
FIXED POINTS OF PARKING FUNCTIONS

JON MCCAMMOND, HUGH THOMAS, AND NATHAN WILLIAMS

Abstract. We define an action of words in [m]n on Rm to give a new char-
acterization of rational parking functions—they are exactly those words whose
action has a fixed point. We use this viewpoint to give a simple definition of
Gorsky, Mazin, and Vazirani’s zeta map on rational parking functions when
m and n are coprime [GMV16], and prove that this zeta map is invertible. A
specialization recovers Loehr and Warrington’s sweep map on rational Dyck
paths [ALW15, TW18, GMV17].

1. Introduction

1.1. Parking Words. Classical parking words have a well-known interpretation in
the language of parking cars. There are n parking places and n cars, each indexed
from 0 to n−1. As in [KW66, Section 6], car i has a preference for parking place pi,
and cars attempt to park as follows: for 0 ≤ i ≤ n− 1, car i takes the unoccupied
parking place with the lowest number larger than or equal to pi, should such a
parking place exist. The classical parking words PWn are defined as those words
for which each car is able to park.

The 16 parking words in PW3 are given on the left side of Figure 1. Garsia in-
troduced a combinatorial interpretation of PWn as certain super-diagonal labelled
paths in an n×n square, which has served as the basis of many subsequent investi-
gations. Replacing the square by an m×n rectangle gives the (m,n)-parking words
PWn

m—those words p = p0 · · · pn−1 ∈ [m]n = {0, 1, . . . ,m−1}n such that

(1)
∣∣∣{j : pj < i

}∣∣∣ ≥ in

m
for 1 ≤ i ≤ m.

The classical parking words are recovered as PWn = PWn
n+1. The 25 parking

words in PW3
5 are illustrated on the right side of Figure 1.

000 001 002 011 012
010 020 101 021
100 200 110 102

120
201
210

000 001 002 003 011 012 013
010 020 030 101 021 031
100 200 300 110 201 301

210 310
120 130
102 103

Figure 1. Left: the 43−1 = 16 (4, 3)-parking words in PW3 (these
are also the (3, 3)-parking words). Right: the 53−1 = 25 (5, 3)-
parking words in PW3

5. Each column is an orbit under S3.
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1.2. A New Characterization of Parking Words. Our main result is a new
characterization of (m,n)-parking words as piecewise-linear functions from Rm to
Rm. This characterization is new even for classical parking words.

Define

V m :=
{
x = (x0, . . . , xm−1) ∈ Rm :

m−1∑
i=0

xi = 0 and x0 ≤ x1 ≤ · · · ≤ xm−1
}
.

A letter i ∈ [m] acts on x ∈ V m by adding m to xi, subtracting the tuple 1m :=
(1, 1, . . . , 1), and then resorting. A word w ∈ [m]n acts on x ∈ V m by acting by
its letters from left to right. The following theorem distinguishes parking words in
[m]n by their action on V m.

Theorem 1.1. The action of w ∈ [m]n on V m has a fixed point if and only if w is
an (m,n)-parking word. More precisely, the action of w ∈ [m]n on V m:

• has a unique fixed point iff w ∈ PWn
m and gcd(m,n) = 1;

• has infinitely many fixed points iff w ∈ PWn
m and gcd(m,n) > 1; and

• has no fixed points iff w ∈ [m]n \ PWn
m.

The motivation for Theorem 1.1 comes from generalizations of the space of di-
agonal coinvariants and the zeta map on parking functions, as we now explain.

1.3. Coinvariants and the Symmetric Group. The Hilbert series for the space
of coinvariants is the generating function for two important statistics on the n!
permutations in Sn:

(2) Hilb
(
C[xn]/〈C[xn]Sn

+ 〉; q
)

=
∑
w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w),

where C[xn] is shorthand for a polynomial ring in n variables and 〈C[xn]Sn
+ 〉 is the

ideal of C[xn] generated by symmetric polynomials with no constant term.
Artin gave a basis for this space using the code of a permutation to reflect the

first generating function of Equation (2) [Art44], while Garsia and Stanton found
a basis using the descents of a permutation to explain the second [GS84].

A statistic with the same distribution as inv or maj is eponymously named ma-
honian [Mac13], but Foata gave the first bijection sending one statistic to the
other [Foa68]. Exploiting the fact that this bijection preserves descents of the
inverse permutation, Foata and Schützenberger later found an involution that in-
terchanges inv and maj [FS78].

1.4. Diagonal Coinvariants. The study of the space of diagonal coinvariants
originated with Garsia and Haiman; its relationship to parking words was first
suggested by Gessel [Hai94, GH96]. More precisely, Carlsson and Mellit’s recent
proof of the shuffle conjecture [HHL+05, CM18, HX17] implies the long-suspected
fact that the bigraded Hilbert series of the space of diagonal coinvariants is encoded
as a positive sum over the (n+1)n−1 parking words PWn [Hai02, HL05]:1

(3) Hilb
(
C[xn,yn]/〈C[xn,yn]Sn

+ 〉; q, t
)

=
∑

p∈PWn

qdinv(p)tarea(p),

where q records the degree of the variables xn, t the degree of yn, and area and
dinv are certain statistics on parking functions. Recently, Carlsson and Oblomkov
artfully merged the Artin and Garsia-Stanton bases to give an explicit basis of the

1Carlsson and Mellit actually proved a stronger result, giving an explicit formula for the Frobe-
nius series for the space of diagonal coinvariants.
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space of diagonal coinvariants [CO18], explaining the generating function in Equa-
tion (3).

It is known from Equation (3) that area and dinv are symmetric, i.e.,

(4)
∑

p∈PWn

qarea(p)tdinv(p) =
∑

p∈PWn

qdinv(p)tarea(p).

However, it is a long-standing open problem to find an involution that inter-
changes area and dinv—in the style of Foata and Schützenberger’s involution for
inv and maj—thus combinatorially proving Equation (4). This problem is still
wide open, even for the alternating subspace [DMM11, Gil16]. As a first step to-
wards this elusive involution, the equidistribution of dinv and area—obtained by
setting t = 1 in Equation (4)—was proven combinatorially by Loehr and Rem-
mel [LR04, HL05] [Hag08, Corollary 5.6.1]:

Theorem 1.2 ([LR04]). ∑
p∈PWn

qarea(p) =
∑

p∈PWn

qdinv(p).

This bijection on PWn takes area to dinv, combinatorially proving the symmetry
of Theorem 1.2. It was first understood, generalized, and inverted for the alternat-
ing subspace, where it was called called the zeta map [KOP02, Hag03, HL05, GH02,
Hag08, ALW15, TW18]. It has been rediscovered many times. We review the his-
tory of the zeta map in Section 5.1.

1.5. Rational Parking Words and the Affine Symmetric Group. We now
assume m and n are coprime. The classical parking words PWn, their statistics
area and dinv, and the shuffle conjecture have all been (at least combinatorially)
generalized to the (m,n)-parking words PWn

m [BGLX15, ALW16, GMV16, GN15,
Thi16, GMV17].

The Fuss (nk+1, n) generalization of the story of diagonal coinvariants is due
to Garsia and Haiman [Hai98, GH96]. Writing A for the ideal generated by the
alternating polynomials in C[xn,yn], Mellit proved the rational shuffle conjecture
in [Mel16], which implies that

Hilb
(
Ak−1/Ak−1C[xn,yn]Sn

+ ; q, t
)

=
∑

p∈PWn
kn+1

qarea(p)tdinv(p).

The more general rational (m,n) version comes from Hikita’s study of the Borel-
Moore homology of affine type A Springer fibers, which has a natural basis indexed
by the mn−1 elements of the affine symmetric group S̃n lying inside an m-fold
dilation of the fundamental alcove [Shi87, Hai94, CP02, Che03, Som05, Hik14,
GMV16, Thi16]. Thus, while the space of coinvariants C[xn]/〈C[xn]Sn

+ 〉 is related
to the symmetric group Sn, the diagonal coinvariants are related to the affine
symmetric group S̃n.

There are many bijections from these affine elements to the parking words PWn
m.

Armstrong found natural interpretations of area and dinv in terms of affine permu-
tations for the Fuss case [Arm13], and his work was extended to the rational case by
Gorsky, Mazin, and Vazirani [GMV16, GMV17]. Gorsky and Negut formulated the
rational shuffle conjecture in [GN15]—that Hikita’s polynomial was given by an op-
erator from an elliptic Hall algebra (see also [BGLX15]). This operator formulation
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leads to a q, t-symmetric bivariate polynomial generalizing Equation (4):2

(5)
∑

p∈PWn
m

qarea(p)tdinv(p) =
∑

p∈PWn
m

qdinv(p)tarea(p).

As a combinatorial proof of q, t-symmetry seems out of reach even in the classical
m = n+1 case, the next best thing is the analogue of the equidistribution of Theo-
rem 1.2. To this end, Gorsky, Mazin, and Vazirani defined a zeta map on PWn

m (a
map taking area to dinv), and conjectured that it was a bijection by providing what
they believed to be an inverse map. A curious feature of their conjectural inverse
is that it appears to converge to the correct answer.

As a corollary to our Theorem 1.1, we prove Gorsky, Mazin, and Vazirani’s
conjecture and obtain a rational generalization of Theorem 1.2.

Theorem 1.3. For m and n relatively prime,∑
p∈PWn

m

qarea(p) =
∑

p∈PWn
m

qdinv(p).

1.6. Outline of the Paper. In Section 3 we define (m,n)-parking words, the
action of words in [m]n on Rm, and prove our characterizations in Theorem 1.1
using the Brouwer fixed point theorem.

To relate this characterization to parking functions, we introduce some notation.
Fixing (m,n) relatively prime, we define (m,n)-filters as certain periodic filters of
Z×Z in Section 4.1, and show that equivalence classes of these filters are naturally
parameterized by rational (m,n)-Dyck paths and balanced (m,n)-filters. We define
(m,n)-filter tuples in Section 4.3 as certain sequences of (m,n)-filters, and relate
these sequences to labeled (m,n)-Dyck paths.

The notion of (m,n)-filters allows us to give a new, remarkably simple definition
of the zeta map on (m,n)-parking words in Section 5. We summarize past work
on zeta maps in Section 5.1, define the zeta map in Section 5.2, and relate our
construction to Loehr and Warrington’s sweep map on (m,n)-Dyck paths in Sec-
tion 5.3.

In Section 6, we finally turn to the affine symmetric group. After basic defi-
nitions in Section 6.1, we use balanced (m,n)-filters to give a bijection between
(m,n)-filter tuples and affine permutations whose inverses lie in the Sommers re-
gion in Section 6.2. We use this bijection in Section 6.3 to relate our constructions
to the work of Gorsky, Mazin, and Vazirani, showing that our Theorem 1.1 re-
solves [GMV16, Conjecture 1.4].
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2. Words and Actions

2.1. Parking Words. As in the introduction, the (m,n)-parking words PWn
m are

those words p = p0 · · · pn−1 ∈ [m]n such that

(6)
∣∣∣{j : pj < i

}∣∣∣ ≥ in

m
for 1 ≤ i ≤ m.

By definition, any (m,n)-parking word is a permutation of the column lengths of
a lattice path staying above the main diagonal in an m×n rectangle, as illustrated
in Figure 7. (Here, by “column lengths,” we mean the distances between the top of
the rectangle and the horizontal steps of the lattice path.) We write DWn

m for the
increasing (m,n)-parking words—the (m,n)-Dyck words—which are in bijection
with the set of such lattice paths.

2.2. Hyperplanes. Although we defer most of the connections between parking
words and the affine symmetric group to Section 6, we will require the hyperplane
arrangement of the affine symmetric group S̃m immediately. For 0 ≤ i, j < m and
k ∈ N, we define the hyperplane

Hki,j = {x ∈ Rm : xi − xj = mk}

to be of height j− i+mk, so that the affine simple hyperplanes
{
H0
i,i+1

}
0≤i<m−1∪{

H1
m−1,0

}
each have height one. We call the set

{
H0
i,i+1

}
0≤i<m−1 the simple hy-

perplanes. Write

H =
⋃

0≤i<j<m
k∈Z

Hki,j

for the affine hyperplane arrangement of type S̃m and let

Rmt =

{
x ∈ Rm :

m−1∑
i=0

xi = t

}
∼= Rm−1.

The closure of each connected region of Rmt \H is called an alcove. For 0 ≤ i < m,
write ei for the ith standard basis vector of Rm. The set of alcoves is permuted
under translations by mei − 1m and under reflections in any hyperplane Hki,j . We
define the norm of an m-tuple x ∈ Rmt to be

|x| :=
∑

0≤i<j<m

(xj − xi)2.

Definition 2.1. A fundamental domain for the natural action of Sm on Rm is
given by those points whose coordinates weakly increase. Define the cone

V mt :=
{
x ∈ Rmt : x0 ≤ x1 ≤ · · · ≤ xm−1

}
and V m := V m0 . We may rebalance an element of V mt1 to an element of V mt2 by
adding the appropriate multiple of 1m.

2.3. Actions of Words. For each i ∈ [m], we define piecewise linear transforma-
tions on Rmt \ H and on V mt .

Definition 2.2. A letter i ∈ [m] acts on x ∈ Rmt \ H by adding m to the ith
smallest coordinate of x and subtracting the tuple 1m. The letter i acts on x ∈ V mt
in the same way, but with a final resorting step at the end. A word w ∈ [m]n acts
on x ∈ Rmt \ H or x ∈ V mt by acting by its letters from left to right.
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More precisely, writing y := sort(x) for the increasing rearrangement of a point
x ∈ Rmt ,

i(x) := x + ej − 1m for x ∈ Rmt \ H if xj = yi, and(7)
i(x) := sort(x + ei − 1m) for x ∈ V mt .(8)

An example of the action on R3
6 \ H is given in Figure 2.3
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Figure 2. An orbit of the action of the letters 0, 1, and 2 on R3
6\H.

Acting by 0 adds 3 to the smallest coordinate and subtracts 13;
acting by 2 adds 3 to the largest coordinate and subtracts 13; and
acting by 1 adds 3 to the coordinate that is neither largest nor
smallest and subtracts 13. For formatting, we have written i for
−i and suppressed commas and parentheses; thus, the string 253
stands for the point with coordinates (−2, 5, 3).

The action of a letter i ∈ [m] on V mt is the restriction to V mt of a piecewise-linear
function from Rmt ∼= Rm−1 to V mt that sends alcoves to alcoves. By Equation (7),
the letter i acts on x ∈ Rmt by the translation x+mei−1m, and the final resorting
of the coordinates into increasing order may be interpreted geometrically by folding
once along the simple hyperplane H0

i,i+1, and then folding again as needed along
simple hyperplanes until all points lie in the cone V mt .

Lemma 2.3. The action of a word w ∈ [m]n on V m sends alcoves to alcoves and
only decreases distances between points: |x− y| ≥ |w(x)− w(y)|.

Proof. The conclusion of the lemma is evident from the geometric description of
the action of a letter. �

3To cleanly bridge from this section to the affine symmetric group in Section 6, we will want
to normalize points so that

∑m−1
i=0 xi =

(m+1
2

)
. We therefore used that normalization in Figure 2.
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2.4. Affine Dimension. We say that a subset X ⊆ V m is of affine dimension k
if it is a convex set contained in an affine subspace of dimension k and contains
an open ball in that affine subspace. In particular, X is of affine dimension 0 if
it consists of a single fixed point. Note that affine dimension is not defined for an
arbitrary subset of V m; to say that a subset is of affine dimension k is to make a
strong statement about the kind of subset it is.

For w ∈ [m]n, define

Fix(w) :=
{
x ∈ V m : w(x) = x

}
to be the set of points that are fixed under w.

Fix p ∈ PWn
m and write d := gcd(m,n). We will prove Theorem 1.1 in Section 3

by showing that Fix(p) is of affine dimension d− 1. For now, we prove that Fix(p)
is convex and is contained in an affine subspace of dimension d− 1.

Lemma 2.4. Fix(p) is convex.

Proof. Let p ∈ PWn
m and suppose x,y ∈ Fix(p). Since the application of p only

decreases distances, the line between them is fixed. �

Lemma 2.5. Let gcd(m,n) = d, p ∈ PWn
m, and suppose x ∈ Fix(p). Then the

multiset of coordinates {xi}m−1i=0 can be partitioned into disjoint multisets, each of
which is of size m/d and of the form {a+ kd+ bkm}m/d−1k=0 .

Proof. Up to rebalancing, the action of each letter of p increases one coordinate of
x by m, but the effect of the entire parking word is to send xi to xi +n. Since each
individual entry changes by a multiple of m, it does not change modulo m. This
means that the multiset of remainders of xi modm must be fixed under addition of
n, so it must also be fixed under addition of gcd(n,m) = d. �

Lemma 2.6. Let gcd(m,n) = d ≥ 1 and p ∈ PWn
m. Then Fix(p) is contained in

an affine subspace of dimension d− 1.

Proof. Let x ∈ Fix(p), and let y ∈ Fix(p) be another fixed point in a small ball
around x. By Lemma 2.5, the coordinates of y can be partitioned into d disjoint
multisets of size m/d, each of which consists of a set of residues mod m which are
fixed under addition of d. Because y is close to x, the partition we have found
for the coordinates of y also works for the coordinates of x. For each of the parts
in the partition, there is therefore some offset such that adding this offset to the
coordinates of x in that part, yields the coordinates of y in that part. These offsets
must add up to zero, since the sum of the entries of x and y are assumed to be the
same. This shows that y lies in an affine subspace of dimension d − 1 which also
contains x.

In principle, if we chose a different y′ ∈ Fix(p) near x, we could obtain a different
affine subspace (corresponding to a different way of partitioning the coordinates of
x). However, convexity would then imply that the line between y and y′ is also in
Fix(p), and this includes points which are not on any affine subspace of the above
form, which is impossible. Thus all the points in Fix(p) near x lie in a single affine
subspace.

By convexity, any point in Fix(p) lies in the same affine subspace. �

3. A New Characterization of Parking Words

In this section we prove Theorem 1.1, distinguishing parking words in the set of
all words in [m]n using the action of a word on V m.

Definition 3.1. For p ∈ PWn
m and 1 ≤ i < m, define i to be a touch point of p if∣∣∣{j : pj < i

}∣∣∣ = i
n

m
.
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Note that we do not count 0 or m as touch points, so that when n and m are
coprime, no p ∈ PWn

m has a touch point.
We break the proof of Theorem 1.1 into five parts. Let p ∈ PWn

m and d :=
gcd(m,n).

• Lemma 3.2: if p has no touch points, then it has a fixed point.
• Corollary 3.3: if d = 1, then p has a unique fixed point.
• Lemma 3.4: if p has no touch points, then its fixed point space is bounded

of affine dimension d− 1.
• Lemma 3.6: if p has a touch point, then it has infinitely many fixed points,

of arbitrarily large norm.
• Lemma 3.8: if w ∈ [m]n \ PWn

m, then it has no fixed points.

3.1. Parking words without touch points.

Lemma 3.2. The action of p ∈ PWn
m on V m has a fixed point when p has no

touch point.

Proof. We want to show that |p(x)| < |x| for |x| > N , provided N is sufficiently
large (that is, parking contracts). By Lemma 2.3, the Brouwer fixed point theorem
can then be invoked on the (m− 1)-ball{

x ∈ Rm :

m−1∑
i=0

xi = 0, |x| ≤ N

}
to guarantee a fixed point.

We first consider the case that the xi are sufficiently separated that each “resort”
step does nothing—that is, the actions of p on x as an element of Rm0 \ H and as
an element of V m coincide. For 0 ≤ i < m, let

qi =
∣∣∣{j : pj = i

}∣∣∣
be the number of occurrences of i in the (m,n)-parking word p. The change in the
norm produced by applying p to x ∈ V m is the difference

(9)
∑

0≤i<j<m

[
(xi +mqi − xj −mqj)2 − (xi − xj)2

]
=

∑
0≤i<j<m

m2(qi − qj)2 +

m−1∑
i=0

2m2qixi − 2

(
m−1∑
i=0

xi

)(
m−1∑
i=0

qi

)
.

Of the three terms on the right-hand side of Equation (9), the first sum depends
only on p. The third vanishes because we have assumed that

∑
i xi = 0. We want

to show that the second sum on the right-hand side
m−1∑
i=0

2m2qixi

is sufficiently negative to dominate the first, provided |x| is big enough. We will do
this by showing that we can add a sequence of positive numbers to the second sum
to make it zero.

Suppose that x0 = x1 = · · · = xb−1 (with b maximal) and xm−1 = xm−2 = · · · =
xm−c (with c maximal). If we increase each of the b minimal coordinates of x by
cα and decrease each of the c maximal coordinates of x by bα, we have not changed
the average value of x. On the other hand, the value of

∑
i qixi changes by
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(10)
b−1∑
i=0

αcqi −
m−1∑
i=m−c

αbqi.

By Equation (6)—because p is an (m,n)-parking word—the first term of Equa-
tion (10) is greater than αcb nm , while the second term is less than αcb nm . Thus,
changing the values of x in this way increases the sum

∑
i qixi.

Choose α maximal so that, in increasing the b minimal coordinates and decreas-
ing the c maximal coordinates, none of the values changed pass any other values of
x. We call this a step. Since at least one of b or c increases, after a finite number
of steps, we will have all entries of x at zero and the value of the sum

∑
i qixi will

also be zero. But since we increased the value of the sum at each step, its initial
value was negative.

In fact, we can bound the initial value of
∑
i qixi away from 0 by approximating

its change across all steps. For b, c < m, we have(
i=b−1∑
i=0

qi

)
− bn

m
≥ 1

m
and

cn

m
−

(
i=m−1∑
i=m−c

qi

)
≥ 1

m
,

since both left-hand sides are strictly positive (because of our assumption that p
has no touch points) and can be expressed as a rational number with denominator
m. Therefore,

(11)
b−1∑
i=0

αcqi −
m−1∑
i=m−c

αbqi ≥
αc

m
+
αb

m
.

To approximate
∑
i qixi, we bound the two terms on the right-hand side of Equa-

tion (11) over the entire process which moves all the xi to zero.
Since αc is the amount that each of the minimal xi’s were moved during each

step, the sum of αc/m over all steps is 1/m times the total amount the minimal
coordinates are increased over the whole process. But this begins at x0 and termi-
nates at 0, so the total amount they change by is −x0 and the sum of the first term
on the right-hand side of Equation (11) over the whole process is −x0/m. Similarly,
the sum of the second term on the right-hand side of Equation (11) over the whole
process is xm−1/m. We obtain the bound

m−1∑
i=0

2m2qixi ≤ 2m(x0 − xm−1),

which we can make as negative as we like by requiring |x| to be sufficiently large.

We now consider the case that the resorting is not necessarily trivial—that is,
the action on x as an element of Rm0 \H and as an element of V m do not necessarily
coincide. Fix a sorted tuple x and distinguish this tuple as living in Rm0 \H or V m
by writing xU ∈ Rm0 \ H and xV ∈ V m. Write

x
(j)
U := p0p1 · · · pj−1(xU ) and

x
(j)
V := p0p1 · · · pj−1(xV ).

We note that after applying a single letter i to xU and xV , the difference between
any coordinate of xU and the same coordinate of xV is less than m. By induction,
corresponding coordinates of x(j)

U and x
(j)
V differ by at most mj.
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On the other hand, for any tuple y, applying a single letter i to yU or yV , we
compute

|i(yU )| − |yU | = |i(yV )| − |yV | =
∑

0≤j<m
j 6=i

[
(yi +m− yj)2 − (yi − yj)2

]

= (m− 1)m2 + 2m
∑

0≤j<m
j 6=i

(yi − yj)

= (m− 1)m2 + 2m2yi.

By telescoping, we can now bound the difference |p(xU )| − |p(xV )|:

|p(xU )| − |p(xV )| =
n−1∑
j=0

(
|x(j+1)
U | − |x(j)

U |
)
−
(
|x(j+1)
V | − |x(j)

V |
)

≤
n−1∑
j=0

2m3j = n(n− 1)m3,

using our analysis that corresponding coordinates in x
(j)
U and x

(j)
V differ by at most

mj. This quantity is still a constant in the fixed parameters n and m, so we can
overcome it by requiring that |x| be sufficiently large.

We conclude that the second term of the right-hand side of Equation (9) domi-
nates the first if |x| > N forN sufficiently large, so that |p(x)| < |x| for |x| > N . �

In the case gcd(m,n) = 1, Lemma 2.6, together with our previous results, suffices
to show that the set of fixed points is of affine dimension 0 (i.e., consists of a single
point).

Corollary 3.3. Let gcd(m,n) = 1 and p ∈ PWn
m. Then Fix(p) is of affine dimen-

sion 0. In particular, |Fix(p)| = 1.

We now show that Fix(p) is of affine dimension d − 1 for d = gcd(m,n) in the
case that p has no touch points.

Lemma 3.4. Let gcd(m,n) = d ≥ 1 and p ∈ PWn
m with no touch points. Then

Fix(p) is bounded of affine dimension d− 1.

Proof. Fix(p) is bounded, since we showed in Lemma 3.2 that |p(x)| < |x| for
|x| > N for some large N .

Let F be a face of the affine arrangement H such that for any G having F as
a face, we have G ∩ Fix(p) = F ∩ Fix(p). Suppose, seeking a contradiction, that
F is of codimension c ≥ 1. Consider the action of p on a small sphere S around a
point x of Fix(p) in the plane normal to F . Since the sphere is not fixed by p, the
action of p on it is by some non-trivial foldings. The image therefore misses some
open ball B in the sphere. Restricting, p now defines a map from S \ B to S \ B,
and by Brouwer’s fixed point theorem, it has a fixed point. This contradicts our
assumption on F . Thus there must be a fixed point x not lying on any hyperplane.

Lemma 2.5 divides the set of all coordinates of x into d subsets of sizem/d, where
the elements of each set are congruent modulo d. Since x lies on no hyperplane, no
coordinate value modulo m is repeated, so it is unambiguous how to apportion the
coordinates into these sets.

Now consider the action of p, omitting rebalancing. Each entry in the multiset of
coordinates is changed by a multiple of d. Thus the entries in each of the d subsets
are permuted among themselves by the action of p. We may translate each family
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with respect to the others by some small amount without changing the relative
order of any coordinates, so all such points are still fixed. This gives us an open
ball around x in the (d− 1)-dimensional affine subspace constructed in Lemma 2.6
consisting entirely of fixed points. Fix(p) is therefore of affine dimension d− 1. �

Example 3.5. Fix (m,n) = (6, 9) with d = gcd(m,n) = 3. Consider the (m,n)-
parking word p = 020101151, and note that p has no touch points.

It is easily verified that p has a fixed point x = (−3, 1, 2, 4, 6, 11), which modulo
d is of the form (0, 1, 2, 1, 0, 2). Let

v0 = (−3, 0, 3, 3, 6, 12),

v1 = (−2, 1, 1, 4, 7, 10), and
v2 = (−4, 2, 2, 5, 5, 11).

Then one can check that Fix(p) ⊇ conv(v0, v1, v2).

3.2. Parking words with touch points. When the parking word has a touch
point, we now use Lemma 3.2 to also produce infinitely many fixed points. These
fixed points may now be of arbitrarily large norm.

Lemma 3.6. The action of w ∈ PWn
m on V m has infinitely many fixed points

when w has at least one touch point. The set Fix(w) has affine dimension d − 1,
and contains fixed points of arbitrarily large norm.

Proof. Suppose that gcd(m,n) = d 6= 1 and that w has k ≥ 1 touch points. We
will break p into a number of smaller parking words based on its touch points, find
the unique fixed points for each of those parking words, and then reassemble them
in uncountably many ways to find fixed points for p. To this end, list the k touch
points of p as m1, . . . ,mk with

m0 = 0 < m1 < m2 < · · · < mk < m = mk+1.

For 0 ≤ j ≤ k, let p(j) be the (not-necessarily consecutive) subword of p containing
all letters p of p such that mj ≤ p < mj+1. Let nj be the length of p(j)—necessarily
a multiple of n/d—and note that p is a shuffle of p(0), p(1), . . . , p(k−1).

To define smaller parking words, we shift the individual letters of p(j) by the
previous touch point to produce the (mj , nj)-parking word q(j) := p(j) −mj .

We can now use Lemma 3.2 and the previous case to find x(j) ∈ V mj that are
fixed points for the q(j). In preparation to reassemble these individual fixed points
x(j) into a fixed point for p, we scale them to define

x
(j)
N :=

n

nj
x(j) +Nj

for some Nj ∈ R. Finally, define xN ∈ V m by the concatenation:

xN :=
(
x
(0)
N ,x

(1)
N , . . . ,x

(k)
N

)
,

and then rebalancing so that the sum is 0.
We now check that xN is really a fixed point of p, as long as the Nj give sufficient

space between the x
(j)
N . Since p is a shuffle of the p(j), as long as the individual

coordinates of xN do not overlap during the application of the letters of p (for
example, we may take Nj > mn + Nj−1), we may discuss the action of p on each
component x(j)

N separately. On x
(j)
N , then, only the subword p(j) of p will act; the

only difference from its usual action on x(j) is that (as a piece of the larger parking
word p) it adds m rather than mj—but we have compensated for this by the scaling
factor n

nj
. �
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Example 3.7. We illustrate the proof of Lemma 3.6. Let (m,n) = (9, 12) so that
d = 3, and let p = 531030678631. Then there are 2 touch points of p: m1 = 3 and
m2 = 6, so that

p(0) = 1001, p(1) = 5333, and p(2) = 6786

and
q(0) = 1001, q(1) = 2000, and q(2) = 0120.

Fixed points for q(j) are

x(0) = (−2, 0, 2), x(1) = (−1, 0, 1), and x(2) = (−2,−1, 3),

so that

x
(0)
N = (−6, 0, 6), x

(1)
N = (−3, 0, 3) +N2, and x

(2)
N = (−6,−3, 9) +N3,

and before rebalancing

xN = (−6, 0, 6,−3 +N2, N2, 3 +N2,−6 +N3,−3 +N3, 9 +N3) .

When N2 > 21 and N3 > 21 +N2, we see that portion of p corresponding to p(j)

acts only on the 3j − 2, 3j − 1, and 3jth coordinates of x.

3.3. Non-parking words.

Lemma 3.8. Repeated application of w ∈ [m]n \ PWn
m on V m sends every point

to infinity. In particular, w has no fixed points.

Proof. We show that repeated application of w sends some point to infinity. Since
w only decreases the distance between two points, this implies that every point is
sent to infinity, so that w has no fixed points.

Suppose that w ∈ [m]n \PWn
m is not a parking function because it has too many

numbers that are at least k, and choose k maximal. Let

x = (x0, x1, . . . , xm−1) ∈ V m

be a vector with sum 0. We claim that the result of applying w to x has the effect of
increasing the difference between the average value of xk, . . . , xm−1 and the average
value of x0, . . . , xk−1 by a fixed quantity. Thus, after enough applications of w, the
value of xm will be arbitrarily large.

In the course of applying w to x there are two ways that the difference between
the average value of x0, . . . , xk−1 and the average value of xk, . . . , xm−1 changes.
One is as a result of adding m to an entry corresponding to an element of w. By
the assumption on w, these steps have the property that, on average, a more than
proportionate number of these steps are applied to the entries xk, . . . , xm−1, which
therefore increases the difference between the average values by a fixed positive
amount. The other way that the difference between the averages increases is in the
resort step. If an element in x1, . . . , xk−1 is increased far enough that it moves into
the top m − k elements, then it is resorted into one of these positions. Whenever
this happens, this also increases the difference between the average values. �

3.4. Summary. We obtain Theorem 1.1 as a corollary of Lemmas 3.2, 3.4, 3.6
and 3.8 and Corollary 3.3. Examples for m = 3 are given in Figure 3.

The remainder of this paper is devoted to explaining the coprime case in more
detail, explicitly identifying the isolated fixed points of parking words as the centers
of alcoves of dominant affine permutations whose inverses lie in the Sommers region.
It would be desirable to explicitly identify the regions of fixed points in the non-
relatively prime case. We note that in the special (m,mk) case when the fixed
regions are full dimensional, Gorsky, Mazin, and Vazirani have recently identified
the set of fixed regions of an (m,mk)-parking word with the dominant regions in
the k-Shi arrangement of S̃m [GMV17, Section 3.4] (compare with Figure 3).



FIXED POINTS OF PARKING FUNCTIONS 13

123

024

226

015134

000 010 100
110 200 210

0000 0010 0100 0110
0200 0210 1000 1010
1100 2000 2010 2100

001 020 101
110 200 210

0001 0020 0101
1001 1020 1200

011 021 101
110 201 210

002 020 102
120 200 210

0011 0021 0201 2001

0002 0102 0120 1002

012 021 102
120 201 210

0012

Figure 3. The dominant part of the S̃3 Shi arrangement. Each
region is labeled by a coordinate corresponding to the one-line
notation of the affine permutation whose alcove is lowest in the
region (see Section 6 for more details). The gray words on the
left are the (3, 3)-parking words that fix every point of the (closed)
region to which they point; the gray words on the right are the
(4, 3)-parking words that fix precisely the coordinate to which they
point.

4. Parking Filters

For the rest of the paper, we fix m and n relatively prime.
In this section, we define the combinatorial objects—generally thought of as

Dyck paths and labeled Dyck paths—that we will use to compute the zeta map
defined in Section 5. These objects are all well-known; our main contribution is the
simplicity of our definition of the zeta map on parking functions in Definition 5.7,
and its relation with affine permutations in Section 6.

4.1. Filters. Fix m and n relatively prime, and label the point (i, j) ∈ Z × Z by
its level

`(i, j) = (i, j) • (m,n).

If we draw the levels of points in the plane, rows correspond to residue classes
modulo m, while columns correspond to residue classes modulo n. Any fixed row
and column intersect in a unique point, and the Chinese remainder theorem ensures
that the levels are distinct modulomn in any contiguous n×m rectangle. A portion
of the levels of Z× Z for (m,n) = (3, 4) and (3, 5) is illustrated in Figure 4.

Definition 4.1. An (m,n)-filter i is an order filter of Z × Z such that whenever
the point (i, j) is in i, then all (i′, j′) for which `(i′, j′) = `(i, j) are also in i. We
write Fnm for the set of all (m,n)-filters.

Interchanging the copies of Z in Z×Z gives a bijection between the set of (m,n)-
filters and the set of (n,m)-filters; we call this the (m↔n)-bijection. An (m,n)-filter
i is specified in three natural ways:

• `(i) := {`(i, j) : (i, j) ∈ i}, the set of all its levels,
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• m(i) := {min(i,j)∈i `(i, j) : j ∈ Z}, i.e., the set formed by taking, for each
row, the minimal level of a point in that row which is also in i. or

• n(i) := {min(i,j)∈i `(i, j) : i ∈ Z}, i.e., the set formed by taking, for each
column, the minimal level of a point in that column which is also in i.

Note that m(i) consists of m integers, one from each congruence class mod m, while
n(i) consists of n integers, one from each congruence class mod n.

An example of Definition 4.1 is given in Figure 4. It is useful to identify the sets
m(i) and n(i) with the corresponding sorted lists.

036912

41258

85214

129630

03691215

5214710

1074125

15129630

Figure 4. Ignoring the shading, a portion of the levels of Z × Z
for (m,n) = (3, 4) and (3, 5) (the picture is extended to the rest of
the plane by periodicity). The solid gray line through the points
of level 0 separates the positive and negative levels. On the left,
the shading specifies i ∈ F4

3 as those lattice points contained in
the shaded region; similarly, the shading on the right specifies i′ ∈
F5

3 . One checks that (as sorted lists) m(i) = [−1, 1, 3], n(i) =
[−1, 1, 2, 4], m(i′) = [2, 4, 6], and n(i′) = [2, 4, 5, 6, 8].

Definition 4.2. We say that i, i′ ∈ Fnm are equivalent if i = i′ + (x, y) for some
(x, y) ∈ Z× Z, and write F̃nm for the set of equivalence classes of Fnm.

Definition 4.3. Define a directed graph Fnm on F̃nm with a directed edge from
ĩ ∈ F̃nm to ĩ′ ∈ F̃nm iff there is some i′ ∈ ĩ′ and some i ∈ ĩ such that `(i′) can be
obtained from `(i) by removing a single level from i. We write b̃nm for the equivalence
class containing the (m,n)-filters generated by a single level.

The (m↔n)-bijection gives an isomorphism between Fnm and Fmn . The graphs
F4
3 and F5

3 are illustrated in Figures 5 and 6.

4.2. Representatives. In this section, we introduce two natural representatives
of the equivalence classes of (m,n)-filters:

• Dyck (m,n)-filters, in bijection with Dyck paths and most useful to re-
late our constructions to the standard combinatorial objects (Remarks 4.5
and 4.13); and

• balanced (m,n)-filters, which will be essential for specifying affine permu-
tations (Theorem 6.6, Proposition 6.7, and Theorem 6.10)

4.2.1. Dyck filters. We define a first representative of the equivalence classes in
F̃nm. These representatives are usually defined in the literature as lattice paths
staying above or below a diagonal, and we show how our definition recovers this
interpretation in Remark 4.5.
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036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

−1

0 2

4

1

2 0

3

−2

1

Figure 5. The directed graph F4
3
∼= F3

4, with equivalence classes
represented by the balanced (3, 4)-filters of Section 4.2.2. The edge
labels record the level of minimal element removed. Compare
with Figure 18.

Definition 4.4. A Dyck (m,n)-filter is an (m,n)-filter d such that

min
(i,j)∈d

`(i, j) = 0.

We write DFnm for the set of all Dyck (m,n)-filters.

In particular, for d ∈ DFnm, min(n(d)) = min(m(d)) = 0. Note that the (m↔n)-
bijection restricts to a bijection between DFnm and DFmn .

Remark 4.5. We relate Definition 4.4 to the set of (m,n)-Dyck paths—those lattice
paths from (0, 0) to (−n,m) using north steps (0, 1) and west steps (−1, 0) and
staying above the line (x, y) • (m,n) = 0. The boundary of an (m,n)-filter of Z×Z
traces out a periodic path in the plane. This periodicity allows us to restrict to
the contiguous n×m rectangle with corners at level 0 without losing information,
giving DFnm the standard geometric interpretation as (m,n)-Dyck paths. This is
illustrated in Figure 7.

All (m,n)-filters whose boundaries trace out the same path—up to translation—
are equivalent to the same Dyck (m,n)-filter.
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03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

start cycle here

−1

0 2

5

−2 4

3

1

2 0

3

−3

−1

1

1

Figure 6. The directed graph F5
3
∼= F3

5, with equivalence classes
represented by the balanced (3, 5)-filters of Section 4.2.2. The edge
labels record the level of the minimal element removed. The cycle
consisting of the red edges corresponds to the parking (m,n)-filter
tuple considered in Example 4.12. Compare with Figure 19.
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036912

41258

85214

129630

03691215

5214710

1074125

15129630

Figure 7. The Dyck (3, 4)- and (3, 5)-filters corresponding to the
filters in Figure 4 (they also happen to be balanced). The boundary
between two consecutive points with level 0 traces an (m,n)-Dyck
path (marked in red). Recording the column lengths of the left
path gives the (3, 4)-Dyck word [0, 0, 1, 1], while the right path
corresponds to the (3, 5)-Dyck word [0, 0, 0, 1, 2]

Proposition 4.6. Each equivalence class in F̃nm contains a unique element of
DFnm.
Proof. To a (m,n)-filter i we associate the unique equivalent Dyck (m,n)-filter d
obtained by translating i so that it touches the line (x, y)• (m,n) = 0, but does not
go below. �

Lemma 4.7. There is a directed path in Fnm from the equivalence class b̃nm to any
other equivalence class.

Proof. Starting from b̃nm, the directed graph Fnm contains a copy of the distributive
lattice (whose Hasse diagram is thought of as a directed graph) consisting of the
(m,n)-Dyck paths ordered by inclusion. (Note that this is via the identification
with Dyck paths which lie below the diagonal, not above it.) �

The following enumeration is a well-known application of the cycle lemma.

Proposition 4.8. ∣∣∣F̃nm∣∣∣ =
∣∣∣F̃mn ∣∣∣ =

1

n+m

(
n+m

n

)
.

4.2.2. Balanced Filters. We define a second representative of the equivalence classes
in F̃nm. These objects appear to have been much less studied, and will allow us to
relate F̃nm and affine permutations.

Definition 4.9. We call an (m,n)-filter b ∈ Fnm satisfying∑
i∈m(b)

i =

(
m+ 1

2

)
and

∑
j∈n(b)

j =

(
n+ 1

2

)
a balanced (m,n)-filter. We write BFnm for the set of balanced (m,n)-filters

It is a simple check that this set is nonempty—it contains the (m,n)-filter bnm
generated by the points with level ` = 1+m+n−mn

2 .

Proposition 4.10. Each equivalence class in F̃nm contains a unique element of
BFnm. Furthermore, for b ∈ Fnm,∑

i∈m(b)

i =

(
m+ 1

2

)
if and only if

∑
j∈n(b)

j =

(
n+ 1

2

)
.
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Proof. Suppose we have an (m,n)-filter i satisfying both conditions. Removing a
minimal element from i to make a new (m,n)-filter i′ has the effect of adding m to
the sum of elements of m(i) and the effect of adding n to the sum of the elements
of n(i). The (m,n)-filter defined by `(i′′) = `(i′) − 1 therefore also satisfies both
conditions. The conclusions now follow from Lemma 4.7. �

The five balanced (3, 4)-filters are illustrated in Figure 5.

4.3. Filter Tuples. We define (m,n)-filter tuples as certain sequences of (m,n)-
filters, and we explain in Remark 4.13 how (m,n)-filter tuples are in bijection with
the usual definition of parking functions as labeled Dyck paths.

Definition 4.11. An (m,n)-filter tuple p is a tuple of n+1 (m,n)-filters

p =
(
p(0), p(1), . . . , p(n)

)
such that:

• m(p(i+1)) =
(
m(p(i)) \ {pi}

)
∪ {pi +m} for 0 ≤ i < n, and

• m(p(0)) + n = m(p(n)).

We write T nm for the set of all (m,n)-filter tuples and we say that two (m,n)-filters
tuples p1 and p2 are equivalent if p(i)1 = p

(i)
2 + (x, y) for all 0 ≤ i ≤ n and some fixed

(x, y) ∈ Z× Z.

Definition 4.11 is illustrated in Figure 8; the caption is explained in the next few
paragraphs.

03691215

5214710

1074125

15129630

2017141185

03691215

5214710

1074125

15129630

2017141185

03691215

5214710

1074125

15129630

2017141185

03691215

5214710

1074125

15129630

2017141185

03691215

5214710

1074125

15129630

2017141185

03691215

5214710

1074125

15129630

2017141185

Figure 8. A balanced (3, 5)-filter tuple p with n(p) = [3,−1, 2, 5, 6].

An (m,n)-filter tuple may be equivalently thought of as a cycle of length n in
the directed graph Fnm of Definition 4.3 with a choice of initial representative in the
first equivalence class, as in Example 4.12.

Example 4.12. Figure 6 illustrates a cycle in F5
3: start at the vertex labeled by

the balanced (3, 5)-filter b with m(b) = [−1, 3, 4] and then follow the red edges.
This cycle corresponds to the (3, 5)-filter tuple in Figure 8.
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An (m,n)-filter tuple p is specified by the sequence of the n levels removed:

(12) n(p) = [p0, p1, . . . , pn−1].

The first condition of Definition 4.11 ensures that n(p) is a permutation of n(p(0)),
such that levels in the same residue class modulo m appear in increasing order.

We call p ∈ T nm parking if p(0) ∈ DFnm and write PT nm for the set of all parking
(m,n)-filter tuples. We call p ∈ T nm balanced if p(0) ∈ BFnm and write BT nm for
the set of all balanced (m,n)-filter tuples. Propositions 4.8 and 4.10 show that any
(m,n)-filter tuple is equivalent to a unique parking (m,n)-filter tuple and a unique
balanced (m,n)-filter tuple.

Remark 4.13. We relate Definition 4.11 to the definition of (m,n)-parking paths—
(m,n)-Dyck paths whose n horizontal edges are labeled 1, 2, . . . , n, such that levels
in the same row increase from left to right. Fix p ∈ PT nm, so that p(0) may be
thought of as an (m,n)-Dyck path by Remark 4.5. Number each horizontal step in
this path by the order in which its left endpoint is removed in p. Since p(i) is an
(m,n)-filter, points in the same row must be removed in order—this recovers the
condition on levels for parking paths, as illustrated in Figure 9 (which corresponds
to the parking (m,n)-filter tuple of Figure 8). Thus, we may represent a parking
(m,n)-filter as an (m,n)-parking path.

2 3 4

1 5

03691215

5214710

1074125

15129630
4

1 5

2 3 4

03691215

5214710

1074125

15129630

Figure 9. On the left is the parking (3, 5)-filter tuple correspond-
ing to the balanced (3, 5)-filter tuple in Figure 8, encoded in the
traditional manner as a Dyck path with labeled horizontal steps
(the path is marked in red). The labels record the order in which
the points to their left were removed. On the right is the corre-
sponding balanced (3, 5)-filter tuple.

The following enumerative result follows from the cycle lemma, and is given
geometric meaning in Section 6.2.2.

Proposition 4.14 ([ALW16, Corollary 4],[AB15]).

|PT nm| = mn−1 and |PT mn | = nm−1.

5. The Zeta Map

After reviewing the state of the art for zeta maps in Section 5.1, we use the com-
binatorial objects of Section 4 to define two (different) bijections between parking
(m,n)-filter tuples and (m,n)-parking words (Definitions 5.1 and 5.3)—the first
map is trivially a bijection, but we only conclude that the second map is a bijec-
tion as a corollary of Theorem 1.1 in Theorem 5.5. The composition of these two
bijections defines the zeta map for rational parking words (Definition 5.7).
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In Section 5.3, we show that our zeta map on rational words recovers Armstrong,
Loehr, and Warrington’s sweep map on rational Dyck paths using a canonical in-
jection of Dyck paths inside parking paths.

5.1. Context and History. The classical zeta map ζ is a bijection from (n+1, n)-
Dyck paths to themselves developed by Garsia, Haglund, and Haiman to explain
the equidistribution on Dyck paths of (area, bounce) and (dinv, area). The statistic
bounce is due to Haglund, while dinv is due to Haiman; we shall not review their
definitions here. This equidistribution expresses the agreement of the two formulas
on the righthand side of the following combinatorial expansion of the Hilbert series
of the alternating subspace of the space of diagonal coinvariants [GH02, Hai02,
CM18]:

Hilb
((

C[xn,yn]/〈C[xn,yn]Sn
+ 〉

)ε
; q, t

)
=

∑
d∈DWn

n+1

qarea(d)tbounce(d)

=
∑

d∈DWn
n+1

qdinv(d)tarea(d),

With the proper conventions4, the map ζ explains the equidistribution in the sense
that area(d) = dinv(ζ(d)) and bounce(d) = area(ζ(d)).

From the point of view of lattice path combinatorics, the Dyck paths encoding
the Hilbert series of the alternating subspace of the space of diagonal coinvariants
are much simpler than the parking paths encoding the full Hilbert series of the space
of diagonal coinvariants. Presumably due to this difference in complexity, the defini-
tion and study of the zeta map was restricted to Dyck paths at first [Hag03, GH02],
and its extension by Haglund and Loehr [HL05]5 and by Loehr and Remmel [LR04]
to parking paths only came later:

Hilb
(
C[xn,yn]/〈C[xn,yn]Sn

+ 〉; q, t
)

=
∑

p∈PWn
n+1

qarea(p)tpmaj(p)

=
∑

p∈PWn
n+1

qdinv(p)tarea(p),

where pmaj is a generalization of bounce, area(p) = dinv(ζ(p)), and pmaj(p) =
area(ζ(p)). When restricted to Dyck paths, this result generalizes the zeta map on
Dyck paths [Hag08, Exercise 5.7]; see also our Proposition 5.9.

As Dyck paths and parking paths were generalized to the Fuss (kn+ 1, n), Do-
golon (kn− 1, n), and rational (m,n) cases, extensions of the zeta map were again
first defined on Dyck paths, and only later for parking paths. The definition of zeta
on rational parking words turns out to be surprisingly simple, as we show in Def-
initions 5.1, 5.3 and 5.7. This definition appears in [GMV16]—but in a different
language that we postpone to Section 6.3.

The table in Figure 10 contains a historical summary of the definitions of zeta,
where for brevity we have suppressed some details as to the exact generality of the
maps involved—in the column with heading “Type,” we use “Dyck” or “Parking”
to refer to the unlabeled or labeled case of lattice paths, respectively. (We rec-
ommend [ALW15] for a thorough survey of the literature on zeta maps defined on
lattice paths, at least when the dimensions of the bounding rectangle are coprime.)

4For consistency with its generalization to parking paths, we are using the inverse of the zeta
map from [Hag08, Theorem 3.15].

5Although this bijection is between two slightly different manifestations of parking paths.
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Authors Reference Type Generality Proof of Bijectivity
Garsia
Haiman
Haglund

[GH02] Dyck (n+1, n) [GH02]

Loehr [Loe05] Dyck (kn+1, n) [Loe05]
Haglund
Loehr [HL05] Parking (n+1, n) [HL05]

Gorsky
Mazin

[GM13]
[GM14] Dyck coprime (m,n)

[GM13] for (kn±1, n)
[TW18]

This paper
Amstrong
Loehr
Warrington

[ALW15] Dyck N -dim. box [TW18]

Gorsky
Mazin
Vazirani

[GMV16] Parking coprime (m,n)
[GM13] for (kn±1, n)

This paper

Gorsky
Mazin
Vazirani

[GMV17] Dyck (m,n) [GMV17]

Figure 10. A brief overview of various definitions and work on
zeta maps.

5.2. The Zeta Map. We define the zeta map using two bijections A,B from
parking (m,n)-filter tuples to (m,n)-parking words. The zeta map is then defined
to be the map ζ := B ◦A−1.

Following Gorsky, Mazin, and Vazirani, the q and t statistics may be read off
these (m,n)-parking words [Arm13, GMV16]:

area(p) :=
(n− 1)(m− 1)

2
−
n−1∑
i=0

A(p)i,

dinv(p) :=
(n− 1)(m− 1)

2
−
n−1∑
i=0

B(p)i.

5.2.1. Area (A). Our first map is a simple application of the interpretation in Re-
mark 4.13 of an (m,n)-filter tuple as an (m,n)-parking path.

Definition 5.1. Define A : PT nm → PW
n
m to be the (m,n)-parking word recording

the column lengths (in the order of the edge labels) of the (m,n)-parking path
associated to p by Remark 4.13.

It is easy to see that A may be equivalently defined by

n(p) = [p1, p2, . . . , pn]
A7−→ [ap1, ap2, . . . , apn] modm,

where an = −1 modm.

Example 5.2. The parking (3, 5)-filter tuple p ∈ PT 5
3 encoded by the (3, 5)-

parking path in Figure 9 is mapped to the (3, 5)-parking word

A(p) = 10001

(there is one gray box in the columns containing the horizontal edges with labels 1
and 5, and no gray boxes in the other columns). We may also compute it using the
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word n(p) from Figure 9:

n(p) = [4, 0, 3, 6, 7] 7→ [1 · 4, 1 · 0, 1 · 3, 1 · 6, 1 · 7] mod 3 = [1, 0, 0, 0, 1],

since 1 · 5 = −1 mod 3. We compute

area(p) =
2 · 4

2
− (1 + 0 + 0 + 0 + 1) = 2.

On the other hand, we compute the (5, 3)-parking word for the element p ∈ PT 3
5

with n(p) = [0, 7, 5]:

n(p) = [0, 7, 5] 7→ [3 · 0, 3 · 7, 3 · 5] mod 5 = [0, 1, 0],

since 3 · 3 = −1 mod 5.

It is immediate from Remark 4.13 that Definition 5.1 is a bijection from PT nm
to PWn

m.

5.2.2. Dinv (B).

Definition 5.3. Define B : PT nm → [m]n by recording the relative order in the
word m(p(i−1)) of the number pi removed for 1 ≤ i ≤ n. That is, we define a word
w = w1 · · ·wn ∈ [m]n by wi = j if pi is the jth smallest number in m(p(i−1)).

Example 5.4. As in Example 4.12, we compute m(p(i)) for each (3, 5)-filter in Fig-
ure 8 to be

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9],

where we haven’t rebalanced. Recording the relative order of the elements removed
(marked in bold above) gives the (3, 5)-parking word

B(p) = 10011.

We compute

dinv(p) =
2 · 4

2
− (1 + 0 + 0 + 1 + 1) = 1.

It is not immediately obvious that Definition 5.3 really does produce (m,n)-
parking words.

Theorem 5.5. The map B is a bijection from PT nm to PWn
m.

Proof. Let p ∈ PT nm. For 0 ≤ i ≤ n, we define a point x(i) ∈ V m by x(i) =
m(p(i)), and adding a multiple of 1 so that the sum of the elements in x(i) is zero
(since every element in m(p(i)) changes by the same amount, their relative order is
preserved). So the action of B(p) on x(0) ∈ V m (as defined in Section 3) is recorded
by the sequences x(i). Finally, x(0) = x(n) because p is a parking (m,n)-tuple. In
particular, we have shown that the word B(p) has a fixed point. Now Theorem 1.1
tells us that B(p) is a parking word.

Further, Theorem 1.1 tells us that the fixed point of B(p) is unique. Therefore,
from B(p), we can identify its unique fixed point x(0), from which we can reconstruct
x(i) for all i, and thus p(i) for all i. That is to say, from B(p), we can reconstruct p.
This implies that the map B is an injection from PT nm to PWn

m. We have already
established that the map A is a bijection between these two sets, so the fact that
B is an injection means that it must also be surjective. �

Given an (m,n)-filter tuple p, the fixed point for B(p) in V m is the word
m(p(0))—up to addition of a multiple of 1.
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Example 5.6. Continuing Example 5.4 (and recalling Example 4.12), balancing
each (3, 5)-filter p(i) gives

[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4].

Balancing doesn’t change the relative order of the elements, and thinking of p(0) as
an element of V 3

6 , we observe that p(0) is a fixed point for the action of B(p) = 10011.

5.2.3. The Zeta Map (A 7→ B). The zeta map ζ sends the first method of associat-
ing an (m,n)-parking word to a parking (m,n)-filter tuple in Definition 5.1 to the
second in Definition 5.3. By Theorem 5.5, we conclude that ζ is a bijection.

Definition 5.7. The zeta map is the bijection from PWn
m to itself defined by

ζ : PWn
m → PW

n
m

p 7→ B ◦A−1(p)

Examples are illustrated in Figures 11 and 12.

n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p)

123 012 000 134 001 011 015 011 002
132 021 010 143 010 021 105 101 102
213 102 100 413 100 201 150 110 120
231 120 110 024 020 001 226 000 012
312 201 200 042 002 020
321 210 210 204 200 101

∑
d∈DF3

4

qarea(d)tdinv(d) =

0 0 0 1

0 1 1 0

0 1 0 0

1 0 0 0

,
∑

p∈PT 3
4

qarea(p)tdinv(p) =

1 2 2 1

2 3 1 0

2 1 0 0

1 0 0 0

Figure 11. The zeta map on PW3
4. The rows shaded in gray

correspond to the canonical embedding of DF3
4 in PT 3

4 from Re-
mark 5.8.

5.3. The Sweep Map. In this section, we relate the zeta map on (m,n)-parking
words to the sweep map on (m,n)-Dyck paths.

Having fixed m and n coprime, define the level of a step of a lattice path in
Z × Z to be the level of its north/west endpoint. In [ALW15], Armstrong, Loehr,
and Warrington defined the sweep map on (m,n)-Dyck paths by sorting the steps
of a given path by their levels.6 See Figure 13 for an example. One can visualize
this procedure geometrically as a sweep of the line Ha,k := {x : x • (m,n) = k} up
from k = 0 to k =∞, as illustrated in Figure 14 for (m,n) = (4, 7).

It is not hard to argue that the sweep map sends an (m,n)-Dyck path to another
(m,n)-Dyck path [TW18, Theorem 6.7], but invertibility is considerably more diffi-
cult. The sweep map and its various generalizations were first shown to be bijective
by Thomas and Williams in [TW18].

6This is a special case of the general definition of the sweep map, which is on general lattice
paths in an N -dimensional box.
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n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p)

123 031 000 024 012 001 235 001 012 015 030 002
132 013 010 042 021 020 253 010 031 051 003 030
312 103 200 204 102 101 523 100 301 105 300 102
321 130 210 240 120 120 134 020 011 116 011 003
213 301 100 402 201 300 143 002 021 116 101 103
231 310 110 420 210 310 314 200 201 161 110 130

327 000 013

∑
p∈DW3

5

qarea(p)tdinv(p) =

0 0 0 0 1

0 0 1 1 0

0 1 1 0 0

0 1 0 0 0

1 0 0 0 0

,
∑

p∈PW3
5

qarea(p)tdinv(p) =

0 1 2 2 1

1 4 3 1 0

2 3 1 0 0

2 1 0 0 0

1 0 0 0 0

Figure 12. The zeta map on PW3
5. The rows shaded in gray

correspond to the canonical embedding of DF3
5 in PT 3

5 from Re-
mark 5.8.

0 4 8 12
16

9
13

6 10
14

7

0481216202428

73159131721

141062261014

21171395137

2824201612840

sweep7−−−→

0 4 6
7

8 9 10 12
13

14

16

0481216202428

73159131721

141062261014

21171395137

2824201612840

Figure 13. The (4, 7)-filters corresponding to a path d (left) and
the corresponding path sweep(d) (right). The horizontal steps of d
are labeled by the level to their west, while the vertical steps are
labeled by the level to their north; we have preserved these labels
on the steps of sweep(d). To form the path sweep(d), the steps
of the path d are rearranged according to the order in which they
are encountered by a line of slope −4/7 sweeping up from below.
Compare with Figure 14

.

Remark 5.8. There is a canonical injection

DFnm ↪−→ PT nm
d 7→ pd,

where pd is the unique element of PT nm such that n(d) = n(pd) (recall that we
think of n(d) as a sorted list). We call pd a Dyck (m,n)-filter tuple. By replacing
d by pd, we may consider DFnm as a subset of PT nm.

We can rephrase this injection using the interpretation of d as an (m,n)-Dyck
path and elements of PT nm as (m,n)-parking paths. Thinking of d as an (m,n)-
Dyck path from (0, 0) to (−n,m) (as in Figure 7), we label each horizontal edge
by the relative order of the level of its left endpoint. This associates a canonical
(m,n)-parking path to d, which corresponds to a parking (m,n)-filter tuple pd
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0 6 7 9
→

4 6 7 9
→

6 7 8 9
→

7 8 9 10
→

7 8 9 10
→

7 9 10 12
→

7 10 12 13
→

7 12 13 14
→

7 13 14 16
→

7 13 14 16
→

7 13 14 16
→

7 13 14 16
.

Figure 14. An illustration of the geometric interpretation of
sweep for (m,n) = (4, 7) and the paths of Figure 13. Each box in
the figure corresponds to a step of the sweeping procedure. Each
box contains the path d with the steps already swept marked in
red (top left) and the steps of the new path sweep(d) already built
(top right). The 4-tuples record the levels visible from the west in
d if the red (swept) steps are rendered invisible—the level to be
swept next is colored red. Sweeping either increases the level by 4
if it corresponds to the level to the west of a swept horizontal step,
or freezes the level (indicated by bold styling) if it corresponds to
the level to the north of a swept vertical step. See Remark 5.11.

by Remark 4.13. Note that the lattice path used to compute sweep(d) is the same
as the (unlabeled) lattice path associated to pd in Remark 4.13, whose column
heights are counted by A(pd).

The injection of Remark 5.8 allows us to relate the zeta and sweep maps as
follows.

Proposition 5.9. For d an (m,n)-Dyck path, B(pd) is an increasing word that
records the column heights of sweep(d).

Proof. We check that B(pd) encodes sweep(d): by construction of pd, the number
pi being removed when passing from p

(i−1)
d to p

(i)
d is the minimal level among those

levels in m(p
(i−1)
d ) which are the levels of horizontal edges. Meanwhile, the levels

in m(p
(i)
d ) with value less than that minimal horizontal edge level keep track of the

vertical steps in the construction of sweep(d). The number of such vertical edge
levels which are present as we pass from p

(i−1)
d to p

(i)
d tells us, on the one hand, the

height of the i-th column in sweep(d) and on the other hand the relative order in
m(p

(i−1)
d ) of pi (which is what B records). This is illustrated in Figure 14. �

By Theorem 5.5, since B : PT nm → PW
n
m is a bijection, we obtain a new proof

that the sweep map on (m,n)-Dyck paths is invertible.
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Theorem 5.10. For m,n coprime, the sweep map on (m,n)-Dyck paths is invert-
ible.

Remark 5.11. In [ALW15, Section 5.2], Armstrong, Loehr, and Warrington re-
mark that the sweep map can be inverted if the individual levels of the steps on
the path specified by sweep(d) can be determined. The last two authors gave an
algorithm to determine these levels in [TW18].

This strategy of determining levels can be related to the fixed point of a parking
word as follows. Proposition 5.9 shows that the fixed point of the (increasing)
parking word B(pd) encodes the levels of the vertical steps of sweep(d). For example,
the left path d in Figure 14 corresponds to the (m,n)-filter tuple pd specified on
the left of Figure 13. Then m(p

(n)
d ) = [7, 13, 14, 16] records the levels that should

be assigned (from top left to bottom right) to the vertical steps of sweep(d), as
illustrated on the right of Figure 13. The remaining levels—corresponding to the
horizontal steps (again from top left to bottom right)—are determined from by the
word n(p

(0)
d ) = [0, 4, 6, 8, 9, 10, 12].

6. The Affine Symmetric Group

In Section 3, we interpreted (m,n)-parking words as transformations of Rm. In
this section, we recall their standard interpretation as alcoves in Rn.

The coincidence between the number of regions in the type S̃n Shi arrangement
(Section 6.2) and the number of (n+1, n)-parking words has led to many purely
combinatorial investigations [Sta96, Sta98, AL99, AR12, LRW14]. Although many
different authors have found many different bijections between Shi regions and
parking words, this direction of research culminates in work of Gorsky, Mazin, and
Vazirani [GMV16], who expand upon and generalize Armstrong’s work in [Arm13]
from the Fuss to the rational level of generality. In this section, we prove several of
their conjectures.

We first review the basic combinatorics of S̃n in Section 6.1. We state the
simple relationship between parking (m,n)-filter tuples and the affine symmetric
group in Theorems 6.6 and 6.10 and Proposition 6.7. This relationship allows us
to define two maps from a generalization of Shi regions (alcoves in the Sommers
region) to parking words, which are a restatement of Definitions 5.1 and 5.3.

6.1. The Affine Symmetric Group. The affine symmetric group S̃n is the group
of bijections w : Z→ Z such that

w(i+ n) = w(i) + n and
n∑
i=1

w(i) =

(
n+ 1

2

)
.

We often represent elements of S̃n in (short) one-line notation

w = [w(1), w(2), . . . , w(n)] .

A dominant permutation is an affine permutation w whose one-line notation in-
creases, so that w(1) < w(2) < · · · < w(n). An inversion of w is a pair (i, j) with
1 ≤ i ≤ n and i < j such that w(i) > w(j). We refer the reader to [Lus83, GMV16]
for more details.

The one-line notation of affine permutations bijectively corresponds to the al-
coves in the affine S̃n hyperplane arrangement, introduced in Section 2.2.7

7But note that we are now working with S̃n not S̃m.
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Theorem 6.1 ([GMV16, Lemma 2.9]). Each alcove of Rn \ H contains a unique
point (x1, . . . , xn) that is the one-line notation of an element of S̃n. Conversely,
each element of S̃n occurs as such a point.

The alcove labeled by the identity permutation (1, 2, . . . , n) is called the funda-
mental alcove A0. An inversion (i, j) of w ∈ S̃n corresponds to the hyperplane
Hki,j′ that separates the alcove containing the one-line notation for w from A0,

where j′ =

{
jmodn if j 6= 0 modn

n otherwise
and k = 1

n (j − j′). The bijection of Theo-

rem 6.1 between S̃n and the alcoves of Rn \H is illustrated for n = 3 in Figure 15.
On the other hand, Figure 16 depicts the the labeling of an alcove by the inverse
of the corresponding permutation.
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Figure 15. The labeling of alcoves in Rn \ H by S̃3. The three
solid black lines are the hyperplanes H0

1,2,H0
1,3, and H0

2,3.

6.2. The Sommers Region.

Definition 6.2. For m coprime to n, the Sommers region Snm ⊂ Rn−1 is the region
bounded by the n affine hyperplanes in S̃n of height m.

Note that when m is not coprime to n, the hyperplanes of height m do not
bound a finite region. By abuse of notation, we shall write w ∈ Snm if w is an affine
permutation labeling an alcove inside Snm. We can detect such affine permutations
with the following simple proposition.

Proposition 6.3 ([GMV16, Definition 2.14]). An affine permutation w−1 ∈ S̃n

labels an alcove in the region Snm iff w(i)− w(j) 6= m for all i < j.

6.2.1. History of the Sommers Region. The Sommers region originated in Shi’s
study of Kazhdan-Lusztig cells of affine Weyl groups [Shi86], as we now outline.
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Figure 16. The labeling of alcoves in Rn \ H by inverse permutations.

The collection of affine hyperplanes⋃
1≤i<j≤n

(
H0
i,j ∪H1

j,i

)
is called the Shi arrangement, and these hyperplanes cut out connected regions
called Shi regions. Each Kazhdan-Lusztig cell is a union of Shi regions. Following a
suggestion of Carter, Shi gave an elegant geometric proof that there are (n+ 1)n−1

Shi regions by showing that the inverses of the permutations labeling the minimal
alcoves in the Shi regions coalesce into what has become known as the Sommers
region Snn+1 [Shi87, Som05].8

There is a Fuss analogue of the Shi arrangement, defined as the hyperplanes⋃
1≤i<j≤n
−k≤s≤k−1

Hsi,j .

This arrangement has (kn + 1)n−1 connected regions—again, the inverses of the
minimal alcoves coalesce into the Sommers region Snkn+1.

The fundamental alcove A0 in S̃n is the simplex bounded by the affine simple
hyperplanes. It turns out that Snm is congruent to the m-fold dilation of the funda-
mental alcovemA0—this may be realized by multiplication by the element [GMV16,
Lemma 2.16],[TW17, Theorem 4.2]

(13) wnm := [`, `+m, . . . , `+ (n− 1)m] ∈ S̃n, where ` =
1 +m+ n−mn

2
.

Variations on subarrangements of affine Weyl hyperplane arrangements has led
to interesting and surprisingly difficult combinatorics [Sta96, Sta98, Ath98, PS00,
AR12, LRW14, TW14], but outside of m = kn+1 there are no hyperplane arrange-
ments whose regions have minimal alcoves given by the inverses of the elements in

8Eric Sommers was surprised to learn that the region has recently been named after him.
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Snm [GMV16, Example 9.2]. Suggestive results exist for m = kn − 1 using Za-
slavsky’s theorem enumerating bounded regions of a hyperplane arrangement (or
Ehrhart duality) [FV10, FTV13], and some work has been done when m and n are
not coprime [GMV17].

The regions S34 and S35 are illustrated in Figure 17.
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Figure 17. The Sommers regions S34 and S35 , with alcoves labeled
by inverse permutations.

6.2.2. Filters and the Sommers Region. To connect (m,n)-filters and affine permu-
tations, we define the analogue of the directed graph Fnm in Definition 4.3.

Fix w−1 ∈ Snm ⊂ S̃n. An m-minimal element of w is an element from the set
{w(i) : i ∈ N} that is minimal in its residue class modulo m. We say that an m-
minimal element of w is removable if it is in the short one-line notation of w—that
is, if it is w(i) for some 1 ≤ i ≤ n.

Definition 6.4. Define a directed graph Pn
m with vertex set{

w dominant : w−1 ∈ Snm
}

and a directed edge between w and w′ iff the short one-line notation of w′ can
be obtained from the short one-line notation of w by adding n to a removable
m-minimal element of w, subtracting one from every element, and then resorting.

Lemma 6.5. Acting as described in Definition 6.4 on a removable m-minimal
element of a dominant w with w−1 ∈ Snm produces another dominant element whose
inverse is in Snm.

Proof. Suppose that w(i) is a removablem-minimal element, and let w′ be produced
as above starting from that element. Clearly w′ is dominant. We now apply the
condition of Proposition 6.3 to w′. The only way a problem could arise would be if
there were some j > n with w(j) = w(i) + n −m. But if j − n < i, the fact that
w(j−n) is congruent modulo m to w(i) would violate the m-minimality of i, while
j − n > i would violate the condition of Proposition 6.3 for w. �

We now relate (m,n)-filters and the Sommers region, using the balanced repre-
sentatives of (m,n)-filters. We first use (m,n)-filters to understand dominant affine
permutations whose inverses lie in the Sommers region.

Theorem 6.6. A dominant affine permutation w satisfies w−1 ∈ Snm if and only if

[w(1), w(2), . . . , w(n)] = n(bw)

for some balanced (m,n)-filter bw ∈ BFnm.
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[1, 2, 3, 4]

[0, 1, 3, 6]

[−2, 1, 4, 7]

[−1, 2, 4, 5]

[0, 2, 3, 5]

0

0 1

2

1

1 0

2

0

0

[1, 2, 3]

[0, 1, 5]

[−2, 2, 6]

[−1, 3, 4]

[0, 2, 4]

0

0 1

2

1

1 0

2

0

0

Figure 18. The five dominant permutations whose inverses lie
in S43 and S34 , arranged in the directed graphs P4

3
∼= P3

4. The
edge labels record the position of the removablem-minimal element
chosen. Each parking word in PW3

4 occurs as a unique directed
cycle of length 3 in P4

3, while each parking word in PW4
3 occurs

as a unique directed cycle of length 4 in P3
4. Compare with Fig-

ure 5.

Proof. Note that the one-line notation of the element wnm defined in Equation (13)
is n(bnm), where bnm is the balanced (m,n)-filter generated by the points with level
` (see Definition 4.9). If we have w = n(b) for some balanced (m,n)-filter, then
the corresponding notion of minimal elements coincide, and acting on a minimal
element of w mirrors removing the corresponding minimal element of b. The result
now follows from Definitions 4.3 and 6.4. �

Of course, Theorem 6.6 applies equally well with the roles of m and n switched,
and so we obtain an (m↔n)-bijection and a version of Proposition 4.8 for dominant
affine permutations whose inverses lie in the Sommers region.

Proposition 6.7. There is a bijection{
w dominant : w−1 ∈ Snm

}
↔
{
w dominant : w−1 ∈ Smn

}
.

Furthermore, both sets have cardinality
1

n+m

(
n+m

n

)
.

Proof. The enumeration follows from Theorem 6.6, and the bijection is induced by
the map n(b)↔ m(b). �

Remark 6.8. For example, looking at the balanced (m,n)-filter on the righthand
side of Figure 9, and disregarding the labels on the horizontal steps, the sorted list
of the left-most level in each row gives m(b) = [−1, 3, 4], while the sorted list of the
bottom level in each column gives n(b) = [−1, 2, 3, 5, 6].

Proposition 6.7 is well-known in the language of simultaneous (n,m)-cores using
the bijection between n-cores and m-cores and the coroot lattices of S̃n and S̃m.
This bijection of Proposition 6.7 takes an element in S̃n associated to a particular
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[1, 2, 3, 4, 5]

[0, 1, 3, 4, 7]

[−1, 1, 2, 5, 8]

[−3, 0, 3, 6, 9]

[−1, 2, 3, 5, 6]

[−2, 1, 4, 5, 7]

[0, 2, 3, 4, 6]

0

0 1

3

0 3

2

1

1 0

2

0

0

1

0

[1, 2, 3]

[0, 1, 5]

[−1, 1, 6]

[−3, 2, 7]

[−1, 3, 4]

[−2, 3, 5]

[0, 2, 4]

0

0 1

2

0 2

1

1

1 0

2

0

0

1

0

Figure 19. The seven dominant permutations whose inverses lie
in S53 and S35 , arranged in the directed graphs P5

3
∼= P3

5. The edge
labels record the position of the minimal element chosen. Each
parking word in PW3

5 occurs as a unique directed cycle of length 3
in P5

3, while each parking word in PW5
3 occurs as a unique directed

cycle of length 5 in P3
5. Compare with Figure 6.

simultaneous (m,n)-core and produces the corresponding element in S̃m associ-
ated to the same (m,n)-core. We refer the reader to [LM05], [AHJ14, Section 4]
and [CDH16] for more details.

Remark 6.9. We can compute the bijection of Proposition 6.7 directly on the
one-line notation of an affine permutation w by recording the m-minimal elements
of w. The sequence w(1), w(2), . . . is obtained by recording the lowest entry of each
column of bw, in order, then the second-lowest entry of each column, and continuing
in this way. The first time an entry in a given congruence class is recorded is when
we come to the leftmost entry of the corresponding row (i.e., an element of m(bw)).
Thus, the 3-minimal elements of w = [−1, 2, 3, 5, 6] are [−1, 3, 4]:

i 1 2 3 4 5 6 . . .

w(i) −1 2 3 5 6 4 . . .

w(i) mod 3 2 2 0 2 0 1 . . .

.

Similarly, the 5-minimal elements of w = [−1, 3, 4] are [−1, 2, 3, 5, 6]:

i 1 2 3 4 5 6 7 . . .

w(i) −1 3 4 2 6 7 5 . . .

w(i) mod 5 4 3 4 2 1 2 0 . . .

.

In fact, Theorem 6.6 can be extended to the whole Sommers region if we pass
from balanced (m,n)-filters to balanced (m,n)-filter tuples.
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Theorem 6.10. An affine permutation w satisfies w−1 ∈ Snm if and only if

[w(1), w(2), . . . , w(n)] = n(pw)

for some balanced (m,n)-filter tuple pw ∈ BT nm.

Proof. Choose p ∈ BT nm. Now n(p) is the short one-line notation of an affine
permutation w since n(p) is a permutation of n(p(0)) and p(0) is balanced. We
can think of the sequence w(1), w(2), . . . as being obtained by recording the levels
removed from n(p(0)) by repeatedly removing boxes in the order specified by p. (In
this way, w(1) through w(n) are the levels removed on the first pass, w(n+ 1),. . . ,
w(2n) are the levels removed on the second pass, and so on.) Since levels that
differ by m lie in the same row, the smaller is necessarily removed before the larger,
guaranteeing that the condition of Proposition 6.3 is satisfied, so w ∈ Snm.

Now Snm is an m-fold dilation of the fundamental alcove in Rn−1, and so con-
tains mn affine permutations. Since p 7→ n(p) is a bijection and |BT nm| = mn

by Proposition 4.14, we conclude the result. �

Remark 6.11. Since Pn
m
∼= Fnm, by Definition 4.11 we can interpret affine elements

w with w−1 ∈ Snm as cycles with n vertices in the directed graph Pm
n . The short

one-line notation of w is given by reading the minimal element chosen for the edge
(undoing the rebalancing that occurs at each step). For example, reproducing Ex-
ample 4.12, the cycle in P3

5 with removable 3-minimal elements in bold

[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4] (rebalanced)
+ 0 + 1 + 2 + 3 + 4 + 5

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9] (not rebalanced)

produces the one-line notation of the affine Weyl group element

w = [3,−1, 2, 5, 6] ∈ S̃5.

6.3. Parking Words from the Sommers Region. Using Theorem 6.10, we can
easily restate the maps A and B from Sections 5.2.1 and 5.2.2—originally defined
on parking (m,n)-tuple filters—in the language of affine permutations. These maps
originally appeared in this form in [GMV16].

Remark 6.12. There are many statistics one can define on Dyck paths and
parking functions (in their various combinatorial manifestations). In [Arm13] for
(m,n) = (n+1, n), Armstrong introduced statistics on the affine symmetric group
that corresponded to what Haglund and Loehr called area′ and bounce in [HL05].
Armstrong suggested that his statistics would recover work in the (kn+ 1, n) case,
previously considered by Loehr and Remmel in [LR04]. By using the relation-
ship between Shi arrangements and Sommers regions, Gorsky, Mazin, and Vazirani
generalized Armstrong’s constructions to general coprime (m,n)—and called the
statistics dinv and area (see Section 5.1). Finally, we note that the paper [ALW16]
also defines statistics for general coprime (m,n), but doesn’t define a zeta map on
(m,n)-parking paths or words.

6.3.1. The Map A: the Anderson Labeling. Translating Definition 5.1 using the bi-
jection Theorem 6.10 gives the following definition (compare with [GMV16, Section
3.1]).

Definition 6.13. For w−1 ∈ Snm, let k = min{w(1), w(2), . . . , w(n)} and write
w′(i) = w(i)− k. Then A(w) is defined by

w = [w(1), w(2), . . . , w(n)]
A7−→ [a · w′(1), a · w′(2), . . . , a · w′(n)] modm,

where an = −1 modm.
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Example 6.14. As in Example 5.2, for w = [3,−1, 2, 5, 6] with w−1 ∈ PT 5
3, we

compute A(w) by

w = [3,−1, 2, 5, 6] 7→ [1 · 4, 1 · 0, 1 · 3, 1 · 6, 1 · 7] mod 3 = [1, 0, 0, 0, 1],

since 1 · 5 = −1 mod 3.
We also find A(w) for w = [5,−2, 3] with w−1 ∈ PT 3

5:

w = [5,−2, 3] 7→ [3 · 7, 3 · 0, 3 · 5] mod 5 = [1, 0, 0],

since 3 · 3 = −1 mod 5.

If the short one-line notations of w1 and w2 are permutations of each other, then
so are A(w1) and A(w2), so that elements in the same coset of S̃n/Sn are assigned
to the same (m,n)-parking word, up to a permutation. It follows from Section 5.2.1
and Theorem 6.10 that A is a bijection; this is illustrated for (m,n) = (4, 3) and
(5, 3) in Figure 20.

Theorem 6.15. The map

A : Snm → PW
n
m

w 7→ A(w−1)

is a bijection.

There is a more geometric way to recover the parking word A(w), which we
quickly sketch. There is a natural bijection between dominant permutations of S̃n

and the coroot lattice Q̌ := {x ∈ Zn :
∑n
i=1 xi = 0}:

w ∈ S̃n 7→ w−1(0).

The restriction of this bijection to the m-fold dilation of the fundamental alcove
gives a set of representatives for Q̌/mQ̌, which are in bijection with (m,n)-parking
words using natural coordinates and the cycle lemma. We refer the reader to [Hai94,
GMV16, Thi16] for more details relating to this construction.
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Figure 20. The Sommers regions S34 and S35 , with alcoves labeled
by parking words under the Anderson bijection.

6.3.2. The Map B: the Pak-Stanley Labeling. It is natural to ask for a bijective
proof for the number of Shi regions—for example, via a bijection betwen Shi regions
and (n+1, n)-parking words. Pak and Stanley found such a labeling of the Shi
regions [Sta96, Theorem 5.1], which Stanley later extended to the Fuss level of
generality [Sta98]. Using the correspondence between the minimal alcoves of the
Shi arrangement and the Sommers region, the Pak-Stanley labeling was finally
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extended to the rational level in [GMV16] as an affine analogue of the code of a
permutation.

Definition 6.16. For w−1 ∈ Snm, B(w) is

B : S̃n → [m]n

w 7→ p1 . . . pn,

where for 1 ≤ i ≤ n,

pi =
∣∣∣{j > i ∈ N : w(j)<w(i),

w(i)−w(j)<m

}∣∣∣ .
Using the correspondence between inversions and hyperplanes, pi counts the

number of hyperplanes of the form Hki,j of height less than m separating the alcove
corresponding to w−1 from the fundamental alcove. The Pak-Stanley labeling of
the Sommers region is illustrated in the cases (n,m) = (3, 4) and (3, 5) in Figure 21.
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Figure 21. The Sommers regions S34 and S35 , with alcoves labeled
by parking functions under the Pak-Stanley bijection.

We will now show that B(w) in Definition 6.16 is equivalent to B(pw) in Def-
inition 5.3 under the bijection in Theorem 6.10; in particular, this will show that
B(w) is a bijection from Snm to PWn

m.

Theorem 6.17. For any w with w−1 ∈ Snm,
B(w) = B(pw),

where pw is the (m,n)-filter tuple with [w(1), w(2), . . . , w(n)] = n(pw).

Proof. Remark 6.11 gives a bijection between n-cycles in Pm
n and affine permuta-

tions w ∈ S̃n with w−1 ∈ Snm. Since Pm
n
∼= Fnm, we can see B(pw) directly on the

n-cycle. Fix 1 ≤ i ≤ n. At most one element from each residue class modulo m
in the one-line notation of w can contribute to pi. The number of residue classes
which contribute (which equals pi) is also the relative order of the number removed
when calculating B(pw). �

Remark 6.18. Continuing Remark 6.11, we can interpret parking words p ∈ PWn
m

as cycles with n vertices in the directed graph Pm
n . The word is obtained by reading

the relative order of the minimal element chosen for the edge. For example, when
w = [3,−1, 2, 5, 6], recording the relative order of the element removed gives a
correspondence between the 5-cycle encoding the parking (3, 5)-filter tuple pw and
the parking word B(pw):
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[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4]

+ 0 + 1 + 2 + 3 + 4 + 5

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9]

B(pw) : 1 0 0 1 1

On the other hand, we can compute B(w) by extending the short one-line notation
of w. Theorem 6.17 tells us that the results of these two calculations agree.

i 1 2 3 4 5 6 7 8 9 10

n(pw) = w 3 ;;−1 2 5 CC6 <<8 4 7 10 11

B(w) 1 0 0 1 1

.

The letters in the one-line notation of w that occur in p
(0)
w are written in bold,

and we have marked the inversions that count towards B(w) using arrows. Note
that the inversion (i, j) = (1, 2) doesn’t count towards B(w) because w(1)−w(2) =
3− (−1) ≥ 3.

Now Theorems 5.5 and 6.17 imply that B is a bijection from the Snm to (m,n)-
parking words. This resolves [GMV16, Conjecture 1.4].

Theorem 6.19 ([GMV16, Conjecture 1.4]). The map B : Snm → PW
n
m is a bijec-

tion.

Remark 6.20. In [GMV16, Section 7.1], Gorsky, Mazin, and Vazirani provide a
conjectural algorithm to invert B. Their Conjecture 7.9 (which essentially says that
their algorithm succeeds) follows now from our Theorem 5.5 and the convergence
proved in Lemma 3.2 and Corollary 3.3.
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