therefore convinced
that fans and ladders are natural objects to consider towards understanding
these subgroup properties. We expect that other group-theoretical applica-
tions will be found.

1.1. History of small cancellation theory. The small cancellation ap-
proach which was pioneered by Dehn and Tartakovskĭı was sporadically de-
veloped in the papers of Schick, Britton, Greendlinger, Lyndon, and Wein-
baum. Finally, the theory was fully developed in the book by Lyndon and
Schupp [11] which is the standard reference on the subject. A concise and
elegant treatment is given in Strebel’s article in [6].

Various generalizations of small cancellation theory have appeared, such
as those by Hill-Pride-Vella [8], Juhász [9], McCammond [12], Ol’shanskĭı
[16], and Rips [18]. Certainly, the most significant development has been
Gromov’s introduction of word-hyperbolic groups [7]. Other related develop-
ments which have drawn on small cancellation theory for inspiration include
nonpositively curved groups, and automatic groups.

1.2. Description of the sections. Section 2 introduces a number of basic
definitions about combinatorial 2-complexes and diagrams. Several of these
definitions are new and several are variations on definitions which will be
familiar to most readers. Because it is one of the starting points for small
cancellation theory, we have also included a detailed proof that every null-
homotopic path bounds a reduced disc diagram.

Section 3 presents small cancellation theory itself. We have chosen to
recast the foundations of the theory in terms of 2-complexes to facilitate the
results later in the article as well as for applications which extend beyond
the scope of this article. Consequently, we have attempted to state the
definitions and to prove the results in their most natural generality. For



FANS AND LADDERS IN SMALL CANCELLATION THEORY 5

example, we show that a general 2-complex which admits a reduced map
to a small cancellation complex is itself a small cancellation complex. This
is a generalization of a corresponding statement for a reduced map from a
disc diagram, but the proof of the more general statement requires little
additional effort.

Section 4 contains a proof of the combinatorial Gauss-Bonnet theorem,
followed by two easy applications of this result to disc diagrams. Section 5
is a short section on duals, cut-trees and their properties. Section 6 contains
some of the primary objects introduced in this article: fans and ladders.
These notions are introduced, their main properties are delineated, and sev-
eral specific types of fans are defined and illustrated. The next section,
Section 7, shows how fans in the dual of a diagram can be used to pro-
duce fans in the diagram itself. This is our main technical tool. Section 8
contains the inductive definitions of wheels and ladders of width k, which
are used to state the main results. In Section 9 we prove our main result
for disc diagrams and in Section 10 we prove our main result for annular
diagrams. Section 11 defines the more general notion of a fan in a complex,
and uses this to convert the above two main results into statements about
subcomplexes. In section 12 we bound the number of minimal fans in a
small cancellation complex, and in section 13 we study the lifts of minimal
fans to the universal cover.

2. Complexes and diagrams

In this section we provide basic definitions and results about 2-complexes
and diagrams. Some of the new definitions are designed to clarify the issues
surrounding torsion elements in the fundamental group and how they behave
under various maps between combinatorial 2-complexes.

Definition 2.1 (Combinatorial maps and complexes). A map Y → X be-
tween CW complexes is combinatorial if its restriction to each open cell
of Y is a homeomorphism onto an open cell of X. A CW complex X is
combinatorial provided that the attaching map of each open cell of X is
combinatorial for a suitable subdivision.

It will be convenient to be explicit about the cells in a combinatorial
2-complex.

Definition 2.2 (Polygons). A polygon is a 2-dimensional disc whose cell
structure has n 0-cells, n 1-cells, and one 2-cell where n ≥ 1 is a natural
number. If X is a combinatorial 2-complex then for each open 2-cell C ↪→ X
there is a polygon R, a combinatorial map R → X and a map C → R such
that the diagram

C ↪→ X
↓ ↗
R

commutes, and the restriction ∂R → X is the attaching map of C. In this
article the term 2-cell will always mean a combinatorial map R → X where
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R is a polygon. The corresponding open 2-cell is the image of the interior
of R.

A similar convention applies to 1-cells. Let e denote the graph with two
0-cells and one 1-cell connecting them. Since combinatorial maps from e to
X are in one-to-one correspondence with the characteristic maps of 1-cells
of X, we will often refer to a map e → X as a 1-cell of X.

Definition 2.3 (Standard 2-complex). In the study of infinite groups, the
most commonly considered combinatorial 2-complexes correspond to pre-
sentations. Recall that the standard 2-complex of a presentation is formed
by taking a unique 0-cell, adding a labeled oriented 1-cell for each generator,
and then attaching a 2-cell along the closed combinatorial path correspond-
ing to each relator.

Convention 2.4. Unless noted otherwise, all complexes in this article are
combinatorial 2-complexes, and all maps between complexes are combinato-
rial maps. In addition, we will avoid certain technical difficulties by always
assuming that all of the attaching maps for the 2-cells are immersions. For
2-complexes with a unique 0-cell, this is equivalent to allowing only cyclically
reduced relators in the corresponding presentation.

Definition 2.5 (Paths and cycles). A path is a map P → X where P is a
subdivided interval or a single 0-cell. In the latter case, P is called a trivial
path. A cycle is a map C → X where C is a subdivided circle. Given two
paths P → X and Q → X such that the terminal point of P and the initial
point of Q map to the same 0-cell of X, their concatenation PQ → X is the
obvious path whose domain is the union of P and Q along these points. The
path P → X is a closed path provided that the endpoints of P map to the
same 0-cell of X. A path or cycle is simple if the map is injective on 0-cells.
The length of the path P or cycle C is the number of 1-cells in the domain
and it is denoted by |P | or |C|. The interior of a path is the path minus its
endpoints. In particular, the 0-cells in the interior of a path are the 0-cells
other than the endpoints. A subpath Q of a path P [or a cycle C] is given
by a path Q → P → X [Q → C → X] in which distinct 1-cells of Q are sent
to distinct 1-cells of P [C]. Notice that the length of a subpath is at most
that of the path [cycle] which contains it. Finally, note that any nontrivial
closed path determines a cycle in the obvious way. Finally, when the target
space is understood we will often just refer to P → X as the path P .

Definition 2.6 (Diagrams). A diagram D is a nonempty finite 2-complex
each of whose connected components has a specific embedding in a distinct
2-sphere. A diagram which consists of a single 0-cell is trivial. A contractible
diagram is a disc diagram. Notice that we allow the possibility of a compo-
nent mapping onto a 2-sphere, thus contractible implies simply-connected,
but not the reverse. A connected diagram with fundamental group

�
is

an annular diagram. Note that a disc diagram or an annular diagram will
always be a strong deformation retraction of a topological disc or annulus,
even though it may not be homeomorphic to a disc or annulus. A boundary
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0-cell or boundary 1-cell is a 0-cell or 1-cell which lies in ∂D. A boundary
2-cell is a closed 2-cell which has nonempty intersection with ∂D. For ex-
ample a 2-cell which intersects the boundary at a single 0-cell is a boundary
2-cell.

A disc diagram which is not homeomorphic to a disc is a singular disc
diagram. In this case, D is either trivial, consists of a single 1-cell joining
two 0-cells, or contains a cut 0-cell which is a 0-cell whose removal discon-
nects the remainder of the diagram. In general, a diagram D will be called
a singular diagram whenever the topological boundary of D is not homeo-
morphic to the disjoint union of circles. Thus for singular diagrams there
is a slight difference between the topological boundary of D and the set of
cycles which we will refer to as its boundary cycles.

Definition 2.7 (Boundary cycles). Intuitively a boundary cycle P of a non-
trivial diagram D is a closed path around a component of the complement
of D. More precisely, a boundary cycle can be described as follows: (1) start
in the interior of any 1-cell in the boundary of D, (2) traverse the 1-cell in
a direction so that the region to your left [right] is exterior to D, (3) after
passing through a 1-cell and arriving at the 0-cell v, you should leave by
the 1-cell which is next in the clockwise [counter-clockwise] ordering of the
1-cells incident at v, and (4) when you return to traversing the initial 1-cell
in the same orientation, the boundary cycle is complete. Since the bound-
ary cycle is a closed path we view it as a map P → D from a subdivided
circle to the disc diagram itself. Each component of the complement of D
(in the set of spheres in which D embeds) yields a clockwise and a counter-
clockwise boundary cycle, and we will not distinguish between them. In
particular, if the complement has n components then there are n boundary
cycles P1 → D, . . . , Pn → D. For example, a disc diagram has one boundary
cycle but a subdivided circle embedded in the sphere is an annular diagram
with two boundary cycles. We note that there is a distinction between the
(topological) boundary of a diagram D and its boundary cycles, and this
distinction is more pronounced when D is singular. A path Q → D is a
boundary path if Q is a subpath of a boundary cycle of D.

Definition 2.8 (Spurs). Let D be a diagram. If a boundary cycle of D is
not immersed, then there is a valence 1 0-cell v in the image of this boundary
cycle. (The valence of a 0-cell v in the 2-complex X is the number of ends
of 1-cells incident at v.) The 1-cell in D which contains v as an endpoint
is a spur, the 0-cell v is the tip of the spur, and the other endpoint is its
base. The leftmost illustration in Figure 9 (page 24) is a disc diagram with
a spur.

Definition 2.9 (Equivalent and identical pairs). Consider a pair of 2-cells
R1, R2 in a 2-complex Y which meet along a nontrivial path P → Y . More
specifically, let P → Ri → Y be a subpath of ∂Ri → Y such that the
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Identical pair in Y ⇒ Identical pair in X
⇓ ⇓

Equivalent pair in Y ⇒ Equivalent pair in X

Figure 3. Relationships between identical and equivalent
pairs in Y and X.

following diagram commutes:

P → R2

↓ ↘ ↓
R1 → Y

Call this a pair of 2-cells meeting along a path in Y , or more briefly, a
pair in Y . This pair in Y is an equivalent pair provided that there is a
homeomorphism ∂R1 → ∂R2 such that there is a commutative diagram of
the form:

P → ∂R2

↓ ↗ ↓
∂R1 → Y

An equivalent pair is an identical pair if the map ∂R1 → ∂R2 extends to a
map R1 → R2 such that there is a commutative diagram of the form:

P → R2

↓ ↗ ↓
R1 → Y

Given a map Y → X and a pair in Y , there is a corresponding pair in X
given by

P → R2

↓ ↘ ↓
R1 → X

where Ri → X denotes the composition Ri → Y → X. It is clear from the
definitions that if a pair in Y is an identical [or equivalent] pair, then the
corresponding pair in X is an identical [equivalent] pair, and if a pair in Y
[or X] is an identical pair, then it is also an equivalent pair in Y [X]. These
relationships are summarized in Figure 3.

Definition 2.10 (Reduced maps). A pair in Y is a cancelable pair relative
to a map Y → X if the corresponding pair in X is an equivalent pair. The
map Y → X is reduced if every cancelable pair in Y (relative to Y → X) is
an equivalent pair in Y . In other words, the map Y → X is reduced if for
every pair in Y and corresponding pair in X, the pair in Y is an equivalent
pair if and only if the corresponding pair in X is an equivalent pair.

Example 2.11 (Torsion). Let X be the standard 2-complex of the pre-

sentation 〈a|a2〉 and let X̃ → X be its universal cover. Let P → X̃ be a

length 1 path in X̃ and let R1 → X̃ and R2 → X̃ be the two 2-cells of X̃.

This forms an equivalent pair in X̃ which is not an identical pair in X̃. The
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corresponding pair in X is an equivalent pair but not an identical pair in
X, even though X only has a single 2-cell.

Lemma 2.12. Suppose that Z → Y and Y → X are reduced maps. Then
the composition Z → X is a reduced map.

Proof. This follows from the definitions. �

Definition 2.13 (Immersions). The map Y → X is an immersion if it is

locally injective. The map Y → X is a near-immersion if Y \ Y (0) → X is
locally injective. Equivalently, a map is a near-immersion if for every pair in
Y , the corresponding pair in X is an identical pair if and only if the original
pair in Y is an identical pair.

Lemma 2.14. If Y → X is an immersion then Y → X is reduced.

Proof. Consider a pair of 2-cells, R1 and R2, in Y which meet along a path
P → Y , and assume that the corresponding pair in X is an equivalent pair.
Since immersions have the unique lifting property, there is at most one lift
of ∂R1 → X to a map ∂R1 → Y which extends the lift of P → X to P → Y .
Therefore, the diagram

P → ∂R2

↓ ↗ ↓
∂R1 → Y

must commute. �

Lemma 2.15. Let Y → X be a map between 2-complexes.

(1) If Y → X is a near-immersion and each equivalent pair of X is an
identical pair, then Y → X is reduced.

(2) If Y → X is reduced and each equivalent pair of Y is an identical
pair, then Y → X is a near-immersion.

Proof. The proof is nearly immediate from Figure 3 and the definitions. In
the first case, the assumptions are that the implications along the top and
right side of Figure 3 are reversible. This clearly implies that the implication
along the bottom is also reversible. In the second case, the assumptions are
that the implications along the bottom and left side of Figure 3 are reversible.
This clearly implies that the implication along the top is reversible. �

As expressed by Lemma 2.15, near-immersions are very similar to reduced
maps, and these two notions are the same when we restrict ourselves to
considering 2-complexes with the property that all their equivalent pairs are
identical. While it is often the case that certain “redundant” copies of 2-
cells can be removed without affecting the fundamental group, unfortunately,
these types of 2-cells are unavoidable in general. This is because, especially
within the context of small cancellation theory, it is natural to consider 2-
cells whose attaching maps are proper powers (i.e. the attaching map is
obtained by traversing a closed path in the 2-complex a number of times),
and such 2-cells yield equivalent pairs that are not identical. Some pitfalls
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involving near-immersions in small cancellation theory will be illustrated in
Examples 3.12 and 3.13.

Lemma 2.16 (Removing cancelable pairs). Let D be a diagram whose
boundary cycles are {Pj → D : j ∈ Components of Complement of D},
and let D → X be a map from D to a 2-complex.

(1) If D → X is not reduced, then there is a new diagram D′ with fewer
2-cells, and a map D′ → X such that there is a bijection between the com-
ponents of the complements of D and D′, and the boundary cycles of D and
D′ are the same in the sense that for each component j of the complement
of D (in the union of spheres containing D) there is a commutative diagram

Pj → D
↓ ↓
D′ → X

(2) There exists a diagram D′′ and a reduced map D′′ → X such that the
boundary cycles of D′′ are the same as the boundary cycles of D in the sense
of (1).

Proof. We first prove (1). Since D → X is not reduced there exists a
cancelable pair R1, R2 of 2-cells meeting along a 1-cell e → D. Let C be
the connected component of D which contains e and let Σ be the sphere
containing C. The idea is to “cut out” these open cells and then to “sew
up” the resulting hole. Let k = |∂R1| − 1. We first remove the open cells
R1, R2, and e from the component C to obtain a new diagram Dk which
has exactly one additional boundary cycle SkT

−1
k where Sk and Tk are the

paths ∂R1 \ e → D and ∂R2 \ e → D, so that Ske and Tke are the attaching
maps of R1 → D and R2 → D. Note that the composition Sk → Dk → X
is identical to Tk → Dk → X and so the image of SkT

−1
k in X traces a path

and then traces the same path in reverse.
We will now sew up the resulting hole by successively folding and removing

1-cells of the extra boundary cycle to obtain a sequence of diagrams Di and
maps Di → X, starting at i = k and working our way down to i = 0. At
each stage, Di is a diagram whose boundary cycles are the same as those
of D except for one additional boundary cycle of the form SiT

−1
i , whose

projection to X traces a path followed by the same path in reverse. Let
Ci be the component of Di containing Si and Ti, and let Σi be the sphere
containing Ci. Let si → Di denote the restriction of Si to its final 1-cell,
and let Si−1 denote the initial subpath of Si omitting this final 1-cell, so
that Si = Si−1si. Define ti and Ti−1 similarly. Note that the composition
sit

−1
i → Di → X has the form ee−1 → X for some 1-cell e in X. Our choice

of Di−1 depends on the nature of the path sit
−1
i → Di. Typical diagrams

for the three cases are illustrated in Figure 4.
Case 1: If sit

−1
i → Di is not a closed path, then there is a quotient

Ci → Ci−1 obtained by identifying the two 1-cells si and ti of Ci in Σi. The
other components of Di are unchanged and the resulting diagram is Di−1.
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Figure 4. The three cases of Lemma 2.16 from left to right.

The new component Ci−1 clearly embeds in Σi−1 = Σi in almost the exact
same way as Ci. In particular, the boundary cycles of Di−1 are the same
as the boundary cycles of Di except that the boundary cycle SiT

−1
i → Di

is replaced by the closed path Si−1T
−1
i−1 → Di−1 obtained by concatenating

the compositions Si−1 → Ci → Ci−1 and Ti−1 → Ci → Ci−1.
Case 2: If sit

−1
i → Di−1 is a closed path and i > 1, then sit

−1
i must bound

a connected subdiagram which has exactly two 0-cells on its boundary, one
of which is a 0-cell v whose removal disconnects Ci. Let C ′

i be the connected

subdiagram bounded by sit
−1
i . If C ′

i consists of the closure of a single 1-cell,
then we simply remove this spur (retaining the 0-cell v) to form the next
diagram Di−1. Otherwise, we detach the subdiagram C ′

i from the rest of Ci

and embed each of the resulting connected components in its own separate
sphere. Each connected component is then closed so that a copy of v occurs
in C ′

i and in the portion of the component of Ci which remained in Σi. In
the sphere containing C ′

i we can now identify si and ti. Notice that if C′

i

contains no other boundary cycles, this may create a complete sphere with
no boundary cycles at all. Let Ci−1 be the portion of Ci which remained in
Σi = Σi−1. In either case, the boundary cycles of Di−1 are essentially the
same as before except that the boundary cycle SiT

−1
i → Di is replaced by

the path Si−1T
−1
i−1 → Di−1.

Case 3: When i = 1, s1t
−1
1 → D1 is an entire boundary cycle of D1, and

there is a quotient D1 → D0 obtained by identifying the two 1-cells s1 and
t1 of D1. The component C0 clearly embeds in Σ0 = Σ1 in almost the exact
same way as C1, and we are done.

This procedure terminates at i = 0 after Case 3 has been applied. The
final diagram has the same boundary cycles as the original one, and it has
two fewer 2-cells as claimed. Finally, to prove (2) from (1), note that the
procedure of (1) can be applied only finitely many times. �
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One immediate consequence of Lemma 2.16 is that the fundamental groups
of 2-complexes can be studied via reduced disc diagrams. The following
theorem, known as the Lyndon-van Kampen lemma, was first discovered in
1933 by E. R. van Kampen [20] and independently rediscovered in 1966 by
R. C. Lyndon [10]. Alternative versions can be found in [2], [3], [11], or [12].

Lemma 2.17 (Disc version). If X is a 2-complex and P → X is a null-
homotopic closed path, then there exists a disc diagram D and a reduced
map D → X such that P → D is the boundary cycle of D, and P → X is
the composition P → D → X.

Proof. Since P → X is null-homotopic, there exists a disc diagram D → X
such that P → X factors as P → D → X, and such that the boundary cycle
of D is P → D. A proof of this can be found in [3, Section 2.2] or [11]. By
Lemma 2.16, there is a diagram D′ with the same boundary cycle as D. If
D′′ ⊂ D is the component containing this boundary cycle, then D′′ → X is
the desired map. �

Another consequence is the existence of reduced annular diagrams for
homotopic essential closed paths.

Lemma 2.18 (Annular version). If X is a 2-complex and P1 → X and P2 →
X are homotopic essential closed paths, then as in the proof of Lemma 2.17,
there exists a reduced annular diagram D → X whose boundary cycles are
P1 → D → X and P2 → D → X.

Proof. Since P1 → X and P2 → X are homotopic, there must exist an
annular diagram D → X such that Pi → X factors as Pi → D → X,
and such that the boundary cycles of D are Pi → D for i ∈ {1, 2}. By
Lemma 2.16, there is a diagram D′ with the same boundary cycles as D.
Since P1 → X is essential, the images of P1 → D and P2 → D must lie in
the same component D′ of D. This component must be an annular diagram
because it has only two boundary cycles. �

3. Small cancellation theory

This section provides the basic definitions of small cancellation theory. Al-
though small cancellation theory has traditionally been defined using group
presentations (which are equivalent to 2-complexes with a unique 0-cell),
the definitions can be adjusted to apply to arbitrary 2-complexes as we have
done here.

Definition 3.1 (Piece). Let X be a combinatorial 2-complex. Intuitively, a
piece of X is a path which is contained in the boundaries of the 2-cells of X in
at least two distinct ways. More precisely, a nontrivial path P → X is a piece
of X if there are 2-cells R1 and R2 such that P → X factors as P → R1 → X
and as P → R2 → X but there does not exist a homeomorphism ∂R1 → ∂R2
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such that there is a commutative diagram

P → ∂R2

↓ ↗ ↓
∂R1 → X

In other words, P belongs to a pair in X which is not an equivalent pair.
Excluding commutative diagrams of this form ensures that P occurs in ∂R1

and ∂R2 in essentially distinct ways. The definition can also be formulated
in terms of reduced maps. Let R1 ∪P R2 denote the diagram formed by
gluing R1 to R2 along P . The path P is a piece of X if and only map
R1 ∪P R2 → X is reduced.

Example 3.2. Let G = 〈a, b, c, d | abcabd〉 and let X be the standard 2-
complex for this presentation. The path P → X corresponding to the word
ab factors through the unique 2-cell in two distinct ways. Since there is no
map from the boundary of this 2-cell to itself which sends one instance of
ab to the other, the path P is a piece of X. On the other hand, in the
presentation 〈a, b, c | abcabc〉, the path corresponding to ab is not a piece,
since there is a cyclic rotation of the boundary of the 2-cell which sends one
occurrence of ab to the other.

Lemma 3.3. If Y → X is reduced and P → Y is a piece then P → Y → X
is a piece.

Proof. By definition, P → Y is a piece if and only if there are 2-cells R1

and R2 in Y such that R1 ∪P R2 → Y is reduced. If such 2-cells exist, then
by Lemma 2.12, R1 ∪P R2 → Y → X is reduced and thus P → X is also a
piece. �

Definition 3.4 (C(p)-T (q) complexes). Let p be a natural number. A 2-
complex X is a C(p) complex provided that for each 2-cell R → X, its
attaching map ∂R → X is not the concatenation of fewer than p pieces in
X. This is equivalent to requiring that for any diagram D and reduced map
D → X, if R → X is a 2-cell such that no 1-cell of ∂R is contained in
∂D, then the cycle ∂R → D passes through 0-cells of valence ≥ 3 at least
p times.

There is a closely related metric condition depending on a positive real
number α. The complex X is a C ′(α) complex provided that for each 2-cell
R → X, and each piece P → X which factors as P → R → X, we have
|P | < α|∂R|. Note that if X satisfies C′(α) and n ≤ 1

α
+ 1 then X satisfies

C(n).
The final small cancellation condition concerns neighborhoods of 0-cells

of X. We say X is a T (q) complex if there does not exist a reduced map
D → X where D is a disc diagram containing an internal 0-cell v, such that
2 < valence(v) < q. If none of the 2-cells are “proper powers” then this is
equivalent to requiring that there not exist a closed immersed path in the
link of a 0-cell of length between 2 and q. When proper powers are present,
various edges in the link need to be identified before searching for closed
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Figure 5. A piece of length 2 and its T (5)-violating conse-
quence.

immersed paths. The first T (q) condition which restricts the nature of the
2-complex is T (4). A 2-complex which satisfies both C(p) and T (q) is a
C(p)-T (q) complex.

As mentioned above, the definitions presented here are a natural general-
ization of traditional small cancellation theory in the sense that a presenta-
tion 〈a1, a2, . . . | R1, R2, . . . 〉 is a C(p)-T (q) presentation (according to the
usual definition) if and only if its associated standard 2-complex is a C(p)-
T (q) complex as defined here. The main distinction is that Definition 3.4
applies to 2-complexes with more than one 0-cell.

The following lemma was first observed by Pride (see [5]).

Lemma 3.5. If X is a T (q) complex with q ≥ 5, then every piece in X has
length 1.

Proof. If there is a piece of length > 1, then there is a piece of length 2.
In particular, there exist distinct 2-cells R and R′ and a length 2 path P
contained in both boundary cycles. Using these 2-cells and this path, it is
possible to create a reduced disc diagram with four 2-cells and an internal
0-cell of valence 4. See Figure 5. Since this violates the T (5) condition, no
such piece exists. �

Convention 3.6. For convenience we will always assume that each 2-cell
of a C(p) complex X has the property that its boundary cycle is not the
concatenation of fewer than p paths, each of which is either a piece or of
length 1. In particular, the length of the boundary cycle of each 2-cell is ≥ p.
There is little loss of generality in making this assumption. Indeed, if X is
a C(p) complex, then X will have the above property after we subdivide
p-times all of those 1-cells of X which are not pieces.

Reduced maps are the natural category of maps in small cancellation
theory because of the following:

Theorem 3.7. Let Y → X be reduced.

(1) If X is C(p) then Y is C(p).
(2) If X is T (q) then Y is T (q).
(3) If X is C ′(α) then Y is C ′(α).
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Proof. Let D → Y be a reduced map of a diagram to Y . By Lemma 2.12,
the composition D → Y → X yields a reduced map D → X. Parts (1)
and (3) now follow from Lemma 3.3, and part (2) follows from the definition
of T (q). �

Theorem 3.7 has the following notable special cases:

Corollary 3.8. A covering space of a C(p)-T (q) complex is a C(p)-T (q)
complex.

Proof. Since covering maps are immersions, this follows from Lemma 2.14
and Theorem 3.7. �

Corollary 3.9. Let X be a C(p)-T (q) complex, and let D → X be a reduced
map of a disc diagram. Then D is a C(p)-T (q) complex.

As a consequence, C(p)-T (q) disc diagrams exist for null-homotopic paths
and annular C(p)-T (q) diagrams exist for pairs of homotopic paths which
are not null-homotopic.

Theorem 3.10 (C(p)-T (q) disc diagrams). If X is a C(p)-T (q) complex
and P → X is a closed null-homotopic path, then there exists a C(p)-T (q)
disc diagram D and a reduced map D → X whose unique boundary cycle is
the path P → X. Consequently, the pieces of D are sent to pieces of X.

Proof. This is immediate from Theorem 3.7 and Lemma 2.17. �

Theorem 3.11 (C(p)-T (q) annular diagrams). If X is a C(p)-T (q) complex
and P1 → X and P2 → X are homotopic essential closed paths in X, then
there exists an annular C(p)-T (q) diagram D and a reduced map D → X
whose boundary cycles are P1 → D → X and P2 → D → X. Consequently,
the pieces of D are sent to pieces of X.

Proof. This is immediate from Theorem 3.7 and Lemma 2.18. �

The following examples show that Theorem 3.7 can fail for a near-immersion.

Example 3.12. Let X be the standard 2-complex of 〈a | a2〉 and observe
that because the unique 1-cell of X is not a piece, X satisfies C(p) for all p.
Let D be the disc diagram illustrated on the left in Figure 6 which consists
of two 0-cells, four 1-cells connecting the two 0-cells, and three 2-cells. Note
that D only satisfies C(2) since both internal 1-cells of Y are pieces and
the boundary of the 2-cell between them is the concatenation of these two
pieces. Finally, observe that there is a near-immersion D → X (although
most of the combinatorial maps from D to X are not near-immersions.)

Example 3.13. Let X denote the standard 2-complex of 〈a, b, c | (ab)2, (bc)2〉.
Then it is easy to check that X satisfies T (q) for each q. Let D denote the
disc diagram illustrated on the right in Figure 6, which consists of four
squares R1, R2, R3, R4 glued together along 1-cells around a single interior
0-cell. Note that D satisfies T (4) but not T (5). There is a near-immersion
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Figure 6. Domains of near-immersions which are not re-
duced. In both figures, the 1-cells are labeled and oriented
so that they agree with their images.

D → X which sends R1 and R2 to the 2-cell corresponding to (ab)2 and
sends R3 and R4 to the 2-cell corresponding to (bc)2.

4. Combinatorial Gauss-Bonnet

In this section, we state and prove a version of the combinatorial Gauss-
Bonnet theorem, followed by two applications. It was first stated and proven
for diagrams which embed in a sphere without boundary by Gersten in [4]
and Pride in [17], thereby refining some earlier ideas of Lyndon’s concerning
(p, q)-maps (see [11]) as well as an idea of Sieradski’s [19]. The Gauss-
Bonnet theorem was stated for surfaces in [5]. In this article, we prove a
generalization to arbitrary 2-complexes. Since first writing this article we
have learned that this theorem was proven earlier for piecewise constant
curvature 2-complexes by Ballmann and Buyalo [1]. The proof is the same.

Definition 4.1 (Links and perimeters). Let X be a locally finite 2-complex
and let x be a point in its 1-skeleton. The cells of X each have a natural
partial metric obtained by making every 1-cell isometric to the unit interval
and every n-sided 2-cell isometric to a Euclidean disc of circumference n
whose boundary has been subdivided into n curves of length 1. In this
metric, the set of points which are a distance equal to ε from x will form a
finite graph. If ε is sufficiently small, then the graph obtained is independent
of the choice of ε. This well-defined graph is the link of x in X and is denoted
by Link(x). If v is a 0-cell of X, then the graph Link(v) is called the link
of the 0-cell v. When X contains a single 0-cell v, then Link(v) is the star
graph or coinitial graph of the presentation X encodes. To avoid confusion,
we will discuss Link(v) using the language of vertices and edges and reserve
the terms 0-cells and 1-cells for the 2-complex X containing v. Notice that
the link of a 0-cell can be an arbitrary finite graph. In contrast, if x lies in
the interior of a 1-cell e of X, then the link of x has a very particular form:
Link(x) will have exactly two vertices (corresponding to the two ends of e)
and a finite number of edges connecting these two vertices. The number of
edges in Link(x) is called the perimeter of e and will be denoted P(e). The
word “perimeter” is used because if each 1-cell is thought to have length 1,
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then this is the length of the boundary created when the 1-cell e is removed
from X.

Definition 4.2 (Corners and sides). Let X be a 2-complex, let v be a 0-cell
in X, let R → X be a 2-cell in X, and let x be a point in the interior of a
1-cell e in X. If we regard the 2-cells of X as polygons, then the edges of
Link(v) correspond to the corners of these polygons attached to v. We will
refer to a particular edge in Link(v) as a corner of R at v if this edge comes
from the polygon R → X. Similarly, the edges of Link(x) correspond to the
sides of these polygons attached to e, and we will refer to a particular edge
in Link(x) as a side of R at e if this edge comes from R → X.

Remark 4.3. It is immediate from the definition that the 2-cell R → X
contributes exactly |∂R| corners at 0-cells of X and exactly |∂R| sides at
1-cells of X. Since the number of sides contributed by each polygon is the
same as the number of corners, the total number of sides in X equals the
total number of corners.

Definition 4.4 (Combinatorial curvature). We say X is an angled 2-complex
provided that every corner c of X has been assigned a real number � c called
the angle of c, and X is positively angled if all these angles are positive. If f
is a 2-cell of X then the curvature of f is defined to be the sum of the angles
assigned to its corners minus (|∂f | − 2)π (which is the expected Euclidean
angle sum). In symbols we have

Curvature(f) =




∑

c∈Corners(f)

� c


 − |∂f |π + 2π

The curvatures of the 2-cells of X are its 2-cell curvatures. If v is a 0-
cell of X then the curvature of v is defined to be 2π minus π · χ(Link(v))
minus the sum of the angles assigned to corners at v. If X embeds in the
plane and v is an interior 0-cell then Link(v) is a circle and the curvature
measures the difference between the expected Euclidean angle sum of 2π and
the actual angle sum. This 0-cell curvature equation gives the appropriate
generalization of this idea to arbitrary 2-complexes. In symbols

Curvature(v) = 2π − π · χ(Link(v)) −




∑

c∈Corners(v)

� c




Remark 4.5. Let D be a positively angled diagram and let v be a 0-cell of
D. If Link(v) is not a complete circle (but is not empty), then χ(Link(v)) ≥ 1
and thus Curvature(v) ≤ π. Moreover, Curvature(v) = π if and only if
Link(v) is a single vertex and v is the tip of a spur. Furthermore, if Link(v)
is disconnected, then χ(Link(v)) ≥ 2 and thus Curvature(v) ≤ 0. In this
case, Curvature(v) = 0 if and only if the Link(v) consists of exactly two
isolated vertices.

We can now state and prove the combinatorial Gauss-Bonnet theorem.
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Theorem 4.6 (Combinatorial Gauss-Bonnet). If X is an angled 2-complex
then the sum of the 2-cell curvatures and the 0-cell curvatures is 2π times
the Euler characteristic of X.

(1)
∑

f∈2-cells(X)

Curvature(f) +
∑

v∈0-cells(X)

Curvature(v) = 2π · χ(X).

In particular, if X is a disc diagram then this sum will be 2π and if X is an
annular diagram the sum will be 0.

Proof. For convenience we will define the following pair of constants.

C =
∑

c∈Corners(X)

� c P =
∑

e∈1-cells(X)

P(e)

The proof will follow from the following two equations:

(2)
∑

f∈2-cells(X)

Curvature(f) = C − πP + 2πF

(3)
∑

v∈0-cells(X)

Curvature(v) = 2πV − 2πE + πP − C

where the letters V , E, and F represent the number of 0-cells, 1-cells, and
2-cells in X, respectively. To prove the theorem, one simply adds Equa-
tions 2 and 3, and observes that the corner sums and the perimeter sums
cancel, leaving 2π(V − E + F ), which is exactly 2π times the Euler charac-
teristic of X. The remainder of the proof justifies these two equations.

In the definition of the curvature of a 2-cell, there are three terms. The
first term contributes C and the last term contributes 2πF towards the
sum of all 2-cell curvatures. Observe that the sum of the lengths of the
boundaries of the 2-cells of X is precisely the number of sides of 2-cells in
X, and this is the total number of sides at 1-cells of X which is precisely P .
Thus the middle term contributes −πP towards the sum, and Equation 2
has been established.

Similarly, in the definition of the curvature of a 0-cell there are three
terms. The first term contributes 2πV and the last term contributes −C
towards the sum of the 0-cell curvatures. Thus to establish Equation 3 it
remains to show that the sum of the Euler characteristics of the links of
the 0-cells is 2E − P . We will consider the vertices and edges in the links
separately. Note that the edges in the links of the 0-cells are in one-to-one
correspondence with the corners of X. Since each 2-cell has as many corners
as sides, the total number of edges occurring in the links of the 0-cells is
P . On the other hand, the vertices in the links of the 0-cells correspond
to the ends of the 1-cells of X. Since each 1-cell of X contributes two
distinct vertices to the links of the 0-cells, the total number of vertices
which occur in the links is 2E. Finally, since the Euler characteristic of a
graph is the number of vertices minus the number of edges, the sum of the
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Euler characteristics of the links is 2E−P . This establishes Equation 3 and
completes the proof. �

In the remainder of the section we present two quick applications of The-
orem 4.6. The first application is perhaps the most surprising, and it is the
source of essentially all of the results of small cancellation theory.

Theorem 4.7. Let D be a positively angled disc diagram. Suppose that each
2-cell and each interior 0-cell of D has nonpositive curvature. Then one of
the following holds:

(1) D is trivial.
(2) D is a subdivided interval.
(3) There are at least three 0-cells in ∂D with positive curvature.

Proof. By the Combinatorial Gauss-Bonnet theorem, the total curvature of
D is exactly 2π. Therefore there must be some 0-cells in ∂D with positive
curvature. First observe that if there is a 0-cell v in ∂D with Curvature(v) >
π then Link(v) is empty, and therefore D is trivial because it is connected
and so D = v.

The other possibility is that no boundary 0-cell has curvature larger than
π. Now if there are at most two sources of positive curvature, then both of
these 0-cells must have curvature exactly equal to π and all other curvatures
must equal 0. Let v0 be one of the two 0-cells of positive curvature. By
Remark 4.5, the link of v0 must consist of a single 0-cell. If the 0-cell v1

at the other end of the unique 1-cell emanating from v0 is not the other
0-cell of positive curvature, then Curvature(v1) = 0, and Link(v1) must
be disconnected. By Remark 4.5 we conclude that Link(v1) has a specific
structure: it consists of two disconnected vertices, and thus there is a unique
additional 1-cell incident at v1. Repeating this argument, we eventually
reach the other 0-cell of positive curvature and the proof is complete. �

As a consequence, diagrams satisfying C(p)-T (q) for large p and q have
restricted structures.

Theorem 4.8. Let D be a C(3)-T (6) [C(4)-T (4)] disc diagram. Then one
of the following holds:

(1) D is trivial.
(2) D is a subdivided interval.
(3) There are at least three 0-cells in ∂D with connected links and va-

lence ≤ 3 [≤ 2].

Proof. We assign an angle of π/3 [π/2] to each corner of D. Let R be a
2-cell of D. By the C(3) [C(4)] condition and Convention 3.6, R has at
least 3 [respectively 4] corners and therefore has nonpositive curvature. By
the T (6) [T (4)] condition, each interior 0-cell has nonpositive curvature. Let
v be a 0-cell in ∂D. If Link(v) is disconnected then v will be nonpositively
curved because χ(Link(v)) ≥ 2. On the other hand, if Link(v) is connected
and v has valence at least 4 [respectively 3], then v is nonpositively curved
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Figure 7. A disc diagram and its cut-tree. The bold ‘black’
0-cells in the tree correspond to the cut 0-cells of the diagram
and the smaller ‘red’ 0-cells correspond to the cut-
components.

because of the way the angles are assigned. An application of Theorem 4.7
completes the proof. �

5. Cut-trees, basepoints, and duals

This section describes additional properties of diagrams which will be
needed in the proofs of the main theorems. In particular, we associate to a
disc diagram D a finite tree called a cut-tree which encodes the singularities
of D and a new diagram called its dual. This section also introduces the
language of doubly-based diagrams.

Definition 5.1 (Cut-tree). Let D be a disc diagram. A 0-cell v is called a
cut 0-cell of D provided that D \ v is not connected. We now define a tree
T , called the cut-tree of D, which encodes the arrangement of the cut 0-cells
of D. Let V be the set of all cut 0-cells of D. A connected component of
D \V will be called a cut-component. Let C be the set of cut-components of
D. The tree T is constructed by adding a black 0-cell for each 0-cell v ∈ V
and a red 0-cell for each component c ∈ C. A 1-cell connects the 0-cell for
v to the 0-cell for c if and only if v is in the closure of c. Since all 1-cells
connect black 0-cells to red 0-cells, the graph is bipartite, and since each of
the black 0-cells disconnects T , the graph is a tree. Note that since black
0-cells have valence at least 2, the leaves of T are red. This procedure is
illustrated in Figure 7.

The following properties are immediate from the definition and they will
be used to prove Theorem 9.2.

Lemma 5.2. Let D be a disc diagram and let T be its cut-tree.

(1) T is trivial if and only if D is a single 0-cell or a single 1-cell or a
nonsingular diagram.

(2) The leaves of T correspond to the nontrivial subdiagrams without
cut 0-cells which are attached to the rest of D by a single 0-cell. In
particular, if D is a nontrivial singular diagram with more than one
1-cell, then D contains at least two such subdiagrams.

(3) The subdiagram associated to a red 0-cell is singular if and only if
it is a 1-cell which does not border a 2-cell in D. In particular, the
subdiagram associated to a leaf of T is singular if and only if it is a
spur.
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Definition 5.3 (Doubly-based diagrams). A doubly-based diagram D is a
disc diagram in which two (possibly identical) 0-cells, s and t, have been
specified in the boundary cycle of D. These 0-cells are called the startpoint
and the endpoint of D, respectively, and collectively they are the basepoints
of D. Note that specifying a 0-cell in the boundary cycle of D is slightly
different from specifying a 0-cell in the boundary of D. Recall from Defini-
tion 2.7 that the boundary cycle of D is a particular map from a subdivided
circle into D. Thus specifying a startpoint and endpoint in the boundary
cycle not only determines two 0-cells in ∂D, but it also determines a pair of
paths P1 → ∂D → D and P2 → ∂D → D with s as their common startpoint
and t as their common endpoint such that P1P

−1
2 is the boundary cycle

of D. The paths P1 → D and P2 → D will be called the boundary paths
determined by the basepoints of D. A pair of 0-cells in the boundary of D,
on the other hand, do not uniquely determine such paths if either s or t is a
cut 0-cell of D. Notice that when s = t, one of these paths will be a trivial
path.

Definition 5.4 (Arcs). A path P → X is an arc provided it is an embedding
(except possibly at its endpoints) and each of its interior 0-cells is mapped
to a 0-cell with valence 2 in X. An arc which is not a proper subpath of any
other arc is a maximal arc. If X is a diagram, then we will further distinguish
between internal arcs and boundary arcs. If the arc lies in the interior of
the diagram (except possibly at its endpoints), then it is an internal arc;
otherwise the arc must be a subpath of a boundary cycle of D and it is a
boundary arc. Notice that a maximal internal arc in a diagram is the same
as a maximal piece.

Definition 5.5 (Dual diagrams). Let D be a connected diagram. The dual
of D is a subspace of D which consists of

(1) a 0-cell at the center of each 2-cell of D,
(2) a 1-cell passing through each maximal internal arc of D connecting

the centers of the 2-cells on either side, and
(3) a 2-cell for each interior 0-cell v of valence at least 3.

(What we have called the dual of D is what a graph theorist would typically
call the “internal dual”.) Notice that 0-cells of valence 2 play no role in this
definition. The dual, however, may contain 0-cells of valence 2, particularly
in its boundary. These 0-cells will be retained since they encode useful
information about the original diagram, and they also ensure that the dual
diagram satisfies Convention 3.6 in Lemma 5.6 below. Figure 11 (page 27)
shows three diagrams and their duals. Finally, if D has a basepoint then
a corresponding basepoint for E will be chosen so that the corresponding
2-cell of D contains the original basepoint in its boundary. Such a choice
will be made for each basepoint of D. In practice, the actual choice of 0-cell
will be unimportant.

Lemma 5.6. Let D be a connected diagram and let E be its dual.

(1) If D is nonsingular then E is connected and π1D ∼= π1E.
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(2) If D is nonsingular, R is a boundary 2-cell of D, and v is the cor-
responding 0-cell in E, then the number of components of ∂R ∩ ∂D
equals the number of components of Link(v).

(3) If D is simply-connected then each component of E is simply-connected.
(4) If D is a C(p)-T (q) diagram then E is a C(q)-T (p) diagram.

Proof. To prove (1) notice that when D is nonsingular, the portion of D
which lies outside of E is a regular neighborhood of ∂D and that D can be
viewed as a regular neighborhood of E. There is thus a strong deformation
retraction from D → E and we are done. This perspective also makes the
proof of (2) immediate.

To prove (3), note that if D is nonsingular and simply-connected then E is
connected and simply-connected by (1). If, on the other hand, D is singular
then there are cut 0-cells. By Lemma 5.2 the cut-components are either
isolated 1-cells or nonsingular disc diagrams. The isolated 1-cells play no
role in the formation of E, and the simply-connectedness of the remaining
pieces now follows from (1).

Finally, to prove (4), notice that every 2-cell of E corresponds to an
internal 0-cell of D and the number of sides of the 2-cell corresponds to
the valence of the 0-cell. Similarly, every internal 0-cell of E corresponds
to an internal 2-cell of D and the valence of the 0-cell corresponds to the
number of maximal internal arcs into which the boundary cycle of the 2-cell
is partitioned. The small cancellation conditions are therefore inherited as
claimed. �

Remark 5.7. It is possible for a disc diagram D which satisfies Conven-
tion 2.4 to have a dual E which violates it. In particular, E may contain a
spur which projects into the interior of the diagram, and this determines a
2-cell in E whose attaching map is not an immersion. The only way that
this can happen, however, is if D violates the C(2) condition. Since dual
diagrams will only be used in the context of small cancellation restrictions,
Convention 2.4 will always be preserved.

Lemma 5.8 (Double duals embed). Let D be a nonsingular C(3) diagram
whose dual E is also nonsingular and let D′ be the dual of E. If D has no
internal 0-cells of valence 2, then D′ is a subdiagram of D. More generally,
D′ is a subdiagram of D after a suitable subdivision of its 1-cells.

Proof. Every 0-cell of D′ corresponds to a 2-cell of E which in turn corre-
sponds to a 0-cell of D. Similarly, every 2-cell of D′ corresponds to a 0-cell
of E which corresponds to a 2-cell of D. The situation with the 1-cells of
D′ is slightly more complicated. Let e be a 1-cell of D′ connecting 0-cells u
and v (which we will prove to be distinct below). The 1-cell e corresponds
to a maximal internal arc Pe in E which is contained in the boundaries of
the 2-cells Ru and Rv. Each of the 1-cells in Pe corresponds to a maximal
internal arc of D connecting u to v. If Pe contains more than one 1-cell,
then D will contain a 2-cell bounded by these arcs, which violates the C(3)
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Figure 8. A singular and a nonsingular ladder

condition. Thus, Pe is a single 1-cell of E which corresponds to a maximal
internal arc of D. If D has no 0-cells of valence 2 then this maximal inter-
nal arc is itself a single 1-cell, and D′ embeds in D. Otherwise, an obvious
subdivision enables the embedding. �

6. Ladders and fans

In this section we introduce the general notions of a ladder and a fan
as a prelude to the specific types of fans and ladders defined inductively in
Sections 7 and 8.

Definition 6.1 (Ladders). Let D be a nontrivial doubly-based disc diagram
which is not a single 2-cell, and let P1 → D and P2 → D be the two
boundary paths determined by the basepoints of D. Suppose that the cut-
tree of D is either trivial or a subdivided interval, and that the basepoints
of D are distinct and are not cut 0-cells. Suppose further that if the cut-
tree is a subdivided interval then the basepoints lie in the cut-components
corresponding to the endpoints of the interval. If every maximal internal
arc of D begins at a 0-cell in the interior of P1 → D and ends at a 0-cell
in the interior of P2 → D, then D will be called a ladder. Notice that the
basepoints of a ladder are distinct and so the paths P1 and P2 are nontrivial.
A singular and a nonsingular ladder are illustrated in Figure 8. In each case,
the basepoints of the ladder are the leftmost and rightmost 0-cells.

When D is nonsingular, this definition can be restated in terms of the
dual of D. Specifically, a nonsingular doubly-based disc diagram D is a
ladder if and only if its dual is a subdivided interval and the basepoints of
D lie in the interiors of the boundary paths of the 2-cells corresponding to
the endpoints of the interval. In Section 8, the ladders described in this
definition will be called ladders of width ≤ 1.

Definition 6.2 (Fans). A fan F is a nonsingular ladder or a doubly-based
2-cell in which a nontrivial path determined by the endpoints of F has been
designated as its outer path. Call this path Q. The other path, denoted S,
will be called the inner path of the fan.

A fan in a diagram is an embedding F ↪→ D such that the outer path
of F projects to a boundary path Q → ∂D, and the inner path S → F
projects to a internal path S → D. Note that S → F may be trivial if F is
a doubly-based 2-cell, but it is always nontrivial if F is a ladder.

The following types of fans will be distinguished.

Definition 6.3 (i-shells). Let D be a diagram. An i-shell of D is a 2-cell
R ↪→ D whose boundary cycle is the concatenation of a boundary maximal
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Figure 9. Spurs and i-shells

arc and an interior path which is the concatenation of i interior maximal
arcs. More specifically, the boundary cycle ∂R → D is the concatenation of
subpaths P0, P1, . . . , Pi where Pj → D is an interior maximal arc of D for all
j > 0 and P0 → D is the preimage of ∂D in ∂R. An i-shell is an embedding
of a doubly based 2-cell fan in the following sense: Its outer path is P0 → D,
and its inner path is the concatenation of the i consecutive pieces. Note
that the outer path P0 of the i-shell is nontrivial if D satisfies C(i + 1).

Illustrated from left to right in Figure 9 are disc diagrams containing a
spur, a 0-shell, a 1-shell, a 2-shell, and a 3-shell. In each case, the 2-cell R
is shaded, and the maximal boundary arc P0 is ∂R ∩ ∂D.

Definition 6.4 (Complement of n pieces). Let D be a disc diagram (or
more generally a 2-complex). Suppose that the boundary cycle of a 2-cell
R → D is the concatenation of subpaths P0, P1, . . . , Pn where Pi → D is a
nontrivial path which is a piece of D for all i > 0. The (possibly trivial)
path P0 → D is a complement of n pieces of D. For example, the outer path
of an i-shell is a complement of i pieces of D.

Definition 6.5 (Pointed fans). A pointed fan F ↪→ D is a fan whose 2-cells
are 2-shells. If F has i distinct 2-cells then F contains i + 1 pieces in D
which have a common initial point and which terminate at various points
on the outer path of F . The inner path S → D is the concatenation of the
outer two of these maximal internal arcs, and the outer path Q → D is the
concatenation of i maximal boundary arcs which are complements of two
pieces. See the left side of Figure 10.

Definition 6.6 (Broad fans). A broad fan F ↪→ D is a fan whose 2-cells are
2-shells and 3-shells. If F contains i + j 2-cells, where i of them are 2-shells
and j of them are 3-shells, then the outer path of F is the concatenation
of i + j maximal boundary arcs each of which is the complement of two or
three pieces, and the rest of the 1-skeleton of F is the union of i + 2j + 1
pieces. The inner path S consists of j + 2 of these pieces and the remaining
i+j−1 of them are internal maximal arcs of the diagram F . A broad fan F
is k-separated if from left to right, it has at least k 2-shells at the beginning,
at least k 2-shells between every pair of 3-shells, and at least k 2-shells at
the end.

The diagram on the left-hand side of Figure 10 contains a pointed fan
with i = 4. The diagram in the middle contains a broad fan with i = 0 and
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Figure 10. A pointed fan, a 0-separated broad fan, and a
2-separated broad fan

j = 4, and the diagram on the right-hand side contains a 2-separated broad
fan with i = 8 and j = 3. Finally, we define a type of subdiagram which
does not satisfy Definition 6.2, but which is similar enough in structure to
merit the designation “fan”.

Definition 6.7 (Degenerate fans). Let D be a nontrivial connected diagram,
and let v be a 0-cell on ∂D such that Link(v) is connected. The degenerate
fan F corresponding to v is the union of the closed cells of D which contain
v. F is said to be a degenerate fan of valence p where p is the valence of
v. The outer path of F is the length 2 path on ∂D which contains v in its
interior. Note that when v has valence 1, F is a spur.

7. Fans of type k

In this section we prove an important technical result, Lemma 7.6, which
describes the conditions under which a fan in the dual of a diagram D
determines a fan in D itself. From this we deduce Corollary 7.13, which will
be applied frequently in later sections.

Definition 7.1 (Determined subdiagrams). Let D be a nonsingular dia-
gram, let E be its dual, let G ↪→ E be a (possibly degenerate) fan in E, and
let V ⊂ E be the set of 0-cells in the image of the interior of the outer path
of G. For each v ∈ V let Rv denote the 2-cell in D corresponding to v. The
subdiagram F = ∪v∈V Rv is the subdiagram of D determined by G.

Note that when 0-cells in V are connected by a 1-cell, the corresponding
2-cells have an arc in common. Thus the subdiagram F will always be
connected. Actually, much more can be shown.

Lemma 7.2. Let D be a nonsingular diagram, let E be its dual, let G ↪→ E
be a (possibly degenerate) fan, and let P be the subpath of the outer path of
G obtained by removing its first and last 1-cell. If F is the subdiagram of D
determined by G, then the dual of F is P .

Proof. Let V be the set of 0-cells in P . By construction, the set of 0-cells in
the dual of F is V . Each 1-cell in the dual of F must connect two 0-cells of
V and by the structure of the fan G, the 1-cells of P are the only candidates.
On the other hand, each 1-cell of P corresponds to a maximal internal arc in
the subdiagram F , and is thus included in the dual. Finally, the dual cannot
contain any 2-cells since P does not contain a closed immersed path. �
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Under suitable conditions we will be able to prove that F is a fan of D.
When this occurs, the structure of the fan F is closely tied to the structure
of the fan G. This is explained in Lemma 7.3 and Example 7.4.

Lemma 7.3. Let D be a nonsingular diagram, let E be its dual, let F ↪→ D
be a fan of D, and let G ↪→ E be a fan of E which determines the fan F . If
the fan G has exactly k 2-cells and an outer path of length l, then the fan F
has l− 1 2-cells, an inner path consisting of k +1 pieces, and l− 2 maximal
internal arcs.

Proof. We will use the notation of Definition 7.1. By definition, the 2-cells
of F are in one-to-one correspondence with the 0-cells in the interior of the
outer path of G. Since the outer path has length l, there are l − 1 such
0-cells. The pieces of D which form the inner path of F are the maximal
internal arcs which lie between a 2-cell in F and a 2-cell which is not in F .
Therefore these pieces correspond to 1-cells in E which connect a 0-cell in
V to a 0-cell which is not in V . The only such 1-cells are the first and last
1-cells in the outer path of G and the 1-cells in the interior of G. Since there
are k 2-cells, there are exactly (k−1) 1-cells in the interior of G. Thus there
is a total of (k + 1) of these two types of 1-cells. Finally, the pieces of D
which are in the interior of F are those maximal internal arcs which are in
the boundary of two distinct 2-cells of F . Thus in E they correspond to the
1-cells which connect a 0-cell in V to another 0-cell in V . The only 1-cells
of this type are those in the outer path of G which start and end in V , and
there are l − 2 of these. �

Example 7.4 (Determined fans). Let D be a diagram, let E be its dual,
let G ↪→ E be a fan, and let F be the subdiagram determined by G. If F is
a fan, then the type of the fan F is determined by the type of the fan G as
follows:

(1) If G is a degenerate fan with valence i then F is an i-shell.
In particular, if G is a spur then F is a 1-shell.

(2) If G is an i-shell then F is a pointed fan.
(3) If G is a pointed fan then F is a broad fan.

These three special cases are illustrated in Figure 11. The leftmost picture
shows a spur which determines a 1-shell, the middle picture shows a 2-shell
which determines a pointed fan (with i = 4), and the rightmost picture
shows a pointed fan which determines a broad fan (with i = 0 and j = 3).

Definition 7.5 (Separate fans). Let D be a diagram and let F1 ↪→ D and
F2 ↪→ D be two fans in D whose outer paths are contained in the same
boundary cycle of D. If F1 and F2 are both nondegenerate fans, then they
are separate if their outer paths intersect at most at their endpoints. A
degenerate fan F1 is separate from a (possibly degenerate) fan F2 if the
interior 0-cell of Q1 is not contained in the interior of Q2.
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Figure 11. Determined Fans

The following result shows that a pair of separate fans in the dual of a
nonsingular diagram determines a pair of separate fans in the diagram itself.
This is one of our main technical tools for deriving new results.

Lemma 7.6 (Fan production). Let D be a nonsingular C(p) diagram with
p ≥ 3, let E be its dual, let G1 ↪→ E and G2 ↪→ E be two separate, but
possibly degenerate, fans in E whose outer paths lie in the same boundary
cycle, and let Pi be the subpath of the outer path of Gi obtained by removing
its first and last 1-cell. If the first and last 0-cells of both P1 and P2 have
valence less than p, then the subdiagrams F1 and F2 determined by G1 and
G2 are separate fans in D.

Proof. To show that Fi is a fan we first define paths Qi and Si in the
boundary and the interior of D, respectively, then show that QiS

−1
i is an

embedded closed path, and finally show that every maximal internal arc of
Fi starts in the interior of Qi and ends in the interior of Si. Since QiS

−1
i

will be the entire boundary of Fi, these claims will show that Fi is either
a doubly-based 2-cell or a nonsingular ladder which is embedded in D with
outer path Qi and inner path Si. Note that by Lemma 7.2, the dual of Fi

is Pi, and this induces a natural linear order on the 2-cells of Fi. Thus it
makes sense to speak of the “previous” and the “next” 2-cell of F .

Outer paths: For each 0-cell v ∈ Pi, the 2-cell Rv is a boundary cell of D
and Lemma 5.6.2 implies that the intersection ∂D∩∂Rv is a single maximal
boundary arc Qv. Moreover, the boundary cycle of Rv is the concatenation
of Qv and valence(v) interior pieces. Thus when valence(v) < p, the path Qv

must be nontrivial. Next, notice that the path Qv starts at the intersection
of Rv with the previous 2-cell and ends at the intersection of Rv with the
next 2-cell. Thus all of these Qv paths can be concatenated into a single
path in the boundary of D which we will call Qi. By our assumption about
valences, the first and the last Qv are nontrivial and so the concatenation
Qi is also nontrivial. Moreover, since D is nonsingular, Qi is a path in some
particular boundary cycle of D, and since the outer paths of G1 and G2 were
in the same boundary cycle of E, Q1 and Q2 lie in the same boundary cycle
of D. Finally, the fact that G1 and G2 are separate implies that P1∩P2 = ∅,
that F1 ∩ F2 does not contain any 2-cells, and thus that Q1 ∩ Q2 does not
contain any 1-cells. Coupled with the fact that Q1 and Q2 are nontrivial,
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this shows that neither of them is a closed path, and that the paths Q1 and
Q2 embed in a boundary cycle of D.

Inner paths: The portion of the boundary of Fi which lies in the interior
of D is formed by the maximal interior arcs dual to the 1-cells of E with
exactly one endpoint in Pi. When Gi is degenerate, Pi is a single 0-cell v,
Qi = Qv, and the inner path of Fi is the complement of Qi in ∂Rv . When
Gi is a doubly-based 2-cell or a nonsingular ladder, the only such 1-cells are
the first and the last 1-cells of the outer path of Gi and the 1-cells in the
interior of Gi (if any). Observe that the dual of Gi is a simple path which is
trivial when Gi is a doubly-based 2-cell, and the 1-cells in the interior of Gi

correspond to the 1-cells of this dual path. By Lemma 5.8, this dual path,
suitably subdivided, is a simple path Ti in D which is the concatenation of
the internal maximal arcs of D that are dual to the 1-cells in the interior
of Gi. The path Si is the concatenation of the maximal internal arc of
D dual to the first 1-cell of the outer path of Gi, followed by the path Ti

just described, followed by the maximal internal arc of D dual to the last
1-cell of the outer path of Gi. Finally, notice that Si and Qi have the same
endpoints, and consequently the path Si is simple. This is because we are
extending the simple path Ti by arcs to distinct 0-cells that do not lie on Ti.

Interior arcs: Since Ti is the concatenation of arcs whose endpoints lie
in the interior of D, the interior of the path Si lies in the interior of D
and is thus disjoint from Qi. This shows that QiS

−1
i is an embedded closed

path which is the entire boundary of Fi. It only remains to show that every
maximal internal arc of Fi has one endpoint in the interior of Qi and the
other in the interior of Si. Each maximal internal arc is dual to an 1-cell of Pi

and therefore has one endpoint on a boundary 0-cell of D and one endpoint
on an interior 0-cell of D. These 0-cells must lie on Qi and Si respectively.
The fact that the endpoint in Qi lies in the interior of Qi follows from the
nontriviality of the first and last Qv subpaths. On the other hand, if there
is a maximal internal arc of Fi which starts in the interior of Qi and ends
at an endpoint of Si, then there is a 2-cell in Fi which is a 1-shell. The
dual of a 1-shell is a spur, and thus Gi contains a spur. Since nondegenerate
fans are nonsingular, this means that Gi is degenerate and so Gi is a spur.
But in this case, Pi is trivial and Fi contains no internal arcs, which is a
contradiction. Thus no internal arc of Fi ends at a basepoint of Fi, and so
Fi is a ladder. �

Applying Lemma 7.6 requires two separate fans in the same boundary
cycle of the dual along with restrictions on the valences of some 0-cells. The
structure of the fan F1, in contrast, only depends on the structure of G1. It
is independent of the structure of G2 and largely independent of D. In order
to extend Lemma 7.6 to singular disc diagrams, we need to clarify when a
fan of D can be chosen to avoid a cut 0-cell.

Definition 7.7 (Avoiding and meeting 0-cells). Let F ⊂ D be a (possibly
degenerate) fan, let Q be its outer path, and let d be a 0-cell in ∂D. We say
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F meets d if the outer path Q contains d in its interior. Otherwise, we say
that F avoids d.

The following corollary employs the hypotheses and notation of Lemma 7.6.

Corollary 7.8. If Gi avoids a 0-cell v ∈ ∂E, then Fi avoids each 0-cell in
each maximal boundary arc of the 2-cell Rv of D. Similarly, if Gi meets
a 0-cell v ∈ ∂E, then Fi meets each 0-cell in the interior of the maximal
boundary arc of the 2-cell Rv of D.

Proof. If Gi avoids v then the 2-cell Rv is not a 2-cell of Fi since v 6∈ Vi.
Observe that Si separates the interior 0-cells of Qi from the closure of each
2-cell not in Fi and the proof is complete. On the other hand, if Gi meets
v, then Rv is contained in Fi and the result is clear. �

Using Lemma 7.6, we will now inductively describe collections of fan types
for each p, q, and k satisfying the Euclidean restrictions (Convention 1.2).

Definition 7.9 (Fans of type k). Let p, q, and k satisfy the Euclidean
restrictions. There is a collection of fans denoted Fk

pq which is defined recur-
sively starting with k = 0. Let k = 0 and let F ↪→ D be a fan in a C(p)-T (q)
disc diagram. If p ≥ 4, q ≥ 4 [p ≥ 6, q ≥ 3] and F ↪→ D is a degenerate fan
of valence ≤ 2 [valence ≤ 3], then F is a fan of type F0

pq in D. For k ≥ 1, let

F ↪→ D be a fan in a C(p)-T (q) disc diagram. The fan F is a fan of type Fk
pq

in D provided that either it is a spur, or it is a 0-shell, or it is determined
by a fan F ′ of type Fk−1

qp in the dual E of D. When p and q are clear from

context we refer to a fan in Fk
pq as a fan of type k.

To illustrate this definition we will explicitly describe the fans of type k for
k ∈ {1, 2, 3}. The statement of each of the lists below follows immediately
from Example 7.4 and Lemma 7.6.

Example 7.10 (Fan types for small values of k). The fans of type 1, that
is, the fans in the collection F1

pq, are described by the following lists:

p ≥ 4, q ≥ 4: {spurs, 0-shells, 1-shells, 2-shells}

p ≥ 6, q = 3: {spurs, 0-shells, 1-shells, 2-shells, 3-shells}

Fans of type 2 are described by one of the following lists:

p ≥ 4, q ≥ 4: {spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 3}

p = 3, q ≥ 6: {spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 4}

Fans of type 3 are described by the following lists:

p ≥ 4, q ≥ 4:
{spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 2,
(q − 3)-separated broad fans with j ≥ p − 4 and i ≥ (j + 1)(q − 3)}

p ≥ 6, q = 3:
{spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 2,
broad fans with j ≥ p − 5 and i ≥ 0}

Although there are no general inclusion relations among the collections
of fans of various types, there are some fans which are of every type.
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Lemma 7.11. Let p, q, and k satisfy the Euclidean restrictions. A spur is
a fan of type k for all k ≥ 0, and 0-shells and 1-shells are fans of type k for
all k ≥ 1.

Proof. By Definition 7.9, a spur is a fan of type k for all k ≥ 0, and a 0-shell
is a fan of type k for all k ≥ 1. If D has a 1-shell, then the dual of D has a
spur which determines it. Since every fan which is determined by a fan of
type k − 1 is a fan of type k, the proof is complete. �

See Lemma 8.3 for a similar result about pointed fans. We now show
by induction that every fan of type k satisfies the valence requirements
necessary in order to apply Lemma 7.6.

Lemma 7.12. Let D be a C(p)-T (q) diagram and let F be a fan of type k
in D where F is not a spur, 0-shell, or 1-shell. Let U be the 0-cells in the
interior of the outer path of F .

(1) If p ≥ 4, q ≥ 4, and k ≥ 0, then F is a 1-separated broad fan. That is,
every 2-cell in F is a 2-shell or 3-shell, the first and last 2-cells are 2-shells,
and there do not exist consecutive 3-cells. In addition, every 0-cell in U has
valence ≤ 3, the first and last 0-cells in U have valence 2, and there do not
exist consecutive 0-cells in U with valence 3.

(2) If p = 3, q ≥ 6 and k is odd, then F is a 1-separated broad fan. That
is, every 2-cell in F is a 2-shell or 3-shell, the first two and last two 2-cells
are 2-shells, and there do not exist consecutive 3-shells. In addition, every
0-cell in U has valence ≤ 4, the first and last 0-cells have valence ≤ 3, and
there do not exist consecutive 0-cells in U with valence 4.

(3) If p ≥ 6, q = 3, and k is even, then every 2-cell in F is a 2-shell,
3-shell, or 4-shell, the first and last 2-cell is a 2-shell or 3-shell, and there do
not exist consecutive 4-shells. In addition, every 0-cell in U has valence ≤ 3,
the first two and last two 0-cells in U have valence 2, and there do not exist
consecutive 0-cells in U with valence 3.

Proof. It is easy to check using Example 7.10 that all three assertions are
true for k ≤ 1, so assume that they are true for all k < i (i > 1) and
consider the case k = i. A fan of type i which is not a spur, 0-shell, or
1-shell is determined by a nondegenerate fan of type i − 1 in the dual. If
F is determined by a fan G of type i − 1 in the dual, then by assumption
the relevant conditions are true for G. Specifically, if F falls under case 1,
then so does G, if F falls under case 2, then G falls under case 3, and if F
falls under case 3, then G falls under case 2. Let V be the 0-cells in the
interior of the outer path of G. In each case the restrictions on the 0-cells
of V immediately imply the restrictions on the 2-cells of F .

We now prove the assertions about the valences of 0-cells in U . If a
boundary 2-cell in a C(p) diagram is a j-shell with j < p then it must
contain a nontrivial boundary arc (called Qv in the notation of Lemma 7.6).
Thus when F falls under case 1 or 3, each of the paths Qv is nontrivial. As
a result, each 0-cell in U lies in the boundary of at most two 2-cells and
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thus all of the 0-cells in U have valence at most 3. Moreover, in case 1,
the boundary path Qv has length ≥ 2 provided the 0-cell v has valence 2,
and so the 0-cells of valence 3 in U are isolated from each other and from
the ends of U by at least one 0-cell of valence 2. Similarly in case 3, the
concatenated boundary paths Qv have length at least 2 or at least 3, so the
0-cells of valence 3 in U are isolated from each other and from the ends of
U by at least two 0-cells of valence 2.

Finally, when F falls under case 2, the 2-cells which can have trivial
boundary path do not occur consecutively or at either end of F . As a
result, each 0-cell in U lies in the boundary of at most three 2-cells and thus
all of the 0-cells in U have valence at most 4. Moreover, since the first two 0-
cells in V have valence 2, the first two 2-cells in F have nontrivial boundary
paths, and the first 0-cell in U has valence at most 3. This completes the
induction. �

Corollary 7.13. Let D be a nonsingular C(p)-T (q) diagram, and let E
be its dual. If G1 ↪→ E and G2 ↪→ E are separate fans of type k and l
whose outer paths lie in the same boundary cycle of E, then they determine
separate fans F1 ↪→ D and F2 ↪→ D of type k + 1 and l + 1.

Proof. This follows from Lemma 7.6 and Lemma 7.12. �

8. Ladders of width k

The main objective of this section is to provide inductive definitions of
wheels and ladders of width k. At the end of the section we justify the
description of these objects as having “width k”.

Definition 8.1 (Wedges of type k). Let D be a C(p)-T (q) disc diagram
and let F ↪→ D be a fan of type k in D. This fan of type k in D determines
a wedge of type k in D which is defined inductively as follows: For k ≤ 2,
the wedge determined by F is just F itself. Similarly, if k > 2 and F is a
spur, a 0-shell, or a fan determined by a spur or a 0-shell, then the wedge
determined by F is just F itself.

Otherwise, F is a fan of type k > 2 which is determined by a fan which is
determined by a fan in the double dual of D. Let D′ be the double dual of
D′ and let F ′ be the fan of type k− 2 in D′ which determines the fan which
determines F . By Lemma 5.8, D′ can be viewed as a subdiagram of D after
a suitable subdivision of its 1-cells. In particular, the wedge determined by
F ′ in D′, which has already been inductively defined, can be viewed as a
subdiagram of D. Also notice that under this embedding the interior of the
outer path of F ′ is contained in the inner path of F . The wedge determined
by F is a subdiagram of D which is the union of the fan F ↪→ D and the
wedge W ′ ⊂ D′ determined by F ′. See Figure 12 for an illustration. Finally,
notice that if F1 and F2 are separate nondegenerate fans of type k and l in
D, then the wedges of type k and l in D corresponding to these fans are
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Figure 12. In each diagram above, the heavily shaded sub-
diagram is a fan, and the entire shaded subdiagram is its cor-
responding wedge. These wedges consists of two (or three)
layers of fans from successive double duals. Note that the
remaining arcs in the interior of the diagram are not drawn.

Figure 13. A wheel of width 2 and a wheel of width 3.

nonsingular and their interiors are disjoint. We will therefore call two such
wedges separate.

Definition 8.2 (Wheels of width k). Let p, q, and k satisfy the Euclidean
restrictions. A wheel of width 0 is a single 0-cell. For k ≥ 1, a wheel of
width k is a nonsingular disc diagram whose dual is a wheel of width k − 1.
For example, a wheel of width 1 is a single 2-cell. Wheels of widths 2 and 3
are illustrated in Figure 13.

Lemma 8.3. Let p, q, and k satisfy the Euclidean restrictions, let D be a
C(p)-T (q) diagram which is a wheel of width 2, let R be a 2-shell in D, and
let F be a pointed fan in D which includes all of the 2-cells of D except R.
If k = 1 then R is a fan of type k = 1 in D, and if k ≥ 2 then F is a fan of
type k in D.

Proof. Let E be the single 2-cell which is the dual of D and let v be the 0-cell
in ∂E which corresponds to R. When k = 1 we note that v is a degenerate
fan of valence 2 and thus a fan of type 0. Since R is determined by this
degenerate fan, R is a fan of type 1. On the other hand, the 0-cell v turns
E into a 0-shell which by Lemma 7.11 is a fan of type k for all k ≥ 1. Since
F is determined by this 0-shell, it is a fan of type k + 1 for all k ≥ 1, and
this completes the proof. �

Definition 8.4 (Ladders of width k and endfans). A ladder of width 0 is
a nontrivial subdivided interval. The endfans of a width 0 ladder are its
two spurs. For k ≥ 1, a nonsingular diagram D is a ladder of width k if
its dual is a ladder of width k − 1. In this case the endfans of D are the
fans determined by the endfans of the dual of D. A singular diagram D is
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Figure 14. Four ladders of width 2.

a ladder of width k provided that its cut-tree is a subdivided interval and
each of the following conditions hold:
(1) Each of its cut-components is either a ladder of width ≤ k or a nontrivial
wheel of width ≤ k, and at least one of these components has width strictly
equal to k.
(2) Let C be a cut-component of D and let v ∈ ∂C be a cut 0-cell of D. If
C is a ladder, then v must meet one of the two endfans of C.
(3) If C is a ladder and ∂C contains two distinct cut 0-cells of D then these
0-cells meet distinct endfans of C.
The endfans of D are contained in the cut-components corresponding to the
leaves of the cut-tree. Let C be a cut-component corresponding to a leaf of
the cut-tree and let v ∈ ∂C denote the unique cut 0-cell of D in C. The
endfans of D are determined as follows: if C is a ladder of width k, then
the endfan of D is the endfan of C which avoids v, and if C is a wheel of
width k, then the endfan of D is a fan of type k in C which avoids v (that
such a fan exists will be shown in Lemma 9.1).

A ladder of width 0 is a subdivided interval whose spurs are its endfans.
The endfans of a ladder of width k are a generalization of these spurs. The
ladders described in Definition 6.1 are ladders of width ≤ 1. Figure 14
depicts four width 2 ladders.

Definition 8.5 (Width of disc diagrams). Let D be a doubly-based disc
diagram with startpoint s and endpoint t and with corresponding boundary
paths P1 and P2. If every 0-cell in P1 is a 0-cell in P2 and vice versa, then
D is called a disc diagram of width 0. Notice that D has width 0 if and only
if P1 = P2 and so D is either a subdivided interval or a single 0-cell.

Suppose that for some k ≥ 1, every 0-cell in P1 can be connected to some
0-cell in P2 by a path of the form Q1Q2 · · ·Qk, where each Qi is either trivial
or a boundary path of a 2-cell of D, and every 0-cell of P2 can be connected
to some 0-cell of P1 by a path of the same type. If D is not a disc diagram
of width 0 and k is the smallest number with this property, then D is a disc
diagram of width k.

Notice that a 0-cell v can be connected to a 0-cell u by a path of the
above form if and only if there is a nonnegegative integer ` ≤ k, a sequence
of 0-cells v = v0, v1, . . . , v` = u, and a sequence of 2-cells R1, R2, . . . , R` such
that vi−1 and vi lie in ∂Ri for 1 ≤ i ≤ `.

If D is a doubly-based disc diagram which is either a ladder of width 1
or a wheel of width 1, then D will be called a layer. The following lemmas
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show that ladders of width k and wheels of width k can be decomposed into
at most k layers, and thus they are indeed diagrams of width k.

Lemma 8.6. Let D be a nonsingular doubly-based disc diagram, let E be its
dual, and let s and t be 0-cells in E which correspond to 2-cells of D which
contain the basepoints of D in their boundaries. If E with basepoints s and
t has width k, then D has width k + 1.

Proof. Let P and P ′ be the boundary paths of D determined by its base-
points, let Q and Q′ be the boundary paths of E determined by s and t,
and let u be a 0-cell in P . Since D is nonsingular, there is a 2-cell R with
u ∈ ∂R, and since R is a boundary 2-cell, it corresponds to a 0-cell v in the
boundary cycle of E. Furthermore, if u is a basepoint of D, then we require
that R be chosen so that it corresponds to s or t. With this restriction, v lies
on the boundary path Q from s to t. By hypothesis, E has width k, so for
some ` ≤ k, there is a sequence of 0-cells v = v0, v1, . . . , v` and a sequence of
2-cells R1, R2, . . . , R` such that vi−1 and vi are in ∂Ri for i = 1, . . . , `, and
such that v` lies in Q′. Let R′

i be the 2-cell in D which corresponds to vi,
let ui be the 0-cell in D which corresponds to Ri, let u0 = u, and let u`+1

be a 0-cell in ∂R′

` which lies in P ′. Note that ui−1 and ui are contained in
∂R′

i either by definition of R and R′ in D or since Ri−1 and Ri in E contain
vi in their boundaries. Thus the desired sequences exist and hence D has
width k + 1. �

Lemma 8.7 (Wheels of width k). If D is a wheel of width k, and s and t
are any 0-cells in ∂D, then the resulting doubly-based diagram has width k.

Proof. If k = 0, then D is trivial and D has width 0. If k ≥ 1 then D
is nonsingular and its dual E is a wheel of width k − 1 for any choice of
basepoints in ∂E. Thus, by Lemma 8.6, D has width k. �

Lemma 8.8 (Ladders of width k). If D is a ladder of width at most k, and s
and t are 0-cells which meet the endfans of D, then the resulting doubly-based
diagram has width at most k.

Proof. If k = 0, then D is a path and D really does have width 0. If k > 0
and D is nonsingular, then its dual E is a ladder of width at most k−1. By
induction, E really does have width at most k−1 for any choice of basepoints
in the endfans of E. Thus, by Lemma 8.6, D has width at most k. If k > 0
and D is singular, then by the definition of a singular ladder of width k, it is
sufficient to show that each cut-component has width at most k. Since each
cut-component is either a 1-cell, a wheel of width at most k, or a nonsingular
ladder of width at most k, this follows either from the above argument or
from Lemma 8.7. �

We close this section with a conjecture about the relationship between the
lengths of the two sides of a width k ladder. We have proven the conjecture
for k ≤ 2, but a general proof has eluded us.
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Conjecture 8.9 (Linear length). Let X be a compact C(p)-T (q) complex
and let p, q, and k satisfy the Euclidean restrictions. We conjecture that
there exist constants K and ε which depend only on p, q, k, and X, such
that the following holds:

Let D → X be a reduced map from a ladder of width ` to X (` ≤ k),
and let P1 and P2 be the paths determined by the basepoints of D. Suppose
that there does not exist a fan F of type k in X and an embedding F ↪→ D
which sends the outer path of F to a subpath of either P1 or P2. Then the
following inequalities hold:

1

K
|P1| − ε < |P2| < K|P1| + ε

9. Disc diagrams

In this section we prove our main result about disc diagrams, Theorem 9.2.

Lemma 9.1. Let D be a nontrivial C(p)-T (q) disc diagram and let p, q,
and k ≥ 1 satisfy the Euclidean restrictions. If D is a wheel of width n ≥ 1,
and v is a 0-cell in ∂D, then D contains a fan of type k which avoids v.
Specifically, D contains two separate fans F1 ↪→ D and F2 ↪→ D such that
F1 has type k and avoids v and F2 has type ` < k.

Proof. If n = 1 then D is a single 2-cell and thus for any 0-cell v in ∂D,
there is a 0-shell which avoids v, and v yields a separate degenerate fan of
valence 2. By Lemma 7.11, a 0-shell is a fan of type k for all k ≥ 1. Suppose
the statement holds for n = i ≥ 1 and consider the case n = i+1. The dual
E of D is a wheel of width i ≥ 1. Let v′ be a 0-cell in ∂E corresponding to
a 2-cell of D which contains v in its boundary. Since the statement is true
for n = i, there are separate fans, G1 of type i which avoids v′ and G2 of
type ` < i. Thus by Corollary 7.13 and Corollary 7.8, there are separate
fans F1 and F2 of type i + 1, and ` + 1 < i + 1 such that F2 meets v, and
hence F1 avoids v. �

Theorem 9.2 (Main Theorem). Let D be a C(p)-T (q) disc diagram where
p, q, and k satisfy the Euclidean restrictions. One of the following holds:

(1) D contains at least 3 separate fans of type k.
(2) D is a ladder of width ≤ k.
(3) D is a wheel of width ≤ k.

Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a
fan of type k which avoids v, and if the cut-tree of D has ` leaves, then D
contains at least ` separate fans of type k.

Proof. The proof is by induction on k, and the case k = 0 is Theorem 4.8.
Suppose that the theorem is true for k = n− 1, and consider the case where
k = n. If D is nonsingular, then by Lemma 5.6, the dual E of D is a disc
diagram. We now apply the statement to E in the case k = n − 1. If E is
a wheel of width ≤ n − 1 then D is a wheel of width ≤ n by Definition 8.2.
If E is a ladder of width ≤ n − 1 then D is a ladder of width ≤ n by
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Definition 8.4. Finally, if E has three separate fans of type (n−1) then they
determine three separate fans of type n by Corollary 7.13.

Now suppose that D is singular and consider its cut-tree. If its cut-tree
is trivial, then D is a single 0-cell or a single 1-cell and D is thus a wheel
of width 0 or a ladder of width 0. Otherwise the cut-tree is nontrivial and
therefore has at least two leaves. Let C be the cut-component corresponding
to a leaf and let v ∈ ∂C be the unique cut 0-cell of D in ∂C. If C is singular,
then C is a 1-cell and C contains a spur which avoids v (which is a fan of
type k). If C is a wheel of width ≤ k, then by Lemma 9.1, it contains a
fan of type k which avoids v. If C is any other nonsingular diagram, then
by the nonsingular case of the statement with k = n − 1, C contains two
separate fans of type k and thus at least one of them avoids v. Regardless,
C contains a fan of type k which avoids v. Thus, if the cut-tree has ` ≥ 3
leaves, then D contains at least ` fans of type k and the result is true.

The only remaining case is where D has a nontrivial cut-tree which is a
subdivided interval. By the argument above, D contains at least two fans
of type k, since it contains one in each cut-component corresponding to an
endpoint of the cut-tree. If D contains no other fans of type k which are
separate from these two then D is a singular ladder with these two fans of
type k as its endfans. This is because a violation of any of the conditions
listed in Definition 8.4 leads immediately to the presence of a third fan of
type k in D. �

The following theorem contains somewhat more information than Theo-
rem 9.3 about the shape of the diagram but it is essentially equivalent.

Theorem 9.3. Let D be a C(p)-T (q) disc diagram where p, q, and k satisfy
the Euclidean restrictions. One of the following holds:

(1) D contains at least three separate wedges of type k.
(2) D is a ladder of width ≤ k.
(3) D is a wheel of width ≤ k.

Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a
wedge of type k which avoids v, and if the cut-tree of D has ` leaves, then
D contains at least ` separate wedges of type k.

Proof. This follows from Theorem 9.2 using the remarks in Definition 8.1
but it can also be proven in a manner similar to Theorem 9.2. �

For k = 1, Theorem 9.2 is a refinement of the main theorem of small
cancellation theory.

Theorem 9.4. If D is a C(4)-T (4) [C(6)-T (3)] disc diagram, then one of
the following holds:

(1) D contains at least three spurs and/or i-shells with i ≤ 2 [i ≤ 3].
(2) D is a ladder of width ≤ 1, and hence has a spur or 1-shell at each

end.
(3) D consists of a single 0-cell or a single 2-cell.
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Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a spur
or an i-shell with i ≤ 2 [i ≤ 3] which avoids v, and if the cut-tree of D has
` leaves, then D contains at least ` separate such spurs and i-shells.

Similarly explicit statements could be made for k = 2 and k = 3 using
the explicit descriptions of the associated fans given in Example 7.10. We
will just mention the case k = 2, p = 3, q = 6 since it has been overlooked
by the traditional small cancellation theory, but it deserves to be stated in
parallel with Theorem 9.4.

Theorem 9.5. If D is a C(3)-T (6) disc diagram, then one of the following
holds:

(1) D contains at least three spurs, 1-shells, and/or pointed fans with
two consecutive 2-shells.

(2) D is a ladder of width ≤ 2.
(3) D is a wheel of width ≤ 2. That is, D is either a 0-cell, a 2-cell, or

a nonsingular diagram whose dual is a 2-cell.

Moreover, if D is nontrivial and v is a 0-cell in ∂D, then D contains a spur,
a 1-shell, or a pointed fan with two 2-cells which avoids v, and if the cut-tree
of D has ` leaves, then D contains at least ` separate such spurs, 1-shells,
and pointed fans.

10. Annular diagrams

In this section we prove our main result about annular diagrams, Theo-
rem 10.6. We begin by extending the definitions of fans and width to annular
diagrams.

Definition 10.1 (Width of annular diagrams). Let A be an annular diagram
with boundary cycles P1 and P2. If every 0-cell in P1 is a 0-cell in P2 and
vice versa, then A is an annular diagram of width 0. Notice that when A is
C(3), A has width 0 if and only if P1 = P2, and so A is a subdivided circle.

Next, suppose that for some k ≥ 1, every 0-cell in P1 can be connected to
some 0-cell in P2 by a path of the form Q1Q2 · · ·Qk where each Qi is either
trivial or a boundary path of a 2-cell of A, and every 0-cell of P2 can be
connected to some 0-cell of P1 by a path of the same type. If A is not an
annular diagram of width 0 and k is the smallest number with this property,
then A is an annular diagram of width k.

The proof of the following is essentially identical to that of Lemma 8.6
and will be omitted.

Lemma 10.2. Let A be a nonsingular annular diagram and let E be its
dual. If E has width k, then D has width k + 1.

The next lemma is another easy application of the combinatorial Gauss-
Bonnet theorem (Theorem 4.6).

Lemma 10.3. Let A be an angled annular diagram. If all 2-cell curvatures
and 0-cell curvatures are ≤ 0 and all internal 0-cell curvatures are < 0,
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then there are no internal 0-cells. Furthermore, if all angles are positive,
then either A is a circle or A is a nonsingular annulus of width 1.

Proof. By the combinatorial Gauss-Bonnet theorem, the total curvature of
A is exactly 0. Therefore, there is no internal 0-cell since this would force
the total curvature of A to be negative.

For the second statement, notice that if A is singular, then there is
a 0-cell v on both boundary cycles. Since Link(v) is disconnected but
Curvature(v) = 0, Remark 4.5 implies that Link(v) consists of exactly two
vertices and no edges. This means that the 0-cells adjacent to v also have
disconnected links and also lie on both boundary cycles. We can now repeat
this argument for each successive 0-cell in a boundary cycle of A, thereby
showing that A is a subdivided circle. �

As in the previous section, Theorem 10.6 generalizes a theorem of Lyndon
and Schupp. In particular, a metric version of Theorem 10.4 was shown by
Lyndon and Schupp [11, Theorem 5.5].

Theorem 10.4. If A is a C(3)-T (7) [C(4)-T (5)] annular diagram, then
either A contain a (degenerate) fan of type 0 or A has width ≤ 1.

Proof. We assign an angle of π/3 [π/2] to each corner in A. By Theorem 4.6,
the sum of the resulting 0-cell curvatures and 2-cell curvatures is 0. Let R be
a 2-cell of A. By the C(3) [C(4)] condition and Convention 3.6, R has at least
three [respectively four] corners and therefore has nonpositive curvature. By
the T (7) [T (5)] condition, each interior 0-cell has negative curvature. Let
v be a 0-cell in ∂D. If Link(v) is disconnected then v will be nonpositively
curved because χ(Link(v)) ≥ 2. On the other hand, if Link(v) is connected
and v has valence at least 4 [respectively 3], then v is nonpositively curved
because of the way the angles are assigned. Lemma 10.3 completes the
proof. �

Remark 10.5 (Fans in annular diagrams). According to Definition 6.2,
a fan is a kind of embedded ladder or doubly-based 2-cell. For annular
diagrams we will weaken this requirement slightly. Let F → A be a map
from a nonsingular ladder or doubly-based 2-cell to an annular diagram A
such that the outer path Q of F is sent to a boundary path of A and the
inner path S is sent to a path which lies in the interior of A except at its
endpoints. If the map F → A lifts to a fan in the double cover of the annulus
A, then F → A is a fan in A. This allows the endpoints of Q to coincide in
A so long as they lift to distinct 0-cells in the double cover of A.

Recall the hyperbolic restrictions on p, q, and k which were listed in
Convention 1.2.

Theorem 10.6. If A is a C(p)-T (q) annular diagram and p, q, and k satisfy
the hyperbolic restrictions then either A contains a fan of type k or A has
width ≤ k + 1.
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Figure 15. Possible thin annuli

Proof. The proof is by induction on k. The case k = 0 is Theorem 10.4. For
k > 0 there are two possibilities. If A is singular, then after splitting the
diagram at a 0-cell common to both boundary cycles, we obtain a doubly-
based disc diagram D to which Theorem 9.2 can be applied. Specifically, if A
is singular, there is a doubly-based disc diagram D with distinct basepoints
s and t such that when s and t are identified the result is A. If D is a
wheel of width ≤ k or a ladder of width ≤ k, then D, and therefore A,
has width ≤ k. Otherwise, D has three separate fans of type k. Since at
least one of these must avoid both s and t, D has a fan of type k which
survives the identification of s and t. Notice, however, that if s and t are
also the basepoints of the fan, then the weaker requirements discussed in
Remark 10.5 are required for this to count as a fan in A.

On the other hand, if A is nonsingular, then by Lemma 5.6, its dual E
is an annular diagram to which Theorem 10.6 can be applied for a smaller
value of k. If E has width ≤ k − 1 then by Lemma 10.2, A has width ≤ k.
If E has a fan of type k, then let Ê denote the double cover of E and note
that Ê contains two separate fans of type k whose boundary paths lie in the
same boundary cycle of Ê. Thus Corollary 7.13 can be applied to the double
cover Â of A. Thus Â contains a pair of separate, symmetrically placed fans
of type k and so A contains a fan of type k. �

Remark 10.7. More can be said about the structure of the possible annular
diagrams of width k for small values of k. According to Theorem 10.4, if A
has no fan of type 0 then either A has width 0 and so A is a circle, or A has
width 1 and so A is an annulus of the type illustrated on the left [or right]
in Figure 15. For k = 1 the only possibilities are a circle, one of the annuli
in Figure 15, or a diagram whose dual is one of these annuli. Similarly for
k ≥ 2.

11. Fans of type k in X, and closed subcomplexes

We begin this section by defining fans of type k in a 2-complex X. Cer-
tain fans of type k in X will be examined closely in Sections 12 and 13.
In the remainder of this section we record results which will be useful for
applications in [13]. The two main diagrammatic results proven earlier in
the paper are recast as statements about subspaces of small cancellation
complexes which are ‘closed’ under the addition of certain types of fans.
These statements will not be employed elsewhere in this paper.
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Definition 11.1 (Fans of type k in X). Let X be a C(p)-T (q) complex and
let p, q, and k satisfy the Euclidean restrictions. Let F be a fan. A map
F → X is a fan of type k in X if it factors as F ↪→ D → X where D → X
is a reduced map of a disc diagram, and F ↪→ D is a fan of type k in D
(Definition 7.9).

We will occasionally say that F → X is a fan in X if it factors as F ↪→
D → X where D → X is a reduced map of a disc diagram and F ↪→ D is a
fan in D. We can thus speak of a 3-shell in X, degenerate fan in X, pointed
fan in X, etc. Note that saying F → X is a fan (of type k) in X implicitly
designates its outer path Q → F .

Observe that a fan of type k is defined using C(p)-T (q) diagrams and that
X plays no role in its definition. In particular, fans of type k in X are not
determined inductively by fans of type k− 1 in X. For example, let D → X
be a reduced diagram, let E be the dual of D, let F ′ be a fan of type k−1 in
E, and let F be a fan of type k in D which is determined by F ′. The fan F
is a fan of type k in X, but the fan F ′ is not a fan of type k − 1 in X. Such
a claim would not make sense, since E is a C(q)-T (p) diagram, while X is a
C(p)-T (q) complex. The difficulty lies precisely in the fact that a C(p)-T (q)
complex does not in general have a C(q)-T (p) complex which plays the role
of a “dual”.

Definition 11.2 (Closed subcomplexes). Let X′ be a subcomplex of a C(p)-
T (q) complex X and let k be a nonnegative integer. The subcomplex X′ is
closed with respect to the addition of fans of type k if for every fan F → X of
type k whose outer path Q is a path in X ′, the entire fan F lies in X ′. Note
that every subcomplex is automatically closed with respect to the addition
of spurs.

Theorem 11.3. Let X be a C(p)-T (q) complex, let X1 and X2 be subcom-
plexes of X which are closed with respect to the addition of fans of type k,
and let p, q, and k satisfy the Euclidean restrictions. If s and t are 0-cells
in X1 ∩ X2 and P1 → X1 and P2 → X2 are paths from s to t which are ho-
motopic in X relative to their endpoints, then there exists a ladder or wheel
D of width ≤ k and a map D → X such that the basepoints of D are sent
to s and t, one of the paths determined by the basepoints of D projects to
a path in X1 homotopic in X1 to P1, and the other path determined by the
basepoints projects to a path in X2 homotopic in X2 to P2.

Proof. Since P1 and P2 are homotopic, P1P
−1
2 is null-homotopic in X. Thus

by Theorem 3.10, there is a C(p)-T (q) disc diagram D1 → X such that
P1P

−1
2 is the projection of its boundary cycle to X. If D1 contains a fan of

type k which avoids both basepoints then since both X1 and X2 are closed
with respect to fans of type k, the interior of the fan and the outer path of
the fan can be removed from D1 to form a diagram D2. Furthermore, the
path P1 (or P2) is homotopic in X1 (or X2) to the corresponding path of
D2. These arguments can be repeated for D2. Continuing in this way, we
obtain a nested sequence of subdiagrams D1 ⊃ D2 ⊃ D3 · · · . Since D1 is
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Figure 16. A fan and its essence.

finite, this sequence must terminate at a diagram Dt which does not contain
a fan of type k avoiding both basepoints. By Theorem 9.2, Dt is either a
ladder of width ≤ k or a wheel of width ≤ k. Moreover, if Dt is a ladder,
then the basepoints must meet the endfans of Dt. That Dt has width ≤ k
now follows from either Lemma 8.7 or Lemma 8.8. �

A similar result can be obtained for annular diagrams. The proof is
analogous and will be omitted.

Theorem 11.4. Let X be a C(p)-T (q) complex, let X1 and X2 be subcom-
plexes of X which are closed with respect to the addition of fans of type k,
and let p, q, and k satisfy the hyperbolic restrictions. If P1 → X1 and
P2 → X2 are closed paths which are homotopic but not null-homotopic in
X, then there exist an annular diagram D of width ≤ k + 1 and a map
D → X such that one of the boundary cycles of D projects to a cycle in X1

homotopic in X1 to P1 and the other boundary cycle of D projects to a cycle
in X2 homotopic in X2 to P2.

12. Minimal fans of type k

In this section we define minimal fans of type k in X, which are essentially
the fans that do not contain another fan of type k as a subfan. The main
objective of this section is to show that if X is compact then the set of all
minimal fans of type k in X is finite. We will continue to study minimal fans
in Section 13 where we prove that their outer paths lift to an embedding in
the universal cover.

Definition 12.1 (Essence). Let F be a fan. The essence E of F is the
disc diagram obtained by cutting F along its interior arcs, but keeping each
2-cell glued to the outer path Q. The embedding E ⊂ S2 keeps the 2-cells
in the same order and orientation as they were in F ⊂ S2. The essence of a
degenerate fan is defined analogously. Note that the essence of a spur is the
disc diagram corresponding to the outer path of the spur, which consists of
the union of two edges along a vertex. Figure 16 contains a fan on the left
and its essence on the right. Note that there is a map E → F and the outer
path of F factors as Q → E → F .

Definition 12.2 (Subfan). The fan F1 → X is a subfan of the fan F2 → X
if there is an embedding E1 ↪→ E2 of their essences such that:
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(1) the sequence of consecutive 2-cells in E1 is sent to a sequence of
consecutive 2-cells in E2 with the same linear ordering,

(2) the path Q1 projects via E1 → E2 to a subpath of Q2, and

(3) the map E
(1)
1 → X factors as E

(1)
1 ↪→ E

(1)
2 → X.

The subfan F1 of F2 is a proper subfan if Q1 projects to a proper subpath
of Q2.

Suppose that F1 is not a spur, and F1 is a subfan of F2, and let Y be the

2-complex obtained by gluing E1 to E2 along E
(1)
1 ↪→ E

(1)
2 , and let Y → X

be the induced map. Then for each 1-cell e of E2, the pair of 2-cells meeting
along e forms an equivalent pair relative to Y → X.

Definition 12.3 (Minimal fans). If F → X is a fan of type k in X which
does not contain a proper subfan of type k, then F is minimal fan of type k.
Note that the outer path of a nondegenerate minimal fan of type k is an
immersed path, because a spur subfan would obviously be a proper subfan.

Lemma 12.4. Let p, q, and k satisfy the Euclidean restrictions. If F is a
fan of type k, then there are only a finite number of subfans of F . Conse-
quently, every fan of type k has a minimal subfan of type k.

Proof. First observe that if F1 is a subfan of F2, and F2 is a subfan of F3,
then F1 is a subfan of F3. Now, each time we replace a fan of type k by a
proper subfan of type k, the length of the outer path goes down. Therefore
a minimal subfan must exist. �

Lemma 12.5. Let X be a compact C(p)-T (q) complex and let p, q, and k ≥
2 satisfy the Euclidean restrictions. Then there exists a constant B = B(X)
such that the following holds: If F is a pointed fan in X with more than B
2-cells then F contains a proper subfan of type k. Consequently if F is a
minimal pointed fan of type k, then it has at most B 2-cells.

Proof. Let B1 be the maximum number of corners in X which occur at any
one 0-cell, i.e. the maximum number of edges in the link of a 0-cell of X,
and let B = 2B1 + 2. Let F be a pointed fan which contains at least C 2-
cells and let v be the common endpoint of all of the internal maximal arcs.
Note that Link(v) is a subdivided interval of length at least B, and that the
map φ : F → X induces a map Link(v) → Link(φ(v)). The number B was
chosen so that the path Link(v) → Link(φ(v)) must traverse the same edge
twice in the same direction. This means that there are two 2-cells R and R′

in F which are sent to the same 2-cell in X and that the corners of these
2-cells at v are lifts of the same corner at φ(v) in the same orientation.

Let F1 be the subfan of F corresponding to the subcomplex extending
from R to R′ which includes R but excludes R′. This subfan as well as
the sequence of diagrams that we will examine are illustrated in Figure 17.
The conditions on the corners ensure that F1 → X admits a fold along the
length 2 subpath of ∂F1 containing v in its interior. Folding F1 along this
subpath creates a wheel F2 of width 2. Observe that for every pair of 2-cells
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Figure 17. Illustrated from left to right are The pointed
fan F , the subfan F1, the wheel F2, the dual E in F2, and
the fan F3 determined by the 0-shell E.

in F2 with a 1-cell in common, there is a pair of 2-cells in F with a 1-cell in
common and these two pairs project to the same pair in X. Consequently,
the hypothesis that F → X is reduced implies that F2 → X is reduced.
Note that the dual E of F2 is a single 2-cell, and let v′ be the 0-cell in E
which corresponds to the 2-cell R of F2. This choice of 0-cell v′ gives E the
structure of a 0-shell. Let F3 be the pointed fan in F2 which includes every
2-cell except R, and note that F3 is the fan determined by the 0-shell just
described. Finally, since 0-shells are fans of type k − 1 for all k ≤ 2, F3 is a
pointed fan of type k. This completes the proof. �

Lemma 12.6. Let X be a compact C(p)-T (q) complex and let p, q, and
k ≥ 2 satisfy the Euclidean restrictions. Let L be a ladder of width 1, and
let L → X be a reduced map. There is a constant C = C(X) such that if L
contains more than C maximal internal arcs with a common endpoint, then
there is a fan F → X of type k which factors as F ↪→ L → X such that
the outer path of F is a proper subpath of ∂L which does not contain either
basepoint of L in its interior.

Proof. A set of C +1 internal maximal arcs with a common endpoint deter-
mines a subdiagram of L which looks like a pointed fan with C 2-cells. The
rest of the proof is identical to that of Lemma 12.5. �

Theorem 12.7. Let X be a compact C(p)-T (q) complex and let p, q, and
k satisfy the Euclidean restrictions. The set of all minimal fans of type k in
X is finite.

Proof. The result is trivial for k ≤ 1 because X is compact, so we will
assume that k ≥ 2. It follows from Definition 7.9 that a fan of type k is
either a spur, a 0-shell, a 1-shell, a pointed fan, or F is determined by a fan
of type k − 1 in the dual which is itself determined by a fan of type k − 2 in
the double dual of D. Indeed, if F is a fan of type k which is not determined
by a fan of type k − 1, then it is either a spur or a 0-shell. If F is a fan of
type k which is determined by a fan of type k− 1, but this fan of type k− 1
is not determined by a fan of type k−2, then F is a 1-shell determined by a
spur or a pointed fan determined by a 0-shell. All other fans of type k ≥ 2
are determined by fans which are determined by fans in the double dual.

Since X is compact, there are only a finite number of spurs, 0-shells, and
1-shells in X. Furthermore, by Lemma 12.5, there are only a finite number
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of pointed fans which are minimal fans of type k. Thus we only need to
bound the number of minimal fans of type k which are determined by fans
in the double dual.

Let F be a fan of type k in X which is ‘doubly determined’ by a fan F ′

of type k − 2 in the double dual of some diagram D. If F ′ had a proper
subfan of type k − 2 in X, then that subfan would ‘doubly determine’ a
fan in D which would be a proper subfan of F and a fan of type k in X.
Consequently, if F is minimal then F ′ is minimal. By induction we can
now assume that F ′ is one of a finite number of possibilities, and there is
therefore an upper bound on the length of its outer path. Since the outer
path of F ′ is almost the entire inner path of F (the two missing subpaths
lie in the boundary cycles of the 2-cells at the beginning and the end of F ),
there is also an upper bound ` on the length of the inner path of F .

The fact that F is minimal, combined with Lemma 12.6, shows that
the number of 2-cells in F is also bounded. Specifically, it is bounded by
(C + 1)(` + 1), where C is the constant used in Lemma 12.6. Since there
are only a finite number of fans in X which contain at most (C + 1)(` + 1)
2-cells, the proof is complete. �

13. Lifts and embeddings

It is well known that if X is a C(p)-T (q) complex where p, q, and k satisfy
the Euclidean restrictions, then every 2-cell R → X lifts to an embedding in
the universal cover of X [21]. In this section we prove that the outer path
of a minimal fan of type k lifts to a simple path in the universal cover. This
result plays a critical role in the application of fans towards coherence and
local quasiconvexity in [15]. We begin by defining minimal outer paths and
showing that they lift to simple paths in the universal cover. The remainder
of the section will establish a relationship between minimal outer paths and
minimal fans.

Definition 13.1 (Minimal outer paths). Let X be a C(p)-T (q) complex
where p, q, and k satisfy the Euclidean restrictions. A path Q → X is an
outer path in X of type k if there exists a fan F in X of type k such that
Q → X factors as Q → F → X, and Q → F is the outer path of F . The
outer path Q → X is a minimal outer path in X of type k if no proper
subpath of Q is an outer path of type k. Note that the outer path of a spur
is a minimal outer path of type k for all k ≥ 0, and thus all other minimal
outer paths are immersions.

Lemma 13.2. Let X be a C(p)-T (q) complex, where p, q, and k satisfy the
Euclidean restrictions. If k ≥ 1 and Q → X is an immersed minimal outer

path of type k, then the lift Q → X̃ is an embedding unless Q is the outer
path of a 0-shell, in which case Q is a simple closed path.
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Proof. If Q → X̃ is not simple, then there is a not necessarily proper subpath

Q′ of Q which forms a closed path in X̃. By Theorem 3.10, there is a C(p)-
T (q) disc diagram D → X with Q′ as its boundary cycle. Let v ∈ ∂D be
the start/endpoint of the path Q′ → D. By Theorem 9.2 and Lemma 9.1,
D contains a fan F of type k which avoids v. Since Q is immersed in X and
spurs are the only degenerate fans of type k ≥ 1, F must be a nondegenerate
fan. Unless F is a 0-shell, the outer path of F embeds in D and is thus a
proper subpath of Q′ ⊆ Q. This is impossible because it contradicts the
minimality of the outer path Q. Similarly, in the case where F is a 0-shell,
the minimality condition implies that its outer path must equal Q. Hence
Q′ = Q and we are done. �

The next few technical lemmas will enable us to prove in Lemma 13.7
that the outer path of a minimal fan of type k is a minimal outer path.
Theorem 13.8, which is the main goal of this section, is proven by combining
Lemmas 13.2 and 13.7.

Lemma 13.3. Let D → X be a (not necessarily reduced) map of a disc
diagram to 2-complex. Let v be a valence 3 interior 0-cell of D, and let R1

and R2 be 2-cells which meet along an edge e incident at v. Then R1 and
R2 do not form a cancelable pair along e.

Proof. Let R3 be the third 2-cell incident with v. If R1 and R2 formed
a cancelable pair along e, then the attaching map of R3 would not be an
immersion. This contradicts Convention 2.4. �

Lemma 13.4. Let X be a C(p)-T (q) complex, let F → X denote a non-
degenerate fan of type k, let F ′ → X be an i-shell whose unique 2-cell is
denoted by R′, and suppose that the outer path of F ′ is a subpath of the
outer path of F . Let D → X be the induced map of the disc diagram formed
by attaching F ′ to F along Q′. Then each of the following conditions implies
that there is a 2-cell Ru in F whose outer path Qu contains Q′ as a subpath,
and R′ and Ru form a cancelable pair along Q′:

(1) p ≥ 5, q ≥ 4, k ≥ 1, and 0 ≤ i ≤ 3.
(2) p ≥ 7, q = 3, k is odd, and 0 ≤ i ≤ 4.

For the proofs we use the following notation. Since F is a nonsingular
ladder or a doubly based 2-cell, its dual is either a subdivided interval or a
single 0-cell. Let V denote the set of 0-cells in the dual of F , let Rv denote
the 2-cell of F corresponding to the 0-cell v ∈ V , and let Qv denote the
subpath of Q contained in ∂Rv. Finally, let Q → F and Q′ → F ′ denote the
outer paths of F and F ′.

Proof of part 1. By Lemma 7.12, F is either a 0-shell, a 1-shell, or the con-
catenation of 2-shells and 3-shells, and the 0-cells in the interior of Q have
valence ≤ 3. Since X satisfies C(p) with p ≥ 5, no path Qv is the concate-
nation of fewer than two pieces of X. Similarly, Q′ is not the concatenation
of fewer than two pieces of X.
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If the interior of the subpath Q′ of Q contains a 0-cell v of Q, then
D → X must contain a cancelable pair because D contains an internal 0-
cell of valence 3 in violation of the T (q) hypothesis. Since F → X is itself
reduced, the cancelable pair must involve R′ and a 2-cell of F , and therefore
occurs along a path with an endpoint at an internal valence 3 0-cell. This
contradicts Lemma 13.3.

On the other hand, if the interior of Q′ does not contain a 0-cell of Q of
valence 3 in F , then Q′ is a subpath of Qu for some u ∈ V . Since Q′ is not
a piece of X, this implies that Ru → X and R′ → X form a cancelable pair
along Q′. �

Proof of part 2. By Lemma 7.12, F is either a 0-shell, a 1-shell, or the con-
catenation of 2-shells, 3-shells, and 4-shells, and the 0-cells in the interior
of Q have valence ≤ 3. Since X satisfies C(p) with p ≥ 7, no path Qv is
the concatenation of fewer than three pieces of X. Similarly, Q′ is not the
concatenation of fewer than three pieces of X.

If the interior of the subpath Q′ of Q contains at least two distinct 0-cells
of valence 3 in F , then Q′ contains a path Qu for some u ∈ V . Since Qu is not
a single piece, the 2-cells Ru → X and R′ → X form a cancelable pair along
Qu. Furthermore, Qu must equal Q′ because if Qu ended in the interior of
Q′ then Lemma 13.3 would be contradicted. If the interior of Q′ contains
only one valence 3 0-cell u, then Q′ is the concatenation of two subpaths Q1

and Q2, each of which is contained in a path of the form Qu ⊂ ∂Ru. Since
Q′ is not the concatenation of fewer than three pieces, one of these two is
not a piece, so Ri and R′ form a cancelable pair along Qi for i = 1 or i = 2.
Since u is an interior 0-cell of D, this contradicts Lemma 13.3. We conclude
that Q′ does not contain any valence 3 0-cell in its interior, and therefore Q′

is a subpath of Qu for some u ∈ V , and since Q′ is not the concatenation of
a single piece, Ru and R′ form a cancelable pair along Q′. �

Definition 13.5 (Adjacent degenerate fans). Let F → X be a degenerate
fan of valence r and let F ′ → X be a degenerate fan of valence r′. Denote
the 2-cells of F by R1, . . . , Rr−1 in the order they occur and denote the
2-cells of F ′ by R′

1, . . . , R
′

r′−1 in the order they occur. (Of course, a spur
has no 2-cells.) These two degenerate fans are adjacent if their outer paths
project to the same path in X. If the degenerate fans are adjacent and
r + r′ − 2 > 2, then we can glue F and F ′ together along their outer paths
to form a disc diagram which looks like a wheel of width 2 with (r + r′ − 2)
2-cells, but which may or may not be reduced (see Figure 18).

Lemma 13.6. Let X be a C(p)-T (q) complex, and let F and F ′ be adjacent
degenerate fans in X of valence r and r′. If q ≥ 5 and q > r + r′ − 2 then
F ′ is a subfan of F .

Proof. We begin by showing that if one of the fans, say F ′, is a spur, then
the other fan F is an identical spur. This is obvious if r = 1 = r′, so we
assume that r + r′ − 2 > 0 and that r′ = 1 and we will prove by induction
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F

F

‘

Figure 18. The disc diagram obtained by gluing F and F ′

together.

that this is impossible. As in Definition 13.5, we glue F and F ′ together
along their outer paths to obtain a diagram D → X which looks like a wheel
of width 2 with (r + r′ − 2) 2-cells. If r = 2 and r′ = 1 and the 2-cell R1 is
adjacent to the spur F , then the attaching map of R1 is not an immersion,
which contradicts Convention 2.4. If r = 3 and r′ = 1, then the 2-cells
R1 and R2 meet along a length 2 path in D. By Lemma 3.5, this implies
that R1 and R2 form a cancelable pair in F along this length 2 path, and
thus form a cancelable pair in F which contradicts our assumption that F
is reduced. Finally, if r > 3 and r′ = 1, then we use our hypothesis that X
satisfies T (q) and that q > r + r′ − 2, to conclude that the diagram D must
contain a cancelable pair. The only possible location for a cancelable pair is
between R1 and Rr−1, but removing this pair creates a new adjacent pair of
degenerate fans with valence (r − 2) and valence 1, which is impossible by
induction. We have therefore shown that if r′ = 1 then r = 1 as well, and
F and F ′ are identical spurs.

We now consider the case where r ≥ r′ > 1. Again, our hypotheses
imply that the diagram D contains a cancelable pair. The only possible
locations for the cancelable pair is between R1 and R′

1 or between Rr−1 and
R′

r′−1. Removing either of these pairs of 2-cells creates a new pair of adjacent
degenerate fans of valence r−1 and valence r′−1. Repeating this procedure
eventually produces a pair with valence (r−r′+1) and valence 1 and by the
above result, r − r′ = 0. Working backwards through the removals of the
cancelable pairs reveals that each cancelable pair was between the 2-cells
Ri and R′

i for some i. This determines the required isomorphism E → E ′

between the essences of F and F ′ and hence completes the proof. �

Lemma 13.7. Let X be a C(p)-T (q) complex and let p, q, and k satisfy the
hyperbolic restrictions. If F → X is a minimal fan in X of type k, then its
outer path Q → F is a minimal outer path of type k.

Proof. Let F ′ be another fan of type k whose outer path Q′ is a proper
subpath of Q. To establish the claim we will show that F ′ is a subfan of F ,
and hence F is not minimal. If F ′ is a spur then F is obviously not minimal,
so we shall proceed under the assumption that F ′ is not a spur. Let D be
the diagram formed by attaching F to F ′ along Q′. The proof is divided
into cases depending on the values of p, q, and k.

Case 1: Suppose p ≥ 5, q ≥ 4, and k is odd. By Lemma 7.12, every 2-cell
R′ in F ′ is an i-shell with 0 ≤ i ≤ 3. By Lemma 13.4.1, the outer path Q′
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of R′ is a subpath of the outer path Qu of a 2-cell Ru of F , and R′ and Ru

form a cancelable pair along Q′. This sequence of cancelable pairs induces
the required map E ′ → E from the essence of F ′ to the essence of F . In
particular, the sequence of consecutive 2-cells in F ′ is sent to a sequence of
consecutive 2-cells in F in the same order, because each 2-cell of F has a
nontrivial outer path, and so it is impossible to skip a 2-cell of F .

Case 2: Suppose p ≥ 7, q = 3, and k is odd. The proof is the same as
Case 1 except that Lemma 7.12 now implies that every 2-cell in F ′ is an
i-shell with 0 ≤ i ≤ 4, and Lemma 13.4.2 is used in place of Lemma 13.4.1

Case 3 [Case 4]: Suppose p ≥ 4, q ≥ 5, [p = 3, q ≥ 7] and k is
even. It follows from Lemma 7.12 that Q′ has length at least 2, and further-
more, every 2-cell of F ′ contains an interior 0-cell of Q′ in its boundary. By
Lemma 7.12, each 0-cell in the interior of Q or Q′ has valence ≤ 3, [≤ 4, ]
and consequently, every 0-cell in the interior of the path Q′ has valence in
D which is at most 4 [at most 6].

Each 0-cell v in the interior of Q′ determines a degenerate subfan Fv of F
and a degenerate subfan F ′

v of F ′. These degenerate subfans are obviously
adjacent because their outer paths are glued together in D. By Lemma 13.6,
F ′

v is a subfan of Fv (and Fv is a subfan of F ′

v). As v varies over the interior
0-cells of Q′, the set of isomorphisms E′

v → Ev between the essences of F ′

v

and Fv induces an embedding E ′ → E between the essences of F ′ and F .
This is well-defined because if u and v are 0-cells in the interior of Q′ which
are the endpoints of an edge e in Q′, then F ′

u ∩F ′

v consists of the 2-cell of F ′

whose outer path contains the edge e, and this 2-cell forms a cancelable pair
with a corresponding 2-cell of F across e in a unique fashion. The sequence
of consecutive 2-cells of F ′ is mapped to a sequence of consecutive of 2-cells
of F because the same holds for each F ′

v and F ′

v . �

Theorem 13.8. Let X be a C(p)-T (q) complex, let F → X be a minimal
fan of type k. If p, q, and k satisfy the hyperbolic restrictions, then its outer

path Q → X lifts to a simple path in X̃.

Proof. This follows immediately from Lemma 13.2 and Lemma 13.7. �
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