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Abstract

In this article a generalized version of small cancellation theory is de-

veloped which is applicable to specific types of high-dimensional simplicial

complexes. The usual results on small cancellation groups are then shown

to hold in this new setting with only slight modifications. For example, ar-

bitrary dimensional versions of the Poincaré construction and the Cayley

complex are described.

0.1 Main Theorems

In this article a generalized version of traditional small cancellation theory is
developed which is applicable to specific types of high-dimensional simplicial
complexes. The usual results on small cancellation groups are then shown to
hold in this new setting with only slight modifications. The main results derived
for this general small cancellation theory are summarized below in Theorem A.
The notions of general relators, Cayley categories, and general small cancellation
presentations are being introduced here, and will be defined in the course of the
article.

Theorem A If G = 〈A|R〉 is a general small cancellation presentation with
α ≤ 1

12 , then the word and conjugacy problems for G are decidable, the Cayley
graph is constructible, the Cayley category of the presentation is contractible,
and G is the direct limit of hyperbolic groups. If in addition, the presentation
satisfies the hypotheses of Lemma 14.17, then every finite subgroup of G is a
subgroup of the automorphism group of some general relator in R.

In a separate article, the general small cancellation theory developed here
will be applied to the Burnside groups of sufficiently large exponent. The results
obtained for the Burnside groups are similar in nature to the recent results of
Ivanov ([8]) and Lysionok ([10]), although it appears that techniques described
here will cover several additional cases. See [12] for details.

0.2 Key Concepts

Before beginning the full development of the theory, it seems advisable to pro-
vide a brief sketch of the key concepts used in the proof. To this end, the
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presentation below will avoid precise definitions in favor of rough descriptions
which appeal to the intuition.

General Relators: The results obtained in this article are dependent on a
type of structure called a general relator, which is introduced here for the first
time. In traditional small cancellation theory the cyclically reduced relators can
be viewed as a finite partition of the unit circle, with each edge labeled by a
generator of the group or, alternatively, as the boundary of a unit disk with these
properties. The particular generalization of small cancellation theory developed
in this article is based on the idea of using “relators” whose boundaries are
homotopically equivalent to the unit circle, and the general relator itself is a
topological cone over its boundary. These general relators, which are perhaps
best viewed as topological cones over solid tubes, contain a 1-skeleton which
can be significantly more complicated than in the traditional theory, but whose
local structure is less important than its global topology.

Representatives: Of particular importance in this context is the notion of
the winding number of a loop in the boundary of a general relator. A winding
number is definable in this situation because of the homotopic equivalence to
the unit circle. A loop in the boundary of a general relator with winding number
1 is called a representative of the general relator. Using representatives, it is
possible to define more or less traditional van Kampen diagrams over collections
of general relators by requiring that the label of every 2-cell in the planar van
Kampen diagram be the label of a representative loop in the boundary of some
general relator.

General Presentations, Poincaré Constructions, and Cayley Cate-
gories: The group corresponding to a set of general relators is defined by
forming a variation of the Poincaré construction and setting the group of the
presentation equal to the fundamental group of the construction. The universal
cover of this construction contains a 1-skeleton which is the Cayley graph of
this group. As in the traditional theory, the universal cover of the Poincaré
construction will contain multiple copies of a general relator attached to the
Cayley graph by functions which agree on the 1-skeletons in their boundaries.
The number of such multiplicities are governed by the size of the automor-
phism group of the particular general relator involved. If these multiple copies
are eliminated through a suitable identification, then the resulting structure is
called the Cayley category of the presentation.

General Small Cancellation Axioms: By placing sufficient restrictions on
the general relators involved it is possible to mimic the traditional proof schemes
of small cancellation theory. As an example, the general relators used are re-
quired to be thin in the sense that, given any point in a relator and an arbitrary
representative of the relator, the distance from the point to the representative
is small compared with the minimum length of a representative. Because of
this fact, it is possible to speak in a loose way of the distance traveled around
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the boundary of a general relator. In terms of this distance-like function it is
assumed that if one general relator contains more than a specified fraction of
the boundary of the other general relator then the boundary of the first relator
actually contains the entire second relator.

0.3 Overview

The article is divided into five parts. The first part develops a theory of struc-
tures iteratively built out of cones. These structures are a conical version of CW
complexes. The second part considers only those conical structures which topo-
logically resemble the 2-cells traditionally used to create Poincaré constructions
from group presentations. These are called general relators. The third part of
the article investigates constructions which are built out of general relators. The
topics include extended versions of presentations, Poincaré constructions, and
covering spaces. In Part IV, the focus is narrowed once again to consider the
effect that suitably generalized small cancellation conditions have on the groups
presented using general relators. A list of axioms for a general small cancella-
tion theory is presented. Finally, in Part V, the axioms are used to prove the
remaining results listed in Theorem A.
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Part I

Cones

In this part the theory of structures iteratively built out of cones is developed.
The definitions of a conical CW complex, a cone complex, a circular complex,
etc. are, as far as I am aware, being introduced here for the first time. The
idea of representing these structures by categories and functors was specifically
inspired by the work of Quillen ([17]). Many of these structures mimic the more
traditional structures of algebraic topology in great detail, so that many readers
may find it sufficient to read the definitions and the statements of the lemmas
throughout part I. The details have been provided for the sake of completeness.

The contents of this part are divided into three sections. Section 1 briefly re-
views the necessary topological preliminaries, before describing the construction
of conical CW complexes. Sections 2 and 3 are dedicated to the special cases of
these conical CW complexes which can be described by a partially ordered set
or a category, respectively. These cases are the ones which will be used in the
remaining parts of the article.

1 Conical CW Complexes

Traditional CW complexes are constructed inductively by attaching (n + 1)-
dimensional balls along their spherical boundaries to an already constructed
n-skeleton. Conical CW complexes are a variation on this procedure in which
topological cones are attached along their bases to an already constructed n-
skeleton. As in the traditional case there is both an inductive construction and
an internal description of the completed construction which complements the in-
ductive version. The section concludes with some results regarding deformation
retractions and coverings of such spaces.

1.1 Topological Preliminaries

The necessary results and definitions from algebraic topology are given below.

Quotient Spaces If X is a topological space, f : X → Y is a surjection and Y
is a set, then there is a unique largest topology on Y for which f is continuous.
This topology, called the quotient topology on Y induced by f , is defined by
letting a subset V ⊂ Y be an open set iff f−1(V ) is open in X . When the set Y
is given this topology the continuous function f is called a quotient map, and
Y is called a quotient space. The word ‘map’ is used in this article both to
refer to a continuous function between topological spaces as is done here, and to
refer to a particular planar construction used in traditional small cancellation
theory. The usage intended should be clear from context. Let X and Y be
spaces with A ⊂ X a closed subset. If f is a map from A to Y , then the space
Y ∪f X is defined as the quotient space of the disjoint union of X and Y by
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Y Z

X

f

g

h

Figure 1: Quotient maps

the equivalence relation ∼ generated by the relation a ∼ f(a) for all a ∈ A.
Lemmas 1.1, 1.2, and 1.3 are standard. Proofs can be found in reference works
such as [2]. Lemma 1.1 is illustrated in Figure 1.

Lemma 1.1 An onto map f : X → Y is a quotient map if and only if it is true
that for all functions g : Y → Z (the composite h = g ◦ f is continuous ⇔ the
function g is continuous).

Lemma 1.2 Let f : X → Y be a quotient map. If Z is a space and h : X → Z
is a map that is constant on each set f−1(y), for all y ∈ Y then g induces a
map g : Y → Z such that g ◦ f = h.

Lemma 1.3 The canonical map Y → Y ∪f X is an embedding onto a closed
subspace. The canonical map X \ A → Y ∪f X is an embedding onto an open
subspace.

Topological Cones A cone over a topological space X is the quotient space of
X× [0, 1] obtained by identifying the subspace X×{0} to a point, together with
the quotient map. The cone over X will be denoted Cone(X). The quotient
map f : X × [0, 1] → Cone(X) is contained in the definition because the second
coordinate provides a useful partitioning of Cone(X) into layers. The point
f(x, 0) is called the vertex of the cone, the subset f(X × [0, 1)) is called the
interior of the cone and the subset f(X×{1}) is called the base or the boundary
of the cone. Since by Lemma 1.3 the subset X × (0, 1] is embedded in Cone(X)
by the map f , the base of the cone is canonically homeomorphic to X . When
the original space X is viewed as identical with the base of Cone(X), the cone
over X is seen to be an extension of X . If a topological space C is given the
structure of a topological cone Cone(X) for some X then the base of C will be
denoted ∂C. The Lemma 1.4 is a special case of Lemma 1.2.

Lemma 1.4 Let X be a topological space, and let f : X × [0, 1] → Cone(X) be
the quotient map described above. If g : X× [0, 1] → Y is a continuous map, and
g(x, 0) = g(x′, 0) for all x, x′ ∈ X, then there is a unique map h : Cone(X) → Y
for which h ◦ f = g.
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Cone(X) Cone(Y )

X × [0, 1] Y × [0, 1]

hX
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f× id
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Figure 2: Extending maps over cones

Lemma 1.5 If X and Y are topological spaces and f : X → Y is a continuous
map between them, then there is a canonical continuous map g : Cone(X) →
Cone(Y ) which is identical to f when restricted to the base of each cone. More-
over, the map g is injective iff f is injective, g is surjective iff f is surjective,
and g is a homeomorphism iff f is a homeomorphism.

Proof: Let hX : X × [0, 1] → Cone(X) and hY : Y × [0, 1] → Cone(Y ) be the
respective quotient maps. By Lemma 1.4, there is a unique map g : Cone(X) →
Cone(Y ) such that hY (f(x), t) = g(hX(x, t)) for all x ∈ X and t ∈ [0, 1]. See
Figure 2. The correspondences between the properties of f and g are straight-
forward and are left to the reader. 2

The particular cones of interest in this article are cones over compact subsets
of a Euclidean space such as Rn. If X is a compact subset of Rn and Rn is
embedded in Rn × R, then there is a standard construction of Cone(X) given
by the set of points (tx, 1 − t) for t ∈ [0, 1] and x ∈ X . The notation tx is
meant to indicate the scalar multiplication of the coordinates of the point x
in Rn by the real number t. These points form a subspace of Rn+1 which is
homeomorphic to Cone(X). Indeed the function which sends (x, t) to (tx, 1− t)
is a function from X × [0, 1] to the standard construction of Cone(X) which
factors through the quotient and provides the homeomorphism. Alternatively,
the standard construction of Cone(X) can be described as the set of all points
(λx, µ1) with x ∈ X , λ, µ ≥ 0, and λ + µ = 1.

Homotopy Theory and Deformation Retractions If h : B × [0, 1] → C
and f, g : B → C are maps such that f(b) = h(b, 0) and g(b) = h(b, 1) for all
b ∈ B then h is called a homotopy between f and g. If A is a subspace of B
and h(a, t) = h(a, t′) for all a ∈ A and t, t′ ∈ [0, 1] then f and g are said to be
homotopic relative to A. Let C be a topological space with B a subspace of C.
A deformation retraction from C to B is a homotopy between the identity map
on C and a map from C to B ⊂ C which remains constant on B during the
homotopy. More specifically, a deformation retraction is a continuous function
from h : C × [0, 1] → C such that h(c, 0) = c for all c ∈ C, h(b, t) = b for
all b ∈ B and t ∈ [0, 1] and h(c, 1) ∈ B for all c ∈ C. A map f : C → D is
called a homotopy equivalence iff there exists a map g : D → C such that the
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composition f◦g is homotopic to the identity map on D and the composition g◦f
is homotopic to the identity map on C. The map f is called a weak homotopy
equivalence iff the induced homomorphisms fi : πi(C) → πi(D) between the ith
homotopy groups are isomorphisms for all i ≥ 0. The relative space (C, B) is
called ∞-connected if the relative homotopy groups πi(C, B) are trivial for all i.
For traditional complexes these concepts are equivalent in the following sense.

Lemma 1.6 If C is a connected CW complex and B is a connected subcomplex,
then the following conditions are equivalent:

1) there is a deformation retraction from C to B
2) the inclusion map i : B → C is a homotopy equivalence
3) the inclusion map i : B → C is a weak homotopy equivalence
4) the relative CW complex (C, B) is ∞-connected.

Proof: The implications 1 ⇒ 2 ⇒ 3 are well-known to be true in general
topological spaces. The equivalence of 3 and 4 follows from the fact that C and
B are path-connected and from the long exact sequence of homotopy groups.
Finally 4 ⇒ 1 is shown in [20]. 2

A space C is called contractible if there is a deformation retraction of C to
a point, and it is called weakly contractible if all of its homotopy groups are
trivial. The next two lemmas are easy consequences of Lemma 1.6. A useful
connection between homotopy theory and cones is given in Lemma 1.9.

Lemma 1.7 A CW complex is contractible iff it is weakly contractible.

Lemma 1.8 If B is a subcomplex of a contractible CW complex C then B is
contractible iff there is a deformation retraction of C onto B.

Lemma 1.9 Let f : B → C be a continuous map. The map f is homotopic to
a constant map iff there is a map from Cone(B) to C whose restriction to its
boundary B is the map f . As a special case, notice that a topological loop in
a topological space C is homotopic to a point iff there is a map from the unit
disk into C so that the restriction of this map to the unit circle is the topological
loop.

Proof: Let h : B × [0, 1] → C be a homotopy showing that the map f is
homotopic to a constant map, and let g : B×[0, 1] → Cone(B) be the quotient in
the definition of Cone(B). By Lemma 1.2 there exists a map h′ : Cone(B) → C
with h = h′g, and the map h′ satisfies the lemma. Conversely, given a map
h′ : Cone(B) → C as described, the composition h = h′g is a homotopy proving
that the restriction of h′ to its boundary is homotopic to a constant map. 2

The following lemmas are being recorded for later use.

Lemma 1.10 If C is a topological space, then Cone(C) is contractible.
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Proof: Let f : C × [0, 1] → Cone(C) be the quotient map. The function
h(f(c, t), s) = f(c, ts) with c ∈ C, and s, t ∈ [0, 1] provides a well-defined
deformation retraction from the topological cone Cone(C) to its vertex. 2

Lemma 1.11 If there is a deformation retraction of a CW complex C onto a
subcomplex B then there is a deformation retraction of Cone(C) onto Cone(B)
which extends this deformation.

Proof: Let f : C × [0, 1] → Cone(C) be the usual quotient map, and let
h : C × [0, 1] → C be a deformation retraction of C onto B. Then the map
g : Cone(C) × [0, 1] → Cone(C) defined by g(f(c, t), s) = (h(c, s), t) is a well-
defined deformation retraction of Cone(C) onto Cone(B) which extends h. 2

If B is a subspace of C, then let f : B → B be the identity map from B
viewed as the base of Cone(B) to B viewed as a subspace of C. By the notation
C∪B Cone(B) is meant the union of the cone Cone(B) and the space C identified
along the subspace B, or more specifically, the space C∪f Cone(B). Notice that
C ∪B Cone(B) is canonically situated as a subspace of Cone(C).

Lemma 1.12 If B is a subcomplex of a connected CW complex C and there
exists a deformation retraction from C to B, then C∪B Cone(B) is contractible,
and there is a deformation retraction from Cone(C) onto C ∪B Cone(B).

Proof: The deformation retraction h from C to B can be combined with the
identity deformation on Cone(B) which leaves every point in Cone(B) fixed.
The extension is well-defined since the two deformations agree on their overlap,
B. Together they yield a deformation retraction from C∪BCone(B) to Cone(B).
Since by Lemma 1.10 Cone(B) is contractible, C∪B Cone(B) is also contractible,
and by Lemma 1.8 there exists a deformation retraction from the space Cone(C)
to C ∪B Cone(B). 2

Covering Spaces An onto map f : C → B between connected CW complexes
is called a covering map if for every point b ∈ B there is a connected open set U
containing b such that f−1(U) is a nonempty disjoint union of sets Ui ⊂ C where
f restricted to each Ui is a homeomorphism onto U for all i. If f : C → B is a
covering map with f(c0) = b0 then the group homomorphism f1 : π1(C, c0) →
π1(B, b0) induced by f is an injection. The topological space B is called the
base space and C is the covering space or simply a cover of B. A covering
space which is simply connected is called a universal cover. Let g : D → B and
h : D → C be maps between connected spaces and let f : C → B be a covering
map. If f ◦h = g, then h is said to be a lift of g. When g : D → B is understood
from context, and there exists such a map h : D → C, then D is said to lift to
C. See Figure 3. Lemmas 1.13 and 1.14 are special cases of the Lifting Theorem
in algebraic topology. Recall that the notation f∗ refers to the homomorphism
between fundamental groups which is induced by the map f .

Lemma 1.13 Let f : C → B and g : D → B be maps between connected CW
complexes, where f is a covering map. If D is simply connected and b0, c0, and
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Figure 3: Lifting maps

d0 are points in these spaces such that f(c0) = b0 = g(d0), then there is a lift
h : D → C of g with h(d0) = c0. More generally, such a lift exists whenever
f∗(π1(D)) = 0.

Lemma 1.14 Let B, C, and D be connected CW complexes, let f : C → B be
a covering map, and let g : D → B be a continuous map. If h1 and h2 are two
lifts of g and h1(d) = h2(d) for some d ∈ D, then h1(d) = h2(d) for all d ∈ D.
In other words a lift is uniquely determined by the image of a single point.

If f : C → B is a covering map and g : C → C is a homeomorphism of C
with itself such that f ◦ g = f , then g is called a deck transformation. The set
of all deck transformations forms a group. If the group acts transitively on the
set f−1(b0) then C is a regular cover of B and f is a regular covering map.

Lemma 1.15 Let B be a connected CW complex with fundamental group G.
There is a 1 to 1 correspondence between the regular covers of B and the nor-
mal subgroups of G. In particular, the regular cover C of B corresponding to
the normal subgroup H of G is a regular cover whose fundamental group C is
isomorphic to H. Moreover, the group of deck transformations of the covering
map f : C → B is isomorphic to G/H.

The key fact is that such a regular cover exists for every normal subgroup
of G. To illustrate the lemma, notice that the regular cover corresponding to
group G is B itself, and the regular cover corresponding to the trivial subgroup
is the universal cover of B.

1.2 Inductive Construction

To establish notation, let N denote the set of natural numbers 0, 1, 2, . . ., and let
the symbol t indicate a disjoint union. A set I which is the disjoint union of sets
In, n ∈ N will be called a graded index set. Equivalently, a graded index set can
be defined by means of a rank function r : I → N, with r(i) = n ⇐⇒ i ∈ In.
In this case n is called the rank of the element i. If J = tn∈NJn is another
graded index set and f : I → J is a function which preserves the index, meaning
that f(In) ⊂ Jn for all n ∈ N, then f is called a graded index function.
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A conical CW complex C is constructed inductively from spaces Ci and maps
∂φi indexed by some graded index set I subject to certain restrictions on the
spaces and the maps. The restrictions on the spaces Ci are as follows: the space
Ci must be a single point for all i of rank 0, while for all other i ∈ I , Ci must be
the topological cone over some nonempty compact subset of a Euclidean space.
The base, or boundary, of the cone is called ∂Ci so that Ci = Cone(∂Ci) for
all i ∈ In with n ≥ 1. Note that the spaces ∂Ci need not be connected. For
convenience, this notation is extended to I0 by defining the unique point in Ci

to be its vertex, defining ∂Ci = ∅ for each i ∈ I0, and setting Cone(∅) = Ci,
even though technically a point is not a topological cone over the empty set.
For all i ∈ In, the space Ci is called an n-cone or a cone of rank n, ∂Ci is
called its base, and Ci \ ∂Ci is called its interior. Again, the terminology is
used even in the case i ∈ I0 although the 0-cones are not technically cones at
all. These conventions provide a coherent notation throughout the induction.
Finally, for each n ∈ N let Xn = ti∈In

Ci and ∂Xn = ti∈In
∂Ci. Furthermore

let X = tn∈NXn and ∂X = tn∈N∂Xn.
The construction of a conical CW complex consists of inductively defining

spaces C(n), called the n-skeletons of C, with C(n) ⊂ C(n+1) for all n ∈ N and
C = ∪n∈NC(n). The construction begins by defining C(0) = X0. The space
C(0) is a discrete set of points in 1 to 1 correspondence with the set I0 which is
given the discrete topology. Next assume that C(n−1) has already been defined
for some n ≥ 1. The restriction on the maps ∂φi mentioned earlier is that for
each i ∈ In, ∂φi must be a map from ∂Ci to the (n − 1)-skeleton. If {∂φi :
∂Ci → C(n−1)|i ∈ In} is a set of such maps, then piecing these together forms a
map ∂φn : ∂Xn → C(n−1) which agrees with ∂φi when ∂Xn is restricted to ∂Ci.
The n-skeleton can then be defined as C(n) = C(n−1) ∪∂φn

Xn. By Lemma 1.3,
C(n−1) is embedded in C(n) as a closed subspace and there is a canonical map
φn : Xn → C(n) which is a homeomorphism when restricted to Xn \∂Xn. More
specifically, if the restriction of φn to the space Ci is called φi, then the map
φi agrees with ∂φi on ∂Ci and by Lemma 1.3 φi is a homeomorphism when
restricted to Ci \ ∂Ci. The map φi is called the characteristic map of the cone
Ci and the map ∂φi is called the attaching map of the cone Ci. If Ci is an
n-cone then the homeomorphic sets Ci \ ∂Ci and φi(Ci \ ∂Ci) are called open
n-cones. By Lemma 1.3 φi(Ci \ ∂Ci) is an open subset of the n-skeleton C(n).

Once the n-skeletons C(n) have been constructed for all n, the space C
is defined to be the union of these nested spaces, C = ∪C(n), under the weak
topology, the one which specifies that a subset U is open (or equivalently closed)
in C iff U ∩ C(n) is open (closed) in C(n) for all n ∈ N. When convenient the
characteristic maps φi and the attaching maps ∂φi will be considered as maps
into C instead of into one of the skeletons. Maps φ : X → C and ∂φ : ∂X → C
can be defined by piecing together the maps φi and ∂φi with i ∈ I , respectively.
As is the case with CW complexes, an open cone of height n is only guaranteed
to be an open subset of the n-skeleton C(n), and is not necessarily an open
subset of the final complex C.

Lemma 1.16 If C is a conical CW complex then, using the notations estab-
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lished above, C is the disjoint union of its open cones, the n-skeleton is closed
in C, and the map φ : X → C is a quotient map. Additionally, a subset V of C
is open (closed) iff φ−1

i (V ) is open (closed) for all i ∈ I.

Proof: The fact that C is the disjoint union of open cones and the fact that the
n-skeleton is closed in C follow inductively from Lemma 1.3 and the definition
of the weak topology, respectively. Let V be a subset of C. The weak topology
on C guarantees that V is open (closed) in C iff V ∩ C(n) is open (closed) for
all n ∈ N. The set V ∩C(n) is open (closed) iff V ∩C(n−1) is open (closed) and
the sets φ−1

i (V ) are open (closed) in Ci for all i ∈ In since C(n) is defined by a
quotient map. By an easy induction it is clear that V ∩C(n) is open (closed) iff
φ−1

i (V ) is open (closed) in Ci for all i ∈ ∪n
j=0Ij . Putting this all together, V is

open (closed) in C iff φ−1
i (V ) is open (closed) in Ci for all i ∈ I iff φ−1(V ) is

open (closed) in X . Thus by virtue of the definition, φ is a quotient map. 2

As a consequence of Lemma 1.16, every point c in C can be assigned a rank
based on the unique i such that c is in φi(Ci \ ∂Ci). Many of the properties
and proofs for traditional CW complexes carry over unchanged to conical CW
complexes. The following lemma is an example. The proof given in [2] carries
over verbatim.

Lemma 1.17 Let C be a conical CW complex with the notation defined above.
If U is a subset of C which has no two points in the same open cone, then U
is closed and discrete. If V is a compact subset of C then V is contained in a
finite union of open cones. As a consequence, φi(Ci), and indeed every compact
subset of C, is contained in a finite subcomplex of C.

Just as open and closed subsets of conical CW complexes can be determined
‘locally’, continuous maps from conical CW complexes can also be described
‘locally’. This fact is recorded in the following lemma.

Lemma 1.18 Let C be a conical CW complex with characteristic maps φi :
Ci → C, with i ∈ I, and let D be an arbitrary topological space. A function
f : C → D is continuous iff all of the composites f ◦ φi are continuous for all
i ∈ I. More specifically, if f is a bijection such that f restricted to φi(Ci) is a
homeomorphism, and subsets V of D are open in D iff V ∩ f(φi(Ci)) is open in
f(φi(Ci)) for all i ∈ I, then f is a homeomorphism.

Proof: By Lemma 1.16, the map φ : X → C is a quotient map. The first
statement is then an immediate consequence of Lemma 1.1. The second asser-
tion follows since V ⊂ D is open iff V ∩ f(φi(Ci)) is open in f(φi(Ci)) for all
i ∈ I iff f−1(V ∩ f(φi(Ci))) is open in φi(Ci) for all i ∈ I iff f−1(V ) is open in
C by Lemma 1.16. 2

1.3 Internal Description

In order to completely describe a conical CW complex it is sufficient to give the
cones Ci, their bases ∂Ci, the topological space C, and the characteristic maps
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φi : Ci → C, all indexed by some graded index set I . The above list is sufficient
since the attaching maps ∂φi and the n-skeletons C(n) can be reconstructed
from the given information. Conversely, given a set of topological spaces Ci

with subspaces ∂Ci, a topological space C, and a set of maps φi : Ci → C, all
indexed by some graded index set I , and satisfying certain minimal conditions,
it is possible to show that the space C is homeomorphic to a space arrived at
following the inductive procedure described above. This static description of
a conical CW complex is called an internal description to distinguish it from
the constructive approach taken above. Lemma 1.18 will then be used below to
show the equivalence of the constructive and the internal descriptions of conical
CW complexes.

Let Ci be a collection of topological spaces with subsets ∂Ci, and let φi :
Ci → C be a set of maps to a topological space C, all indexed by some graded
index set I . Assume that Ci is a single point and ∂Ci = ∅ for all i ∈ I0 and
that Ci = Cone(∂Ci) with ∂Ci a nonempty compact subset of some finite-
dimensional Euclidean space for all other i ∈ I .

Assume also that C is the disjoint union of the sets φi(Ci\∂Ci), that φi(Ci) ⊂
∂φj(∂Cj) for some i ∈ Im and j ∈ In implies m < n, and that C has the weak
topology with respect to the maps φi, i ∈ I . This latter condition means that
a subset U is open in C iff φ−1

i (U ∩ φ(Ci)) is open in Ci for all i ∈ I . When all
of these conditions are satisfied, the spaces Ci, ∂Ci, and the maps φi are said
to provide C with the structure of a conical CW complex. When these spaces
and maps are understood from context, C is said to have a conical CW complex
structure.

Lemma 1.19 A topological space C has a conical CW complex structure iff it
is homeomorphic to a space arrived at by following the inductive construction
described above.

Proof: If C is a topological space which has a conical CW complex structure,
then the spaces Ci, ∂Ci, and the maps φi restricted to the bases ∂Ci satisfy all of
the conditions needed for them to be used to inductively construct a conical CW
complex. Lemma 1.18 is then sufficient to show that the constructed complex
is homeomorphic with the original topological space C in the obvious way. The
converse is immediate from the inductive construction. 2

A cone map between two conical CW complexes is a map which, when
composed with a characteristic map of the domain, yields a characteristic map of
the range. More specifically, let B be a conical CW complex with characteristic
maps φi : Bi → B indexed by a graded index set I , and let C be another conical
CW complex with characteristic maps φj : Cj → C indexed by a graded index
set J . A cone map between B and C is a map f : B → C together with a graded
index function p : I → J and a set of homeomorphisms hi : Bi → Cp(i) such
that f ◦ φi = φp(i) ◦ hi, for all i ∈ I . If X = tBi, and Y = tCj , then the maps
φi, φj , and hi can be pieced together to form maps φX , φY and h respectively.
Using this notation the cone map condition becomes f ◦ φX = φY ◦ h. See
Figure 4. Notice that since p is a graded index function, the homeomorphisms
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Figure 4: A cone map between conical CW complexes

hi must send cones of rank n in B to cones of rank n in C, and similarly the
map f must send points of rank n in B to points of rank n in C.

Lemma 1.20 The composition of cone maps is a cone map, and bijective cone
maps are homeomorphisms.

Proof: The first assertion is immediate from the definition, since each of the
necessary conditions is well-behaved under composition. For the second asser-
tion let f : B → C be a bijective cone map between conical CW complexes
B and C. Since attaching maps are homeomorphisms when restricted to open
cones, f is a bijective cone map, and the interior of every cone Bi is nonempty,
the function between the graded index sets must be injective. Also, since f is
onto and C is the disjoint union of the nonempty sets Ci \ ∂Ci, the function
between the graded index sets must be surjective, and thus bijective. Thus,
without loss of generality, the same set I can represent the graded index set of
both B and C.

Next let X , φX , Y , φY , and h be as defined in the inductive construction.
Since the index sets are the same, the homeomorphisms hi : Bi → Ci combine
to form a single homeomorphism h : X → Y . Since φX ◦ h−1 = f−1 ◦ φY as
functions, φY is a quotient map by Lemma 1.16, and φX ◦ h−1 is continuous,
the function f−1 must be continuous, by Lemma 1.1. Thus both f and f−1 are
continuous, and f is a homeomorphism. 2

1.4 Coverings of Conical CW Complexes

In the next lemma, the structure of conical CW complexes is shown to lift
through covering maps. Although the proof mimics the proof of the result for
traditional CW complexes, there are enough differences to warrant a complete
proof.

Lemma 1.21 Let B be a topological space which has the structure of a conical
CW complex, and suppose that all of the cones Bi in B are topologically equiv-
alent to traditional CW complexes. If f : C → B is a covering map, then f
induces a conical CW complex structure on C which is canonically defined.
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Proof: Let Bi, ∂Bi, and φi be a set of topological spaces, subspaces, and
characteristic maps indexed by a graded index set I which provide B with
a conical CW complex structure. In particular, this means that these data
satisfy the conditions listed immediately prior to Lemma 1.19. After establishing
suitable notations, a graded set of spaces, subspaces, and maps for C will be
defined from the given data for B, and it will be shown that the new data
provide C with a conical CW complex structure.

For every i ∈ I let vi be the point in B which is the image under φi of
the vertex of Bi. Next let VB be the set of all points vi for i ∈ I and let
VC = f−1(VB). By Lemma 1.17 the set VB is a closed and discrete subset of B
since it contains exactly one point in every open cone. Notice that the set VC

is also closed since f is continuous, and the set is discrete since f is a covering
map. Let J be a set in 1 to 1 correspondence with VC , and let vj be the point
in VC which corresponds to j ∈ J . For every j ∈ J there is a unique i ∈ I with
f(vj) ∈ φi(Bi \ ∂Bi), since B is the disjoint union of the images of the interiors
of the cones Bi. This serves to define a function p : J → I , and if Jn is defined
as p−1(In) then J becomes a graded index set and p becomes a graded function.
If for a particular j ∈ J , p(j) = i, then define Cj = Bi, define ∂Cj = ∂Bi, and
define φj : Cj → C by lifting φi : Bi → B through f to C in such a way that
the image of the vertex of Cj is vj . Since by Lemma 1.10 Bi is contractible and
Bi has the topology of a traditional CW complex by assumption, such a lift is
always possible by Lemma 1.13, and by Lemma 1.14 it is unique.

The spaces Cj , the subspaces ∂Cj , and the maps φj indexed by the graded
set J will provide C with a conical CW complex structure. First, notice that the
spaces Cj are either points or cones, and the subspaces ∂Cj are either empty or
compact subspaces of finite-dimensional Euclidean spaces as appropriate, since
each Cj and each ∂Cj is equal to a space Bi or ∂Bi, and the corresponding
spaces have the same rank. Next, if there are indices j ∈ Jn and j′ ∈ Jm such
that ∂φj(Cj)∩ φj′ (Cj′ ) 6= ∅, then letting i = p(j) ∈ In and i′ = p(j′) ∈ Im, and
recalling that f ◦ φj = φp(j), it is also true that ∂φi(∂Bi) ∩ φi′ (Bi′) 6= ∅. Thus
n > m, and consequently the attaching map sends the boundary of the cone Ci

to the (n − 1)-skeleton.
Let c ∈ C be an arbitrary point, and let i be the unique index such that

f(c) ∈ φi(Bi \ ∂Bi). Next let b be a point in Bi \ ∂Bi such that φi(b) = f(c).
Using the contraction of Bi to its vertex, there is a path in Bi \ ∂Bi from b to
the vertex. When this path is sent to B by φi, it becomes a path from f(c) to
vi, and the unique lift of φi which lifts f(c) to c must lift this path to a path in
C which starts at c and ends at a lift of vi. The lift of vi must be vj for some j
by definition, and this shows that c is in φj(Cj \ ∂Cj) for this j. Since lifts are
unique once a single point has been lifted, the j described above is the unique
j ∈ J for which the condition is true, and this shows that C is the disjoint
union of the images of the interiors of the cones Cj as required. In symbols,
C = tj∈Jφj(Cj \ ∂Cj).

It only remains to show that the covering space C has the weak topology
with respect to the maps φj . If U is an open subset of C it is clear that φ−1

j (U)
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is open in Cj since each φj is continuous. So assume instead that φ−1
j (U) is

open in Cj for all j ∈ J , and for the moment, assume that U is contained in an
open subset of C which is mapped homeomorphically onto its image under f .
The set φ−1

i (f(U)) = ∩{φ−1
j (U)|p(j) = i} for each i ∈ I since, if b ∈ φ−1

i (f(U))
then φi(b) = f(u) for some u ∈ U , there is a lift of φi to a map φj for some
j ∈ J which extends the lift of φi(b) to u, and thus b is in φ−1

j (U) for this j.

Conversely, if b is in φ−1
j (U) then φj(b) = u is in U , f(φj(b)) = φp(j)(b) = φi(b)

is in f(U), and b is in φ−1
i (f(U)). Since by assumption the sets φ−1

j (U) are

open for all j ∈ J , and each set φ−1
i (f(U)) is the union of such sets, the sets

φ−1
i (f(U)) must be open sets for all i ∈ I . By Lemma 1.16 and the fact that B

has the structure of a conical CW complex, the set f(U) is open in B. Since by
assumption U is contained in an open subset which is mapped homeomorphically
onto its image under f , U is open in C.

Let U ′ be an arbitrary subset of C with φ−1
j (U ′) open for all j ∈ J , let u

be a point in U ′, and let U be the intersection of U ′ with an open set of C
containing U which is mapped homeomorphically onto its image by f . Such
a subset exists since f is a covering map. Since φ−1

j (U) is the intersection of

φ−1
j (U ′) with an open set for each j ∈ J , U is a set satisfying the conditions

described above, and thus U is an open subset of C. The union of all such sets
U , one for each u ∈ U ′, shows that U ′ is also an open set. 2

Lemma 1.22 Let B be a topological space which has the structure of a conical
CW complex, and suppose that all of the cones Bi in B are topologically equiv-
alent to traditional CW complexes. If f : C → B is a covering map, and C is
given the conical CW structure induced by B through f , then f is a cone map.
In particular, all of the deck transformations of C relative to f are also cone
maps.

Proof: Since in the proof of Lemma 1.21 the characteristic maps of C were
created by lifting the characteristic maps of B through f , it is immediate that
the composition of a characteristic map of C with f yields a characteristic map
of B. Thus f is a cone map between the conical CW complexes C and B. Since
all deck transformations are trivial covering maps of C in their own right, they
are cone maps by the above reasoning. 2

2 Cone Complexes

Under certain conditions, all of the information needed to construct a conical
CW complex can be summarized in a single algebraic structure. In particular,
any partially ordered set in which all principal ideals are finite can be used
to construct a unique conical CW complex directly from the poset. Moreover,
simplicial complexes and cell complexes can be viewed as special cases of this
construction. At the end of the section it is shown that all of the conical CW
complexes created in this way are in fact polyhedra.
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2.1 Posets and Cone Complexes

A partially ordered set, or poset for short, is a set P with a reflexive, antisym-
metric, and transitive binary operation ≤. If P is a poset with p ∈ P , then
define [p, q] = {r ∈ P |p ≤ r ≤ q}, and (p, q) = {r ∈ P |p < r < q}, etc. A
principal ideal P/p is defined as P/p = (−, p] = {q ∈ P |q ≤ p}. Principal
ideals are denoted P/p because of their close connections with slice categories
as described below. An ideal Q of P is a subset of P such that p ∈ Q implies
P/p ⊂ Q. The height of an element p is given by height(p) = sup{n|∃p0 < p1 <
p2 . . . < pn = p}. The elements p0 < p1 < p2 . . . < pn are called a chain of
length n, and a subset of the pi’s form a subchain. Notice that according to
this definition minimal elements have height 0, not 1. The height of an ideal,
principal ideal or poset P is the supremum of the heights of its elements.

A poset C in which all of the principal ideals are finite is called a cone
complex. The fact that the principal ideals are finite guarantees that every
element in C has a well-defined and finite height. In particular, every cone
complex C can be assumed to be equipped with a rank function r from the
elements of C to N such that r(p) = 0 ⇔ p is a minimal element, and p > q ⇒
r(p) > r(q) for all p, q in C without loss of generality, since the height function
shows that such a function always exists. The elements of a cone complex are
called open cones, the principal ideals are called closed cones, if b < c then b is
called a face of c, and the poset of all faces of c, ∂c = {b ∈ C|b < c}, is called
the boundary of c. Notice that the boundary of c is the difference between the
closed cone c and the open cone c.

The rank of a cone complex or of an ideal of a cone complex is defined as
the supremum of the ranks of its elements. A cone of rank n is called an n-cone,
and the ideal of all i-cones with i ≤ n is called the n-skeleton. The 0-skeleton
is also called the vertex set and the 0-cones are called vertices. Notice that the
vertices are the only elements which are both open and closed and consequently
have no boundary. A subcomplex of a cone complex is any ideal of the poset. A
morphism between two cone complexes is an order-preserving function which is
an isomorphism when restricted to corresponding closed cones. More explicitly,
a morphism between cone complexes is a poset morphism f : B → C and a
set of isomorphisms hb : B/b → C/f(b) for all b ∈ B such that the diagram in
Figure 5 commutes. That is, f ◦ φb = φf(b) ◦ hb, where φb and φf(b) represent
the natural inclusions.

Lemma 2.1 If f : B → C is a morphism between cone complexes B and C and
B and C are also closed cones, then the rank of B is less than or equal to the
rank of C, and the ranks are equal if and only if f is an isomorphism of cone
complexes.

Proof: Let b and c be elements of B and C respectively such that B = B/b
and C = C/c. Since posets are antisymmetric, the elements b and c are unique.
Moreover, they clearly have the maximum rank in B and C, respectively, so that
rank(B) = rank(b) and rank(C) = rank(c). Next, since f is an isomorphism
whenever the domain and range are restricted to corresponding closed cones
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Figure 5: A morphism between cone complexes

and since B itself is a closed cone, f(B) is an isomorphic copy of B situated
as a subcomplex of C. It follows that, rank(B) = rank(b) = rank(f(b)) ≤
rank(c) = rank(C). If, in addition, rank(f(b)) = rank(c) then f(b) = c since c
is the unique element of maximum rank in C. Thus B = B/b is isomorphic to
C/f(b) = C/c = C since f is a morphism between cone complexes. Conversely,
if f is an isomorphism then B and C clearly have the same rank. 2

Let C be a cone complex and let I be its graded index set. More specifically,
let ci be the element of C which corresponds to i ∈ I , and let the rank of ci equal
the rank of i. Over the course of the next several lemmas a conical CW complex
corresponding to C will be defined and will be shown to be unique. Initially,
the resemblance will be assumed to be only slight. A geometric realization
of the cone complex C is a conical CW complex B with the same index set
I , such that the characteristic map φi is a homeomorphism, and ∂φi(∂Bi) =
∪{φj(Bj)|cj ∈ ∂ci} for all i ∈ I . If B is a geometric realization of the cone
complex C, then the space φi(Bi \∂Bi) in B will be called the topological open
cone ci to distinguish it from the open cone ci which is an element in the poset
C. Once the equivalence of the two notions has been shown, the distinction will
be less important.

Lemma 2.2 If B is a geometric realization of a cone complex C, then the
union of a set of topological open cones forms a closed subspace of B iff the set
of corresponding elements in C forms an ideal.

Proof: Let D be an ideal of C, and let Bi be one of the cones of B. The image
of Bi is the subspace C/ci. Since the intersection of the ideals D and C/ci is a
finite ideal, the intersection of the subspaces D and C/ci is the finite union of
open cones in B. Because D∩C/ci is an ideal, ∂φj(∂Bj) is contained whenever
φj(Bj \ ∂Bj) is contained, so that D ∩ C/ci is the finite union of sets of the
form φj(Bj). Thus D ∩ C/ci is closed, φ−1

i (D ∩ C/ci) = φ−1
i (D) is closed for

all i ∈ I , and by Lemma 1.16 D is closed in B.
Conversely, let D be the union of a set of open cones in B and assume that

D is closed. By Lemma 1.16, the sets φ−1
i (D) are closed for all i ∈ I . Since

every point in the boundary of a topological cone such as Bi is the limit of
points in its interior, any closed set which contains the interior Bi \ ∂Bi must
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contain the boundary ∂Bi as well. Thus if D contains the topological open cone
ci it must also contain all of the topological open cones cj where cj < ci in C.
This implies that the subset of C corresponding to the space D is an ideal. 2

If B is a geometric realization of a cone complex C and D is an ideal of C,
then the union of the topological open cones in B corresponding to the elements
of D is called the subspace D. Thus, it is possible to speak of the subspace C/c
or the subspace ∂c of B for each element c ∈ C.

Lemma 2.3 Every cone complex has a geometric realization as a conical CW
complex.

Proof: Let C be an arbitrary cone complex and let I be the graded index
set determined by the rank function of C. A conical CW complex B which
is a geometric realization of C will be constructed inductively. Let B(0) be a
discrete set of points in 1 to 1 correspondence with the elements in I0, let Bi

be a single point, let ∂Bi be the empty set, and the let φi : Bi → B(0) be
the map which sends the point in Bi to the point in B(0) corresponding to the
element i, for all i ∈ I0. Notice that B(0) is a geometric realization of the 0-
skeleton of C. Next suppose that B(n) has already been constructed and is a
geometric realization of the n-skeleton of C. For every element ci ∈ C of rank
n + 1, the fact that B(n) is a geometric realization of the n-skeleton means that
by Lemma 2.2 there is a well-defined closed subspace ∂ci in B(n). Since φi is
supposed to be a homeomorphism, the space ∂Bi can be defined to be this closed
subspace with Bi = Cone(∂Bi) and ∂φi : ∂Bi → B(n) the natural inclusion map.
These attaching maps are sufficient to construct the (n + 1)-skeleton, and more
generally, the spaces Bi and the attaching maps ∂φi : ∂Bi → B(n) indexed
by the set I completely determine the inductive construction of a conical CW
complex B which satisfies the lemma. 2

For every cone complex C there is a standard geometric realization of C
which can be described as a subspace of a real vector space whose basis is
in 1 to 1 correspondence with the elements of C. Notice that even though
the result may not be finite-dimensional, every finitely generated subspace is a
Euclidean space. Let vc be the basis element which corresponds with c ∈ C. The
construction proceeds by induction on the skeleta of C. To begin the minimal
elements c ∈ C are placed at the points vc and this is trivially a geometric
realization of the 0-skeleton. Next, suppose that the k-skeleton has been realized
geometrically. For every element c of rank k + 1 in C a new vertex vc is added,
and then the straight line segments connecting vc with each of the points in
the subspace ∂c are added. The points added by the construction of this cone,
namely, the point vc together with the interiors of all of the line segments, form
the subset which can be called the topological open cone c since a routine check
shows that this construction satisfies the necessary conditions, and that the
result is a geometric realization of the k + 1-skeleton. Continuing in this way
yields a geometric realization of the cone complex C in which every space C/c
is a standard cone over its base in the Euclidean space spanned by the basis
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elements corresponding to the elements of C/c. The next lemma shows that
every geometric realization of a cone complex is homeomorphic to the standard
realization.

Lemma 2.4 The geometric realization of a cone complex as a conical CW com-
plex is unique up to homeomorphism. In particular, if B and B ′ are both geomet-
ric realizations of a cone complex C, then there is a homeomorphism f : B → B ′

which is also a cone map which sends the topological open cone c in B to the
topological open cone c in B′ for all c ∈ C.

Proof: The proof is by induction through the skeleta. Any two realizations of
a cone complex of rank 0 consist solely of isolated points and these realizations
clearly possess the requisite homeomorphism. Next suppose that every cone
complex of rank at most n satisfies the lemma, and let C be a cone complex of
rank at least n + 1. If B and B′ are two geometric realizations of C, then by
induction there is a homeomorphism between their n-skeletons which satisfies
the lemma. If ci is an element of C of rank n + 1, then the homeomorphism of
the n-skeletons restricts to a homeomorphism between the subspaces of B and
B′ called ∂ci. Since the characteristic maps gi are embeddings, this induces a
homeomorphism between the subspaces ∂Bi and ∂B′

i. By Lemma 1.5 there is a
canonical homeomorphism hi between Bi and B′

i which extends the homeomor-
phism between the bases. If X = t{Bi|i ∈ In+1} and Y = t{B′

i|i ∈ In+1}, then
piecing together the homeomorphisms hi and the homeomorphism between the
n-skeletons yields a homeomorphism h : B(n) t X → B′(n) t Y . Since the com-
position of h with the quotient map from B′(n) tY to B′(n+1) is continuous, by
Lemma 1.2 there is a continuous map from B(n+1) to B′(n+1). Similarly, com-
posing h−1 with the quotient map from B(n)tX to B(n+1) induces a continuous
map in the other direction. It is easy to check that these two continuous maps
are inverses of each other, so that they provide the homeomorphism described
in the lemma. Thus, by induction, the n-skeleton of B is homeomorphic with
the n-skeleton of B′ for all n. Since by construction these homeomorphisms
agree on their overlaps the union of the homeomorphisms is a bijective function
between B and B′. By Lemma 1.16 this function is a homeomorphism. 2

Because of the strong correlation between the algebraic properties of a cone
complex and the topological properties of its geometric realization, the two
constructions will henceforth be denoted by the same letter. Thus the geometric
realization of a cone complex C will be called simply the space C.

Lemma 2.5 If f : B → C is a morphism between cone complexes B and C,
then there is a cone map from the space B to the space C such that the map
restricted to an open cone b is a homeomorphism onto the open cone f(b), for
all b ∈ B. Moreover, the cone map corresponding to an isomorphism of cone
complexes is a homeomorphism between conical CW complexes.

Proof: The lemma is true for the standard realizations of B and C since the
unique R-linear map from ⊕b∈BR to ⊕c∈CR which sends the basis element vb
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to the basis element vf(b) restricts to a cone map from the standard realization
of B to the standard realization of C, which satisfies the conditions of the
lemma. The details of the verification are left to the reader. If B and C are
given arbitrary geometric realizations, then there are homeomorphisms, which
are also cone maps, between these other geometric realizations and the standard
realization by Lemma 2.4. The composition of these homeomorphic cone maps
with the cone map between the standard realizations described above provides
the desired cone map. The final statement follows from Lemma 1.20. 2

2.2 Simplicial Complexes and Cell Complexes

A simplicial complex can be completely reconstructed from its poset of faces. A
description of simplicial complexes in terms of posets will be given below. This
description is equivalent to the usual definition in content, as will be shown in
Lemma 2.7. Besides providing a familiar example of a cone complex, simplicial
complexes and their properties, such as the Simplicial Approximation Theorem,
will be needed at various times throughout the article.

Let V be a set and let P be the poset of all non-trivial finite subsets of
V ordered by subset. The elements of V can be identified with the minimal
elements of P . If C is an ideal of P which contains all of V , then C is called a
simplicial complex over V . Since every principal ideal of C is finite, C is also a
cone complex. Without loss of generality assume that C comes equipped with
a rank function r : C → N such that r is order-preserving, and r(p) = 0 ⇔ p is
a minimal element in C. This is possible since the height function shows that
such a function always exists. Once a simplicial complex C is viewed as a cone
complex, the notions of face, boundary, rank of an element, rank of an ideal, n-
skeleton, vertex set, vertices, subcomplex and geometric realization are already
defined for C. Some terminology becomes more specialized. For instance, an
open cone of a simplicial complex is called an open simplex, a closed cone is
called a closed simplex, a cone of rank n is called an n-simplex, and a geometric
open cone is called a geometric open simplex.

Notice that morphisms between simplicial complexes, as defined here, must
preserve the rank of the simplices. Such a definition is much more restrictive
than the usual notion of a simplicial map. Finally, notice that the principal
ideals of C are finite Boolean lattices minus the 0 element and that each prin-
cipal ideal is uniquely determined by the vertices it contains. Conversely, any
cone complex whose principal ideals satisfy these two conditions is a simplicial
complex.

Lemma 2.6 A cone complex is a simplicial complex iff all principal ideals are
closed simplices and every principal ideal is uniquely determined by the vertices
it contains.

Proof: The forward direction is immediate from the definition, so let C be a
cone complex satisfying the two conditions above, let V be the set of minimal
elements of C, and let P be the poset of all non-trivial finite subsets of V
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ordered by subset. Because every principal ideal in C is uniquely determined by
its minimal elements, the order-preserving morphism from C to P which sends
every element to the set of vertices of its principal ideal is injective. Thus C
can be considered a substructure of P . Since, in addition, the principal ideals
of C are closed simplices, the image of C must actually be an ideal of P . By
definition, C is a simplicial complex. 2

By Lemma 2.3 every simplicial complex C has a geometric realization. The
topological space C is called a polyhedron, and more generally, a polyhedron
is any topological space which is homeomorphic to the space of a simplicial
complex. This discussion of simplicial complexes concludes with a sketch of a
proof that simplicial complexes as defined here correspond with the traditional
definition.

Lemma 2.7 The geometric realization of a simplicial complex as defined here
is homeomorphic to the traditional definition of a simplicial complex.

Proof: (Sketch) If the construction of the standard realization is modified so
that the points corresponding to the elements c of rank 1 or more are placed
at the average of the coordinates of the vertices in the subspace ∂c, then it
can be shown that, because of the special restrictions placed on simplicial com-
plexes, the conditions necessary for the construction to qualify as a geometric
realization are still true, and in addition the geometric closed cone c is the
convex hull of the vertices it contains. Since these vertices are in general posi-
tion, the convex hull is the traditional notion of a geometric closed n-simplex.
By Lemma 2.4 this geometric construction of C is the geometric realization of
C up to homeomorphism, and it corresponds to the traditional definition of a
geometric simplicial complex built out of geometric n-simplices. 2

A cell complex is a type of cone complex which is more flexible than a
simplicial complex and for that reason it is frequently used in topology as a
means of efficiently constructing piecewise linear manifolds. A geometric closed
cell is the convex hull of a finite set of points in a Euclidean space Rn. The
interior of a closed cell is called an open cell, and the boundary of a cell is the
difference between the two. It can be shown that every open (closed) cell is
homeomorphic to an open (closed) n-dimensional ball for some unique n called
the dimension of the cell. An n-dimensional cell is called an n-cell. If c is the
interior of the convex hull of a set of points and b is the interior of the convex
hull of a subset of these points which is wholly contained in the boundary of c,
then b is called a face of c, and we write b < c. A cell complex C is a collection
of disjoint open cells, c, in a generalized Euclidean space, such that if c ∈ C
and b < c then b ∈ C, and if b, c ∈ C then b ∩ c is a face of both b and c. The
n-skeleton is the cellular subcomplex consisting of the cells with dimension less
than or equal to n. If c is an open cell of dimension n + 1, then let ∂c be the
set of all faces of the cell c. The set ∂c is always finite and, if c is an n-cell, the
union of the open cells in ∂c is homeomorphic to an (n − 1)-sphere.
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Lemma 2.8 Geometric cell complexes are recoverable up to homeomorphism
from their poset of open cells ordered by faces.

Proof: Once it is realized that the convex hull of a set of points in Rn can be
viewed as a cone over the boundary of the closed cell with the vertex of the cone
located at an arbitrary point in the interior, the original geometric cell complex
is seen to be a geometric realization of the poset of its faces viewed as a cone
complex. By Lemma 2.4, this is the unique geometric realization of the cone
complex, and the proof is complete. 2

2.3 Quillen’s Construction on Posets

A general construction for turning an arbitrary poset into a geometric object
was described by D. Quillen in [17]. Starting from a poset P , a new poset
called Chain(P ) is constructed whose elements are the nonempty finite chains
of elements in P with one chain being less in the ordering than another chain
iff the former is a subchain of the latter. The resulting poset is a simplicial
complex which can be realized geometrically either in the traditional manner or
by the cone construction of Lemma 2.3. If the poset is a cone complex, then the
construction of Lemma 2.3 can be used directly on the original poset P . The
relationship between the Quillen procedure and the cone construction described
above is detailed in the following lemmas.

Lemma 2.9 If P is an arbitrary poset then C = Chain(P ) is a simplicial com-
plex in which the vertices of C correspond to the elements of P .

Proof: The nonempty chains of minimal length are clearly in 1 to 1 corre-
spondence with the elements of P . Since it is also clear that every chain in a
poset is uniquely determined by its elements and that the nonempty subchains
of a given chain form a Boolean lattice without the 0 element, it follows from
Lemma 2.6 that C is a simplicial complex. 2

Lemma 2.10 If P is a poset, C = Chain(P ), and P ′ is a poset obtained from
P by forcibly adding a new maximum element called p, then C ′ = Chain(P ′)
is a simplicial complex containing C as a subcomplex and geometrically C ′ is
the simplicial cone over the topological space C. The vertex of the cone is the
1-element chain p, and the additional open simplices are precisely the chains in
P ′ which contain p as a largest element.

Proof: Immediate. 2

Lemma 2.11 If C is a cone complex and C ′ = Chain(C) then there is a home-
omorphism f between the conical CW complexes C and C ′ such that for every
open cone c in C, f(c) is the topological union of all of the open simplices in C ′

which contain an element c as its largest member. In this sense, the simplicial
structure of C ′ is a refinement of the cone structure of C.
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Proof: The proof proceeds by induction on the height of the cone complex
C. The lemma is trivially true for cone complexes of height 0 since the spaces
involved are collections of isolated points of the same cardinality. If it is as-
sumed that the lemma is true for all cone complexes of height at most k, then
Lemma 2.10 guarantees that the homeomorphism f can be extended to the
additional (k + 1)-cones in such a way that the statement of the lemma is pre-
served. By induction, the lemma holds for all cone complexes of finite height.
Since general cone complexes are constructed inductively from their k-skeletons,
this is sufficient to prove the lemma in general. 2

In the particular case where P is already a simplicial complex, Chain(P ) is
its barycentric subdivision. In general, given a cone complex P the existence of a
simplicial subdivision such as Chain(P ) shows that the space P is a polyhedron.

Corollary 2.12 The geometric realization of a cone complex is a polyhedron.

Since the geometric realizations of simplicial complexes are a type of CW
complex, all of the lemmas about CW complexes given in section 1 are appli-
cable to the spaces of cone complexes, cell complexes, and circular complexes.
Although the cone construction and the Quillen construction are homeomor-
phic topologically, they create distinct partitions of the space and there are
advantages to each. The Quillen construction produces a traditional simplicial
complex which allows for the utilization of the tremendous number of results
already developed for such spaces. The cone construction on the other hand
divides the topological space into skeleta in a significant way. In the case of
an originally geometric simplicial or cell complex, the cone construction is able
to reconstruct the original complex from its poset of faces, whereas the Quillen
construction produces either a barycentric subdivision or a simplicial subdivi-
sion of the original. Of more importance in the current context is the fact that
the skeleta of the space of a particular type of cone complex called a circu-
lar complex correspond nicely to algebraic properties of groups defined using
these complexes. As a consequence, the partitioning of the underlying space
into skeleta by the cone construction is used later in the article to efficiently
organize many of the statements and proofs of the lemmas.

3 Cone Categories

The construction of the previous section can be made more flexible by changing
the underlying posets to categories. The resulting structure is called a cone
category. In this section cone categories are introduced and their properties
investigated in a manner which parallels the previous section.

3.1 Categories and Cone Categories

Familiarity with the basic definitions of category theory, such as that of a cate-
gory and a functor, is assumed. Let C be a category and let c be an object of
C. The slice category, C/c, of all objects over c is given by
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Figure 6: Commuting triangle over c

Objects(C/c) = {arrows with codomain c}

Arrows(C/c) = {arrows which form commuting triangles}

For example, if f : d → c, f ′ : d′ → c, and h : d → d′ are arrows in C with
hg = f then f and f ′ are objects in C/c and h is an arrow in C/c from f to f ′

(see Figure 6). The functor φc : C/c → C which sends each object f : d → c
to its domain d is called a characteristic functor of C/c on analogy with the
functions used in the construction of a CW complex. The connection with CW
complexes is examined in more detail below. See Lemma 3.6. Notice that the
slice category C/c has the identity arrow of c as a terminal object.

An important fact in this context is that every poset can be viewed as a
category by thinking of the elements of the poset as the objects of the category
and imagining a unique arrow p → q iff p ≤ q. The notion of a slice category in
a category generalizes the notion of a principal ideal in a poset in the sense that
if a poset P is viewed as a category, then the slice category P/p is isomorphic
to the ideal (p) viewed as a category. The attaching map in this case is injective
on both objects and arrows. Notice that the usual descriptions of posets and
categories use different spatial metaphors. In particular, the ideal P/p can at
the same time be described as the elements of the poset ‘below’ p and, when
viewed as a category, as the objects of the category ‘over’ p.

Lemma 3.1 A category C is the category corresponding to a poset iff C has
singleton hom-sets and contains no non-trivial cycles.

Proof: The forward direction is immediate, and the other direction is almost
immediate. The condition that the hom-sets be singleton sets guarantees that
C is the category of a preorder, namely the preorder given by taking the objects
with c ≤ d iff there is an arrow from c to d. The restriction that there are no
non-trivial cycles implies that the preorder is anti-symmetric. 2

A useful result about categories in general is the following.

Lemma 3.2 If f : B → C and g : C → B are functors between categories B
and C such that fg is the identity functor on C, and gf is the identity functor
on B, then f and g are category isomorphisms.
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Proof: Since fg is the identity functor on C, the functor f is onto, and the
functor g is 1 to 1 on both objects and arrows. Similarly, since gf is the identity
functor on B, g is onto and f is 1 to 1 on both objects and arrows. Thus both
f and g are bijections on objects and arrows. 2

A category C in which every slice category C/c is the category of a finite
poset is called a cone category. The fact that the slice categories are finite posets
guarantees that every object c in C has a well-defined and finite height based on
the height of the poset associated with C/c. In particular, every cone category
C can be assumed to be equipped with a rank function r from the objects of C
to N such that r(c) < r(d) whenever there exists a non-identity arrow from c to
d, and r(c) = 0 ⇔ c is not the codomain for any non-identity arrows, without
loss of generality since the height function shows that such a function always
exists. An object c of a cone category C is called an open cone and the slice
category C/c with the characteristic functor φc : C/c → C implicitly understood
is called a closed cone. The full subcategory of C/c on the set of all objects
other than its terminal object is called the boundary of c and it is denoted
∂c. The restriction of φc to the subcategory ∂c is called the attaching functor
∂φc : ∂c → C of the closed cone C/c. The terminology is justified by the fact,
shown below, that every cone category can be realized geometrically as a conical
CW complex, in which the functions corresponding to the characteristic functors
and the attaching functors are the characteristic maps and the attaching maps
of the closed topological cones and their boundaries.

Lemma 3.3 If C is a cone category then C contains no non-trivial cycles and
in the slice category C/c the unique terminal object corresponds to the identity
arrow at c.

Proof: If C contains a non-trivial cycle of arrows and c is an object in the
cycle then it is easy to check that C/c also contains a non-trivial cycle. This,
however, contradicts the fact that C/c is the category of a poset by Lemma 3.1.
For the second statement, simply note that closed cones in a cone complex
have unique maximum elements, so that the categories of these posets possess
unique terminal objects. Since every arrow in C with codomain c factors trivially
through the identity arrow idc at c, idc is a terminal object in C/c and thus the
unique terminal object. 2

Every cone category C determines a graded index set I given by setting In

in 1 to 1 correspondence with the objects of C which have rank n. Let ci be
the object of C corresponding to i ∈ I . In the same way that the poset ∂c is an
ideal in the poset C/c for all c in a cone complex C, the category of the poset
∂c is a full subcategory of the category C/c for all objects c in a cone category
C. The restriction of the characteristic functor φc to the category boundary ∂c,
denoted ∂φc : ∂c → C, is called the attaching functor of the closed cone C/c.
The n-skeleton is the full subcategory of C on the objects of rank less than or
equal to n. A cone functor is a rank-preserving functor f : B → C between
cone categories which induces an isomorphism on slices. Specifically, for every
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object b ∈ B there must be a category isomorphism hb such that the diagram in
Figure 5 commutes, and in addition, the rank of b in B must equal the rank of
f(b) in C. Notice that the diagram has been reinterpreted in terms of categories
and functors, instead of posets and order-preserving maps.

Many of these definitions are identical to the definitions in the previous
section. The precise relationship between cone categories and cone complexes
is shown in the following lemma.

Lemma 3.4 A cone category is the category of a cone complex iff all the char-
acteristic functors are injective on objects.

Proof: The forward direction is immediate. If on the other hand all of the
attaching functors are injective on vertices, then all of the hom-sets of C must
be singletons since the slice category over the codomain of a non-trivial hom-set
produces an attaching map which is not injective on objects. By Lemma 3.3
C contains no non-trivial cycles and thus by Lemma 3.1 C is the category of a
poset. In this case the characteristic functors correspond to the embeddings of
the principal ideals C/c into the poset C. Since C is a cone category and all of
its slices are finite, the poset of C possesses finite principal ideals, making it a
cone complex. 2

Lemma 3.5 Let f : c → d be an arrow in a cone category C, and let C/f be the
full subcategory of C/d corresponding to the principal ideal of f in the poset of
C/d. There exists a functor g : C/c → C/f such that φc = φd ◦ g. The functor
g is an category isomorphism which embeds C/c as a subcategory of C/d and
sends the terminal object of C/c to the object f in C/d.

Proof: An object of C/c is an arrow in C with codomain c. Its product
with f is then an arrow in C with codomain d and thus an object in C/d.
Since the product as an arrow in C factors through f it is also an object in
the subcategory C/f . Notice that the identity arrow of c is sent to f under
this procedure. Since all of the hom-sets in C/c and C/f are singleton and
the ordering of the underlying posets is preserved, there is a unique functor
g : C/c → C/f which extends the function on the objects described above.

The fact that the hom-sets in C/d are singletons implies that if an arrow in C
with codomain d factors through f , and thus is an object in C/f , then it must
factor uniquely. Since the objects of C/f are precisely the arrows of C with
codomain d which factor through f , there is a well-defined function from the
objects of C/f to the objects of C/c which is the inverse of the function described
above. This second function also preserves the ordering of the underlying posets,
and it determines a functor from C/f to C/c. It is easy to check that the second
functor is the inverse of the functor g, that g is thus a category isomorphism
(by Lemma 3.2), and that φc = φd ◦ g. 2

Recall from the section on conical CW complexes that the topological cones
Ci, their bases ∂Ci, and the attaching maps ∂φi from ∂Ci to the appropriate
skeleton over some graded index set I are sufficient to reconstruct an entire
conical CW complex.
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Lemma 3.6 Every cone category C has a geometric realization as a conical
CW complex.

Proof: Let I be the graded index set determined by the rank function on
the objects of the cone category C. For all i ∈ I , let Ci be the geometric
realization of the poset of the slice category C/ci, and let ∂Ci be the conical
CW subcomplex of Ci which corresponds to the ideal ∂ci. These geometric
realizations Ci exist by Lemma 2.3. It only remains to describe the attaching
maps φi : ∂Ci → C(n−1) for i ∈ In. If n = 0 then Ci is a point, ∂Ci is empty,
and the attaching maps do not need to be described. So assume that n > 1,
that the (n− 1)-skeleton has already been constructed, and that i ∈ In is fixed.
In this case the characteristic maps φj : Cj → C(n−1) for all j ∈ Im with m < n
have already been defined.

By Lemma 3.5 every proper principal ideal in C/ci is isomorphic with a slice
category over an element cj of rank strictly less than n. Since this category
isomorphism also provides an isomorphism between the cone complexes, it can
be geometrically realized as a homeomorphic cone map between the conical CW
complex Cj and the appropriate subcomplex of the conical CW complex Ci by
Lemma 2.5. The composition of this homeomorphism with the already defined
characteristic map on Cj provides a portion of the attaching map for Ci. If this
procedure is followed for all proper principal ideals in C/ci and the resulting
portions of the attaching map are pieced together, a complete attaching map for
Ci is formed. Another application of Lemma 3.5 insures that the definitions of
the portions of the attaching maps derived from different principal ideals agree
on their overlaps, so that the resulting map is well-defined. Since this completes
the list of information necessary to create a conical CW complex, the proof is
complete. 2

Lemma 3.7 Given any cone functor f : B → C between cone categories there
is a cone map between geometric realizations of B and C as conical CW com-
plexes such that the cone map restricted to the topological open cone b is a home-
omorphism onto the open cone f(b) for all objects b ∈ B. Moreover, the cone
map corresponding to an isomorphism of cone categories is a homeomorphism
between conical CW complexes.

Proof: Let I (J) be the graded index sets for the cone category B (C), let Bi

(Cj) be the geometric realization of the slice categories B/bi (C/cj), let X (Y )
be the disjoint union of the topological open cones Bi (Cj), and let φX (φY ) be
the quotient map described in Lemma 1.16. If f(bi) = cj , then by the definition
of a cone functor there is a category isomorphism between the slice categories
B/bi and C/cj and by Lemma 2.4 there is a canonical homeomorphism between
the conical CW complexes Bi and Cj . These homeomorphisms combine to form
a map h : X → Y .

Define a map f between the geometric realizations of B and C as follows.
By Lemma 1.16 each point in the geometric realization of B is contained in
a unique open cone bi, and since the characteristic map φi restricted to the
interior of Bi is a homeomorphism, it lifts uniquely to Bi in X . Then map it
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by h and then φY to a point in the geometric realization of C. This creates a
function f such that f ◦φX = φY ◦h as functions when restricted to the interiors
of the cones Bi in X . See Figure 4. By the construction of the attaching maps
given above in Lemma 3.6, these functions are equal on the boundaries of the
cones as well. Moreover, since φY ◦ h is continuous and φX is a quotient map,
by Lemma 1.1 f is continuous. Clearly this function is a homeomorphism when
f is restricted to an open cone in the domain. Finally, an isomorphism between
cone categories will produce a map f which is bijective. Thus by Lemma 1.20
f will be a homeomorphism. 2

Corollary 3.8 The geometric realization of a cone category is unique up to
homeomorphism.

3.2 Simplicial Categories and Cell Categories

A simplicial category is a category in which every slice is a closed simplex.
That is, for all c ∈ Objects(C), the category C/c is isomorphic to the category
of faces of an n-dimensional simplex under inclusion for some n. Note that the
dimension of the simplex need not be the rank of the object c unless the rank
function corresponds to the height function in this instance. An object of C
is called an open simplex, and the attaching map φc : C/c → C is called a
closed simplex. For simplicity, C/c will be referred to as a closed simplex with
the attaching functor understood. The rank of an open simplex c is given by
the rank function on C, and the n-skeleton is the full subcategory on all objects
with rank less than or equal to n. The boundary of c, ∂c, is the poset C/c minus
its maximal element together with its attaching map. Every simplicial category
has a geometric realization which is constructed inductively via its skeleta. The
functors φc : C/c → C are the categorical equivalents of attaching maps, which
describe how to attach the boundary of a closed n-simplex into the (n − 1)-
skeleton, hence the name. A simplicial functor between simplicial categories is
a rank-preserving functor which is isomorphic on slices. That is, f : C → B is
a simplicial functor iff for all c ∈ Objects(C) there is an isomorphism between
C/c and B/f(c), with the rank of c in C equal to the rank of f(c) in B.

Simplicial categories illustrate the type of flexibility which is added by the
change from poset to categories. The boundary of a simplex in a simplicial
category can be collapsed in some way, and distinct simplices can have identical
boundaries without being identical.

Lemma 3.9 A category is a simplicial complex iff all slice categories are cate-
gories of closed simplices, all of the attaching maps are injective on objects and
every slice is determined by the image of its initial objects.

Proof: The forward direction is immediate from the definition. Assume that
C is a category which satisfies the latter conditions. If a hom-set in C contained
two or more arrows then the attaching map of the slice category over the ter-
minal object would not be injective. Thus C has singleton hom-sets, and C is
the category of a preorder. If C contained a non-trivial cycle of arrows or an
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infinite chain of arrows with no first arrow in the chain, then the same condition
would hold in one of the slice categories, contradicting the fact they are each
categories of closed simplices. Thus C is the category of a poset. Once this is
known the remaining conditions become simply those listed in Lemma 2.6 as
necessary and sufficient to show that a poset is a simplicial complex. 2

To illustrate the differences between a simplicial complex and a simplicial
category, three examples are given below. The first is a 2-dimensional simplicial
complex and thus also a simplicial category, while the other two are examples
of simplicial categories which are not complexes.

Example 1 In Figure 7 there are three vertices, three edges, and one triangle.
These correspond to elements and simplices of height 0,1, and 2 respectively.

Example 2 The simplicial category in Figure 8 contains a single vertex and
a loop edge, that is, an edge whose endpoints are identical. It is clearly not a
simplicial complex since the category used to define it is not a poset. Notice
that the geometric realization of the slice category of objects over b is a straight
line segment; it is the attaching map which identifies the two endpoints.
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Example 3 In the simplicial category in Figure 9, the three edges all have iso-
morphic slice categories and are attached to the same vertices, but the attaching
maps have distinct images. This is not possible in a simplicial complex since
the simplices are determined by the vertices they contain.

When the type of flexibility described above is incorporated into a cell com-
plex the result is called a cell category, or as it is known elsewhere in the lit-
erature, a regular CW complex. A cell category is a category in which the
geometric realization of every slice category is homeomorphic with a closed n-
cell, for some n. That is, for all c ∈ Objects(C), the category C/c is isomorphic
to the category of faces of an n-cell under inclusion, for some n. The definitions
of open cells, closed cells, cell boundaries, characteristic functors, the dimension
of an object, the n-skeleton, and cell functors are analogous with those used
above for simplicial categories. The Poincaré construction associated with a
group presentation is a non-trivial example of a 2-dimensional cell category. It
will be shown by Lemma 3.12 that every cell category can be subdivided to form
a simplicial complex, and thus topologically they are polyhedra.

3.3 Quillen’s Construction on Categories

Let C be a cone category with distinct objects ci, i = 0, 1, . . . , n, and arrows
fi : ci−1 → ci. The sequence of composable arrows

c0
f1

→ c1
f2

→ c2 · · · cn−1
fn

→ cn

is called a chain of length n. A chain of length 0 is simply an object of C with
no arrows. Since the objects are distinct, the arrows fi are all non-identity
arrows. Moreover, since C is a cone category and thus has no non-trivial cycle
of arrows, the product of any composable subsequence of the arrows is also not
an identity arrow. A subchain of a chain of arrows in C is an arbitrary subset
of the objects, arranged in order, with the appropriate products of arrows from
the chain placed between the objects. For any arbitrary cone category C, the
poset Chain(C) is defined as the set of all finite chains ordered by subchains.

Lemma 3.10 If C is a cone category, the category of the poset Chain(C) is
a simplicial category in which the attaching functors are injective on objects.
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Additionally, the minimal elements of Chain(C) are in 1 to 1 correspondence
with the objects of C.

Proof: The principal ideals in the poset Chain(C) are clearly closed simplices
since the subchains of a chain are indexed by the objects of the chain which
it contains. When the poset is converted into a category, this shows that the
resulting category is a simplicial category whose attaching functors are injective
on objects. The final statement is a reformulation of the fact that a chain of
length 0 is simply an object of C. 2

In the original paper by Quillen[17], no restrictions are placed on the objects
and arrows. In fact, such restrictions are only possible in categories such as
cone categories where there are no non-trivial cycles of arrows. The difference is
inconsequential topologically since the resulting constructions are homotopically
equivalent, but the construction without the identity arrows is closer in spirit
to the poset construction, and the result is cleaner to work with.

Lemma 3.11 If C is a cone category and C ′ is the poset Chain(C) then the
topological space of C is homeomorphic with that of C ′ and the homeomorphism
carries an open cone c onto the union of the chains (open simplices) of C ′ which
contain c as a terminal object. In this sense, C ′ is a simplicial subdivision of
C.

Proof: The proof proceeds by induction on the height of the cone category
C. The lemma is trivially true for cone categories of height 0 since the spaces
involved are collections of isolated points of the same cardinality. If it is as-
sumed that the lemma is true for all cone categories of height at most k, then
Lemma 2.10 guarantees that the homeomorphism f can be extended to the
additional (k + 1)-cones in such a way that the statement of the lemma is pre-
served. By induction, the lemma holds for all cone catgories of finite height.
Since general cone caetgories are constructed inductively from their k-skeletons,
this is sufficient to prove the lemma in general. 2

Lemma 3.12 If C is a cone category then C ′′ = Chain(Chain(C)) is a simpli-
cial complex whose topological space is homeomorphic to that of C. Thus every
cone category is a polyhedron.

Proof: The result is a combination of Lemma 3.11 and Lemma 2.11. 2

Let f : B → C be a cone functor between cone categories. Since cone
functors preserve the height of the objects, the image of a sequence of arrows
which form a chain in B will also form a chain in C. This defines a function
called Chain(f) from Chain(B) to Chain(C).

Lemma 3.13 If f : B → C is a cone functor between cone categories, then
Chain(f) : Chain(B) → Chain(C) is a simplicial functor between simplicial
categories.
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Proof: Since subchains are clearly sent to subchains under Chain(f), it is
an order-preserving function, and since the principal ideals of Chain(B) and
Chain(C) are the poset of all subchains of a given chain, the restriction of
Chain(f) to a principal ideal is clearly an isomorphism. 2

3.4 Coverings of Cone Categories

The final result in this section shows that the covers of the geometric realizations
of cone categories also have the structure of a cone category. Recall that the
same letter is used to denote a cone category, technically a category rather than
a topological space, and also to denote its geometric realization as a conical CW
complex.

Lemma 3.14 If B is the geometric realization of a cone category, and f : C →
B is a covering map between a topological space C and the conical CW complex
B, then f is the geometric realization of a cone functor f : C → B between two
cone categories. Similarly, all of the deck transformations of C relative to f are
geometric realizations of cone functors from the cone category C to itself.

Proof: Clearly the lemma is true if B has rank 0, so assume that the lemma
is true whenever B has rank less than n for some n at least 1. By Lemma 3.12
the conical CW complex B and all of its closed cones Bi are polyhedra and thus
are topologically equivalent to traditional CW complexes. Thus Lemma 1.21
can be applied giving C the structure of a conical CW complex and making f a
cone map. It only remains to show that the conical CW complex C is also the
geometric realization of a cone category. Since the k-skeleton of C is a cover
of the k-skeleton of B for all k < n, the (n − 1)-skeleton of C is the geometric
realization of a cone category by the inductive hypothesis. Also, since f is a
cone map, the closed cones of rank n in C are homeomorphic with closed cones
in B, and thus are also geometric realizations of cone categories.

If the category underlying the (n − 1)-skeleton of C and the categories un-
derlying the n-cones of C are joined together according to the attaching maps
the result is a new category of rank n. It is easy to check that the multiplication
on this new structure is well-defined, that it is associative, and that the slice
categories of the new category correspond to the categories of the closed n-cones
of C. Moreover, since the attaching maps of the closed n-cones of C agree with
those which would be constructed following the procedure in Lemma 3.6, the
n-skeleton of C is the geometric realization of a cone category.

By induction, the k-skeleton of C is the geometric realization of a cone
category for all k, and since these categories are compatible, their union is a
category whose geometric realization is C. Finally, the second statement of the
lemma is an immediate consequence of the first one. 2
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Part II

Relators

In this part the focus of attention is narrowed to those cone complexes and cone
categories in which the boundaries of the cones are homotopically equivalent to
S1. These ‘circular’ categories are introduced in Section 4. In Section 5, the
key concept of a general relator is defined and the technical properties of these
relators are investigated.

4 Circular Categories

In this section circular categories are introduced, and notations for words, cy-
cles, paths and loops in labeled circular categories are established. The section
concludes with the proof of a 1-dimensional version of the simplicial approxima-
tion theorem for circular categories. In particular, it is shown that in a circular
category all topological paths which start and end at vertices are homotopic
relative to their endpoints to a combinatorial path in the 1-skeleton.

4.1 Circular Complexes and Circular Categories

A circular complex is a special type of cone complex which is tailor-made to work
as a building block for a general small cancellation theory. A cone complex whose
1-skeleton is a simplical complex and where the subspace ∂c is homotopically
equivalent to a circle for all elements c of rank at least 2 is called a circular
complex. By virtue of the fact that every circular complex C is a cone complex,
many concepts have already been defined for circular complexes. The elements
c ∈ C are called open circular cones, and the principal ideals C/c are closed
circular cones. A cone map between circular complexes is called a circular map.

A circular category, C, is a cone category in which every slice is the category
of a closed circular cone. An object of the category is called an open circular
cone, the slice category C/c with the attaching functor, φc, implicitly under-
stood is called a closed circular cone and ∂c, which is equal to C/c minus its
maximum element, is the boundary of c. A circular functor is a cone functor be-
tween circular categories. The definitions of rank, the n-skeleton, and geometric
realization are the same as for cone categories. Notice that the 1-skeleton of a
circular category is a graph so that it is possible to speak of edges and vertices
in C. Circular categories, merging the specificity of circular complexes with the
flexibility of cone categories, will be the constructions of primary interest in the
remainder of the article. In the same way that cell categories are an economical
way to construct and prove results about manifolds, circular categories are an
economical way to construct and prove results about groups.
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4.2 Inversions and Words

The language of inversions presented below is an extension of the usage in [5] and
is used here to provide a unified way to describe the fact that most functions
between invertible objects (such as letters, words, edges, paths, cycles, etc.)
commute with inversion. The ease with which a labeled graph can be defined
illustrates the advantages of this approach.

Let A be a set and let ι : A → A be a function from A to itself such that
ι(ι(a)) = a for all a ∈ A. The function ι is called an inversion of A and, when ι is
understood, A is called an invertible set. The element ι(a) is the formal inverse
of a and is usually written a−1. The set {a, ι(a)} is called an orbit. An inversion
homomorphism between invertible sets A and B is a function f : A → B such
that f(ι(a)) = ι(f(a)) for all a ∈ A. Invertible sets are closed under direct
product in the obvious way. If ιA is the inversion of A and ιB is the inversion of
B, then the function ιA×B defined by ιA×B(a, b) = (ιA(a), ιB(b)) is an inversion
on the product A × B.

An orientation of an invertible set A is a distinguished subset A+ ⊂ A such
that ι(A+) is disjoint from A+ and A+ ∪ ι(A+) = A. The elements of A+ are
called the positive elements of A, and those in ι(A+) are negative elements.
When A+ is clear from context we say that A is oriented. A necessary and
sufficient condition for an orientation to be possible is that the inversion, ι,
must be fixed-point-free. If A+ ⊂ A is an orientation of A then ι(A+) ⊂ A is
another orientation of A called the opposite orientation. If f is an inversion ho-
momorphism between oriented sets A and B, it is called orientation-preserving
if f(A+) ⊂ B+ and orientation-reversing if f(A+) ⊂ ι(B+).

An alphabet is a set. All alphabets considered in this article will be, in
addition, finite, oriented, and invertible. The free monoid over an alphabet A
is denoted A∗, and |W | represents the length of a word W ∈ A∗. If W , X ,
Y , and Z are possibly empty words such that W = XY Z in A∗, then X is an
initial segment of W , Y is a subword of W , and Z is a final segment of W . If
W = XY and Z = Y X then Z is a cyclic conjugate of W . A cyclic conjugate is
proper if both X and Y are nonempty words. The equivalence class of all cyclic
conjugates of a word W is called the cycle of W or simply the cycle W . The
cycle of W can be thought of as a string of letters in A which are ‘written in
a circle’. The circle can be then be broken at any point to create a particular
cyclic conjugate of W . The inverse of a word, denoted W−1, is the formal
inverse of each letter listed in the opposite order, and the inverse of the cycle
of the word W is the cycle of W−1. A word, W , is reduced when ι(a)a does
not occur as a subword for any letter a ∈ A, and cyclically reduced if all cyclic
conjugates of W are reduced. Define W 0 to be the empty word, W n+1 = W nW
for all positive integers and W−n = (W−1)n when −n is a negative integer. If
W = V n for some word V and integer n > 1, then W is a power of V . If a
reduced word W is not a power of any word V , then W is simple. Equivalently,
W is simple iff it is not equal to any of its proper cyclic conjugates. If W is a
subword of V n then W is V -periodic and V is a period of W . The following
lemma is easy to prove and well-known in the literature. See for example [13].
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Lemma 4.1 Let X and Y be simple non-conjugate words. If W is both X-
periodic and Y -periodic, then |W | < |X |+ |Y |. As a consequence, whenever X i

is Y -periodic for some integer i > 1, |X | < 1
i−1 |Y |.

A word equivalent to the identity in a free group is called a Dyck word. These
words have numerous well-known properties such as the fact that they can be
reduced to the empty word by repeatedly removing subwords of the form aa−1

for some a ∈ A. Other easy properties are contained in the next two lemmas.

Lemma 4.2 The set of Dyck words is closed under products, conjugates, and
the removal of subwords which are also Dyck words. In addition, every non-
empty Dyck word contains a subword of the form aa−1 for some a ∈ A, and the
cycle of a Dyck word always contains at least two subwords of this form. All
Dyck words have an even length. And finally, if W and W−1 are words in A∗

which are conjugate to each other in the free group over A, then W is a Dyck
word and thus equivalent to the identity element.

4.3 Graphs and Cayley Graphs

A graph is a 1-dimensional simplicial category. Since 0-simplices and 1-simplices
are indistinguishable from 0-cells and 1-cells, a graph could also be defined as
a 1-dimensional cell category. The 0-simplices are called vertices, and the open
1-simplices are called edges. If a graph is also a simplicial complex then it is
called a simplicial graph, in which case the attaching maps are injective and
every pair of vertices determines at most 1 edge.

The slice category of an edge contains exactly 2 vertices called the endpoints
of the edge, and the two possible orderings of these vertices yield two orientations
of the edge. Although the endpoints are distinct in the slice category, they
may be identified under the attaching map. An oriented edge is conventionally
represented by an arrow going from one endpoint to the other. These vertices
are called its initial and terminal vertices, respectively. Note that the arrow used
to represent an oriented edge is very different from an arrow in the simplicial
category of the graph. If Γ is a graph then the edge set of Γ, written Edges(Γ),
is the set of oriented edges of Γ. The edge set of a graph is invertible and
orientable since reversing the orientation of an edge generates a fixed-point-free
involution of Edges(Γ). An oriented graph is a graph with an orientation of its
edge set. To describe an oriented graph it is enough to describe the positive
edges.

A graph morphism is a simplicial functor between graphs viewed as simplicial
categories. Every graph morphism induces an inversion homomorphism between
the edge sets. A graph morphism between oriented graphs is called orientation-
preserving or -reversing according to the status of the inversion homomorphism
between the edge sets. A morphism from a graph to itself is an automorphism
and the set of all automorphisms forms a group called the automorphism group
of the graph.

A graph Γ is labeled by an invertible alphabet A if there is an inversion
homomorphism f : Edges(Γ) → A. A graph which is labeled by A is called
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an A-graph or, if A is understood, simply a labeled graph. A labeled graph
is deterministic if every pair of distinct oriented edges leaving the same initial
vertex has distinct labels. A labeled circular category is one whose 1-skeleton
is a labeled graph.

Let p be an inversion homomorphism from an alphabet A to a group G.
When the unique extension of p to a monoid homomorphism p∗ : A∗ → G is
onto, then it is said that A (via p) generates G, the letters in A are generators,
and G is called an A-group. If the function p is injective, then the generators
can be viewed as elements of G. The size of a generating set is the number of
orbits in A. If G and H are A-groups via p : A → G and q : A → H respectively,
and f : G → H is a group homomorphism such that fp = q, then f is called an
A-group homomorphism. When X is a word in A∗ sent to an element g in G,
then X is called a representative of g.

Lemma 4.3 If G and H are A-groups, and f : G → H and g : H → G are
A-group homomorphisms, then f and g are isomorphisms.

Proof: If p : A → G and q : A → H are extended to the monoid homomor-
phisms p∗ : A∗ → G and q∗ : A∗ → H , then fp∗ = q∗ and gq∗ = p∗. Since
q∗ is onto, so is f . Next, let p∗(X) and p∗(Y ) be arbitrary elements of G. If
f(p∗(X)) = f(p∗(Y )) then q∗(X) = q∗(Y ), so that g(q∗(X)) = g(q∗(Y )) and
p∗(X) = p∗(Y ). Thus f is 1 to 1 as well as onto, so that f is an isomorphism.
By symmetry, g is an isomorphism. 2

The Cayley graph of an A-group G, written C(G, A), is an A-graph con-
structed as follows: the vertices correspond to the elements of G, and the edge
set corresponds to G × A. The oriented edge associated with (g, a) starts at
the vertex g, ends at the vertex ga (or, to be more exact, the vertex labeled by
g multiplied on the right by p(a)), and is labeled by the letter a. The inverse
edge which starts at ga and ends at g corresponds to (ga, a−1) and is labeled
a−1. The vertex corresponding to the identity of the group is considered a dis-
tinguished vertex. Since Cayley graphs are deterministic and every vertex is the
initial vertex of an edge labeled by an arbitrary letter, given any word W and
any vertex v in the Cayley graph, there is always a reading of a word W starting
at v, and it is unique. In particular, for every word W there is a unique reading
of W starting at the base point and the endpoint u of this reading is the vertex
corresponding to the element g of G which is equal to the product of the letters
in the word W in the group G. This endpoint in turn determines a unique au-
tomorphism of the Cayley graph, namely, the one which sends the distinguished
vertex to u. Several important and elementary properties of Cayley graphs are
recorded in the following lemmas without proof.

Lemma 4.4 If G is an A-group then its Cayley graph is the unique, connected,
deterministic A-graph with a distinguished vertex whose label-preserving auto-
morphism group acts transitively on the vertex set and is canonically isomor-
phic to G in such a way that the automorphism corresponding to the generator
a moves the base point to a vertex connected to the base point by an oriented
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Figure 10: The abstract path, Pn

edge labeled by a, for all a ∈ A. In particular, if Γ is a connected, deterministic
A-graph on which the group of label-preserving automorphisms acts transitively
on its vertex set, then Γ is the Cayley graph of its automorphism group.

Lemma 4.5 Let G be an A-group and let C be its Cayley graph. Every word
W ∈ A∗ determines a unique automorphism of C. Thus, the automorphism
corresponding to W is the identity automorphism iff the word W is equivalent
to the identity element in the group, and consequently a path in C is a loop iff
the word read by the path is equivalent to 1 in the group.

Lemma 4.6 If G is an A-group and H is a normal subgroup of G, then there
is a unique label-preserving graph morphism from C(G, A) to C(G/H, A) which
sends the distinguished vertex to the distinguished vertex. Moreover, one way of
constructing such a function is to quotient the graph C(G, A) by the action of
the subgroup of the automorphism group corresponding to H under the canonical
isomorphism.

4.4 Paths, Lines, and Loops

The three examples listed below define types of graphs which will be needed
later. To fix notation let Z be the integers, let [n] = {1, 2, . . . , n} with [0] = ∅,
let Zn = Z/nZ be the cyclic group of order n, let D2n be the dihedral group of
order 2n, and let D∞ be the infinite dihedral group, which is the relatively free
group generated by two involutions.

Example 1 An abstract path, Pn, n ≥ 0, is an oriented graph with vertices
∼= [n + 1] and positively oriented edges ∼= [n] such that the positive edge i goes
from the vertex i to the vertex i + 1 (see Figure 10). The automorphism group
of Pn, n > 0, is the cyclic group Z2, since the only non-trivial automorphism is
the morphism which sends the vertex i to n + 2 − i for all i ∈ [n + 1].

Example 2 An abstract line, L, is an oriented graph with vertices ∼= Z and
positively oriented edges ∼= Z such that the positive edge i goes from the vertex i
to the vertex i+1 (see Figure 11). The automorphisms of L form the group D∞,
and they can be divided into several types: translations of the graph, reflections
which fix a vertex, reflections which fix an edge, and the identity.

Example 3 An abstract loop, Ln, n ≥ 1, is an oriented graph with vertices
∼= Zn and positively oriented edges ∼= Zn such that the positive edge i goes
from the vertex i to the vertex i + 1 (see Figure 12). The automorphisms of
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Figure 11: The abstract line, L
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Figure 12: The abstract loop, L6

Ln form the group D2n, and they can be divided into several types: rotations
of the graph, reflections which fix a vertex, reflections which fix an edge, and
the identity. If n is odd there is no difference between vertex- and edge-fixing
automorphisms; if n is even then there is a difference. In particular notice that
a reflection which fixes a vertex or an edge must also fix the graphical element
which is directly opposite it. If n is even then for every vertex there is an
opposite vertex and for every edge an opposite edge. If n is odd for every vertex
there is an opposite edge and vice versa.

An abstract path has two endpoints, namely the vertices 1 and n + 1, which
are called the start and the end of the path respectively, since they are at the
start and end of the sequence of positively oriented edges in Pn. The vertex 1 in
L and Ln is called its base. All other vertices in Pn, L or Ln are called interior.
Let C be a circular category. A finite path is a circular functor from Pn to C
or equivalently a graph morphism into the 1-skeleton of C, a loop is a circular
functor from Ln to C, and a line or infinite path is a circular functor from L to
C. The start (end) of a path is simply the image of the start (end) of Pn and
the base of a line or a loop is the image of the base of L or Ln.

The inverse of a path is the same functor from Pn to C but precomposed
with the unique non-trivial automorphism of Pn. The inverse of a line or a loop
is the same functor but precomposed with the unique non-trivial automorphism
which fixes the base. A path, line, or loop is called reduced if the positively
oriented edges i and i + 1 are never sent to edges which are inverses of each
other. The degree of a vertex v, written d(v), is the number of oriented edges
with v as an initial vertex. A path, loop, or line is called simple iff the graph
map into C is injective on vertices. An arc is a simple loop or a maximal simple
path in which all interior vertices have degree 2. The length of a path or loop
is the number of positive edges in its domain. A path from u to v of shortest
length is called a geodesic. A line is called a geodesic if every path it contains is
a geodesic. A graph is connected if every pair of vertices can be the endpoints
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of a path. Every connected graph Γ comes equipped with a metric called the
graph metric in which the distance between the vertices u and v is the length
of a geodesic from them. If C is a circular category, v is a vertex in C and n
is a positive integer, then the ball Ball(v, n) is the connected subgraph of the
1-skeleton of C consisting of v, all the vertices u whose distance to v in the
graph metric is less than n, and all of the edges of C whose endpoints are in
Ball(v, n). The vertex v is called the center of the ball, and n is the radius.
Notice that Ball(v, 0) = Ball(v, 1) is the vertex v alone. Sometimes it will be
convenient to include in Ball(v, n) all of the open cones whose entire 1-skeleton
is already included under the above definition.

4.5 Labeled Paths and Loops

If the graph Pn is labeled by A then the labels of the positive edges of Pn form
a word in A∗, and conversely, every word of length n corresponds to a unique
labeling of the positive edges of Pn. Using this correspondence the word W will
refer both to a particular finite string of letters and to the associated labeled
abstract path. The form intended will be clear from context. The word W is
reduced iff its graph is deterministic. If W is a reduced word then its graph
is called str1(W ), the rank 1 straightline construction on W , and if W is not
reduced then str1(W ) is the rank 1 straightline construction of its reduction in
the free group.

Similarly, if the graph Ln is labeled by A then the labels of the positive edges
form a cycle, and every cycle of length n corresponds to a labeling of the positive
edges of Ln. If labelings of Ln which differ by an orientation-preserving auto-
morphism are considered equivalent, then the equivalence classes of labelings of
Ln correspond exactly to cycles of length n. Orientation-preserving automor-
phisms of Ln only serve to change the base and thus produce cyclic conjugates
of the word read along the positive edges from the base. The cycle W will also
refer to the associated labeled abstract loop. A word is cyclically reduced iff its
cycle is reduced iff the corresponding labeling of Ln is deterministic. If the cycle
W is reduced then the labeled graph Ln is called cir1(W ), the rank 1 circular
construction on W , and if the cycle W is not reduced (and doesn’t freely reduce
to the identity), then cir1(W ) is the rank 1 circular construction of its cyclic
reduction in the free group.

Every path in a labeled graph Γ induces a labeling of Pn and thus corre-
sponds to a word W ∈ A∗. The word W is called the word read by the path,
the path reads W , and W is readable in Γ. Similarly, a loop in a labeled graph
induces a labeling of the abstract loop which corresponds to a cycle, say W .
The cycle W is called the cycle read by the loop, the loop reads W and the
cycle W is readable in Γ. A path which reads the word W is called the path
W , and a loop which reads the cycle W is called the loop W . At this point
four distinct situations have been defined which can be indicated by the same
finite string of letters, W ∈ A∗, namely, the word W , the cycle W , the path
W , and the loop W . To summarize the distinctions: words and cycles refer
to labeled abstract paths and loops, respectively, while paths and loops refer
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Figure 13: A rank 1 straightline construction
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Figure 14: A rank 1 circular construction

to implicitly understood, label-preserving functors from a word or cycle into a
labeled complex of some kind.

Example 4 In Figure 13 the rank 1 straightline construction str1 is illustrated
for the word W = abacd. Notice that it is also the rank 1 straightline construc-
tion of the word abee−1acd.

Example 5 In Figure 14 the rank 1 circular construction cir1 is illustrated for
the word W = abacd. Notice that it is also the rank 1 circular construction of
the word eabacde−1.

An automaton is a labeled graph with a specified start state and one or more
specified end states. In this article all automata considered will have exactly one
end state. A word W is accepted by an automaton Γ if it is read by a path in
Γ which starts at the start state and ends at one of the end states. The inverse
of a word W , denoted W−1, corresponds to the same labeled graph but with
the opposite orientation. The inverse of a cycle, a path, or a loop is defined
analogously. If a word is its own inverse then the non-trivial automorphism
of Pn is label-preserving. If n is odd then the middle edge is fixed, and the
alphabet is non-oriented, and if n is even then the middle two edges show that
the word is not reduced. Thus no reduced word over an oriented alphabet is
its own inverse. If W is a word read by path from u to v, then W−1 is read
from v to u. Let X be a path from u to v and let Y be a loop based at v. The
loop Y can be conjugated by X to produce a loop based at u. Specifically, the
conjugation of Y by X is a loop which reads the word XY X−1.

4.6 Approximations by Paths

A path, in the topological sense of the word, is simply a continuous function from
the unit interval [0, 1] to a topological space. The Simplicial Approximation
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Theorem on simplicial complexes can be used to show that every topological
path between vertices of a circular category is homotopic relative to its endpoints
to a path as defined above.

Lemma 4.7 If C is a circular category and f : [0, 1] → C is a topological path
which starts and ends at vertices in the space C, then f is homotopic relative
to its endpoints to a simplicial path in the 1-skeleton of C.

Proof: The crucial properties of circular cones are that, like simplices and
cells, they are contractible spaces with path-connected boundaries when the
rank is 2 or more. By Lemma 2.12 the circular category C can be subdivided so
that the result is a simplicial complex. The traditional simplicial approximation
theorem can then be applied to the subdivided complex. The finite number of
vertices in the new path are each contained in a unique open cone of C by
Lemma 1.16. Let k be the maximum rank of an open cone of C containing a
vertex of the path. This implies that the new path is in the k-skeleton of the
original category C. If k ≥ 2, then the path can be shown to be homotopic to
a path in the (k − 1)-skeleton as follows.

Let c be an open cone of rank k which contains a vertex v of the new path.
The edges on either side of v must also be contained in c. By looking far enough
in each direction there is a unique vertex in the path which is farthest from v,
in the boundary of c, and with all edges and vertices in the path between it and
v in the open cone c. Let v1 and v2 be these vertices on either side of v. The
portion of the path between v1 and v2 is in the closed cone C/c and it starts
and ends in the boundary of c. Since the closed cone c has a path-connected
boundary and is contractible and thus simply connected, there is a path between
v1 and v2 which is contained in ∂c and is homotopic to the other path, keeping
the endpoints fixed. By again applying the simplicial approximation theorem
to the new path between v1 and v2 in the lower skeleton, the new path is also
simplicial.

Technically speaking, the image of the closed cone C/c under the attaching
functor may not be either simply connected or contractible. The homotopic
path is actually to be found by lifting the portion between v1 and v2 into the
closed cone C/c, choosing a path in the boundary, applying the Simplicial Ap-
proximation Theorem to the path in the boundary, finding a homotopy to the
new path, and then pushing the homotopy, via the attaching map, back down
into the construction. If this procedure is carried out for each of the open cones
of rank k, then the maximum rank of a vertex in the path will be k − 1, and
the path is now in the simplicial subdivision of the (k − 1)-skeleton of C.

Continuing in this way, the path will eventually be a path in the 1-skeleton.
At this point, a similar procedure is followed. For all vertices v in the path
which are not vertices of C, there is an open edge c containing v and vertices
v1 and v2 in the boundary ∂c as defined above. If the lift of the path between
v1 and v2 to the closed edge C/c lifts v1 and v2 to the same endpoint, then
the path between v1 and v2 is homotopic to the constant path, and thus the
original path is homotopic to the path obtained by removing the vertices and
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edges between v1 and v2 and connecting the two sections. If, on the other hand,
v1 and v2 are at opposite ends of the edge when lifted, then the portion of
the path between v1 and v2 is homotopic to a nice linear function between the
subinterval of [0, 1] and the edge c. When this is done for all vertices in the path
which are not vertices in the original category C, the result is a function from
unit interval [0, 1] to the 1-skeleton of C which by appropriately partitioning
[0, 1] is a circular functor into the 1-skeleton of C. 2

Lemma 4.8 A circular category is path-connected as a topological space iff its
1-skeleton is a connected graph.

Proof: Lemma 4.7 shows that being topologically connected implies that the
1-skeleton is connected. To see the converse, notice that by Lemma 1.16 every
point is contained in an open cone and thus contained in the image of a closed
cone. Moreover, since a closed cone is path-connected and contains a vertex,
every point in the space of the circular category is connected by a path to a
vertex. These paths combined with the connectedness of the graph prove that
the topological space is path-connected. 2

A circular category which satisfies either condition of Lemma 4.8 will be
called a connected circular category.

5 General Relators

In this section a generalization of the traditional notion of a relator is defined
and some of the basic properties of these general relators are examined. More
specifically, the lemmas in this section show that all paths in the boundary of
a general relator beyond a certain minimum length can be assigned an orien-
tation relative to the boundary, and that under relatively mild conditions, the
shortest loops with winding number 1 must be simple. The section concludes
with specialized results on cycles which are piecewise geodesic, relator metrics,
and the structure of the automorphism groups of relators.

5.1 Length and Representatives

A generator is an edge labeled by A. A relator in the usual sense can be thought
of variously as a cyclically reduced word W ∈ A∗, as a cyclically reduced word
W ∈ A∗ together with all cyclic conjugates of W and its inverse, as a cycle, as
a deterministically labeled loop, or as a 2-dimensional cell with a deterministic
labeling by A. The last description is the most geometric and the one which is
used as the basis of the generalization which follows.

A general relator over A is defined to be a circular cone of rank n > 1 with
a deterministic labeling by A. Note that a general relator is, by definition, a
circular complex; it cannot be a circular category which is not also a circular
complex. This extends the usual notion of a relator in a group. The restriction
that a general relator be a circular complex corresponds to the usual restriction
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that relators be cyclically reduced. If C is a labeled circular category, and c
is an object in C of rank at least 2, then R = C/c is a general relator which
inherits its labeling from the attaching map φc : R → C. The boundary of R,
written ∂R, is defined to be ∂c, the boundary of c.

Since ∂R is homotopically equivalent to a circle, this implies, among other
things, that π1(∂R, v) ∼= Z for every vertex v in ∂R. Since there are two possible
isomorphisms of Z with itself, there are two possible isomorphisms between
π1(∂R, v) and Z which are called the two orientations of the relator, R. If a
particular isomorphism from π1(∂R, v) to Z is chosen then an integer can be
assigned to every oriented loop based at v and by path conjugation to every
oriented loop in ∂R. Since every loop in R is contained in its 1-skeleton and
thus in ∂R, all loops in R are assigned an integer. If the other isomorphism with
Z is chosen then the integer assigned to a particular loop will be opposite in
sign. Thus the absolute value of this integer is a characteristic of the unoriented
loop, which will be called the winding number of the loop. By the definition of
π1 it is known that a loop in a circle is contractible or homotopic to a point iff
it has a winding number of 0. If both the loop and the relator are oriented then
a plus or a minus sign is added to the winding number according to whether it
is orientation-preserving or -reversing. A loop in R is called a representative of
R if it has a winding number of 1, regardless of sign.

Lemma 5.1 Every general relator has a representative. Specifically, if R is
a general relator, then R contains a loop in its 1-skeleton which has winding
number 1.

Proof: Let f : [0, 1] → ∂R be a topological path which starts and ends at the
same point and has winding number 1 as a topological loop. Since the boundary
of R is topologically connected f is conjugate to a loop which starts and ends
at a vertex in ∂R. Thus, without loss of generality, assume this is true of f . By
Lemma 4.7, f is homotopic relative to its endpoints to a path in the 1-skeleton
of ∂R. Since the endpoints remain fixed, the loop formed in the 1-skeleton is
homotopic relative to its basepoint to the loop formed by f . Because winding
numbers are invariant under such homotopies, the proof is complete. 2

Lemma 5.2 For every general relator R there exists a simple loop U with some
winding number, say n, such that for all loops V with winding number m,

|U |

n
≤

|V |

m

Proof: First of all, by Lemma 5.1 there exists at least one loop with a non-
trivial winding number. If this loop is not simple then it can be decomposed
into two loops of shorter length, one of which again has a non-zero winding
number. Continuing in this way a simple loop with non-zero winding number.
The process must stop since the loops are getting shorter. Since the relator R
is finite, there are only a finite number of simple loops and thus there exists a
simple loop U such that the length of U divided by its winding number is the
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smallest possible among all simple loops with non-zero winding number in R.
The ratio of the length of the simple loop U to its winding number is actually
minimal among all loops with non-zero winding number in R. The argument
proceeds by contradiction.

Suppose that there exists a loop V such that the length of V divided by its
winding number is strictly less than the length of U over n. Suppose further
that V is selected so that the length of V is the shortest possible among all
counterexamples. Since U yields the smallest value among all simple loops, V
must be non-simple. Let V1 and V2 be loops read in R so that the loop V1

followed by the loop V2 is the loop V . If the orientation of the loops V1 and
V2 are identical then since a+c

b+d
is between a

b
and c

d
for all positive numbers

a, b, c, and d, the ratio of length to winding number for at least one of the
two smaller loops must be at least as small as that of V , contradicting the
minimality of the counterexample V . If, on the other hand, the orientations of
the two loops are opposite in sign, then one of the loops has a shorter length
and a winding number at least as large, so that its length divided by its winding
number is smaller than the ratio for V , again contradicting the minimality of
V as a counterexample. Since all possibilities lead to contradictions, it must be
that no counterexample exists. 2

The length of the general relator R, written |R|, is defined to be |U |
n

, where
U and n are as described in Lemma 5.2. A simple loop U with winding number
n for which |U | = n|R| is called a standard geodesic of R.

Corollary 5.3 If V is a loop in a general relator R and m is its winding number
then |V | ≥ m|R|.

The universal cover of an abstract labeled loop W is called W∞ since it is
an abstract labeled line which reads the bi-infinite word

. . . WWWW . . .

By analogy, if R is a general relator, then the universal cover of ∂R is called
R∞. A path W in ∂R which lifts to a geodesic path in R∞ will, by an abuse of
notation, be called a geodesic. This is equivalent to requiring that the path W
be the shortest path in its homotopy class relative to its endpoints. Similarly,
a loop W in ∂R is called a geodesic in ∂R if there does not exist a shorter loop
in ∂R which is homotopic to W . Since by Corollary 5.3 U is the shortest loop
of winding number n, and since loops in circles are homotopic iff they have the
same winding number, U certainly deserves to be called a geodesic loop. It is
important to realize that geodesic loops in the boundary of a general relator
R do not necessarily lift to geodesic loops or lines in the regular covers of ∂R.
See Example 1 in Section 6. The standard geodesic U , however, does have this
property.

Lemma 5.4 If U is a standard geodesic of a general relator R, then the natural
map from U∞ to ∂R lifts a line U∞ in R∞ which is a geodesic.
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Proof: A path between points in the line U∞ whose length is strictly less than
the portion of U∞ demarcated by these points can be used to create a loop in
∂R which violates the minimality of the loop U as guaranteed by Lemma 5.2.
2

5.2 Ends and Orders

Let R be a general relator, let R∞ be the universal cover of its boundary, and
let f : R∞ → ∂R be the covering map. Since π1(∂R, v) ∼= Z by definition, there
is a 1 to 1 correspondence between the vertices of f−1(v) and the integers Z. In
particular, if W is an oriented representative of R based at v and v0 is a vertex
with f(v0) = v, then define vn ∈ f−1(v) to be the vertex which is the endpoint
of the lift of W n to R∞ starting at v0. The following lemma is immediate.

Lemma 5.5 If R is a general relator, f : R∞ → ∂R is the covering map, W
is an oriented representative of R based at a vertex v, and v0 is a vertex in R∞

with f(v0) = v, then for all integers n the lift of the path W starting at vn ends
at vn+1.

In order to facilitate the proofs in this subsection it is convenient to assign
a unique subscript to every vertex (and open cone) in R∞. This can be done
efficiently by choosing a spanning tree in R. Let T be a fixed spanning tree of
the 1-skeleton of R. More generally, T can be extended to a spanning tree T ′ of
the poset which defines the cone complex ∂R. Since T ′ is a tree and thus simply
connected, it follows by Lemma 1.13 and Lemma 1.14 that there are uniquely
defined lifts gi : T ′ → R∞ which send v to vi. The same lemmas can be used
to show that the images of these lifts partition the open cones in R∞ in the
following sense.

Lemma 5.6 If R is a general relator, and f , gi, and T ′ are as described above,
then the open cones in the images gi(T

′) are disjoint in R∞ and their union
contains every open cone in R∞.

For each open cone u in R, define ui = gi(u). Since the images gi(T
′)

partition the open cones in R∞, this definition assigns a unique subscript to
each open cone in R∞.

Lemma 5.7 Let R be a general relator, and let f , v, W and vi, i ∈ Z be as
described above. If a finite portion of the 1-skeleton of R∞ is removed, then
there is a large positive integer N , based on n and R, such that the open cones
ui are in the same connected component of the result for all i ≥ N and for all
open cones u in R. Similarly, there is a large negative integer N ′ such that the
open cones ui are also in a connected component of the result for all i ≤ N ′ and
for all u in R.

Proof: Let j be the largest subscript assigned to a open cone in the ball
Ball(v0, n). Next, consider the path which starts at v0 and reads the word W ,
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and let k be the absolute value of the smallest subscript assigned to a vertex or
edge in this path. The statement of the lemma will be true for all N strictly
bigger than j+k. To see this, notice that gi(T

′) is connected and all of the open
cones involved has the same subscript so that for all i > j and for all u ∈ R, ui

is in the same connected component as vi. And finally, vi is connected to vi+1

by a path reading W and all of the vertices and edges involved have subscripts
of at least i− k. An analogous argument works for large negative subscripts. 2

When a finite portion of the 1-skeleton of R∞ is removed, then the connected
component of the result which contains the vertices vi for arbitrarily large pos-
itive integers i will be called the positive end, and it will be denoted R+∞.
Similarly, the connected component of the result which contains the vertices vi

for arbitrarily large negative integers i will be called the negative end, and it
will be denoted R−∞. Notice that these do not necessarily describe distinct
connected components. When there is some finite portion which when removed
causes these components to become distinct, then these ends are said to be
disconnected. The labeling of these components as ends conforms to the use of
this term by John Stallings ([19]). The following Corolllary is recorded for later
use. It states that the positive and the negative end are the only possible ends.

Corollary 5.8 If R is general relator and a finite number of open cones are re-
moved from R∞ then there are at most two connected components which contain
an infinite number of open cones. In particular the only connected components
with an infinite number of open cones are the (possibly identical) ends R+∞ and
R−∞.

Proof: This follows immediately from Lemma 5.7 once it is noticed that there
are only a finite number of open cones which are assigned to each subscript. 2

Now that the ends of R∞ have been defined, the next several lemmas will
investigate the ordering induced on disjoint, connected pieces of R∞ which dis-
connect the ends. Each finite Bi under consideration will be the finite union
of open cones. It may not be a subcomplex since the boundary of an open
cone in Bi need not be included in Bi. Also, notice that Bi is required to be
connected in the topological sense, but that the portion of the 1-skeleton in
Bi need not be connected. Such a Bi is said to be connected to R+∞ if there
are (topological) paths which start at open cones in Bi and end at vertices of
arbitrarily large positive subscript. Similarly, Bi is connected to R−∞ if there
are paths which start at open cones in Bi and end at vertices of arbitrarily large
negative subscript. When no restrictions are placed on the connecting paths it
is clear that all Bi are connected to both R+∞ and R−∞, but once restrictions
are introduced, this is no longer the case.

Lemma 5.9 For i = 1, 2, let Bi be a finite union of open cones in R∞ which is
topologically connected and whose removal disconnects the ends R+∞ and R−∞.
If B1 and B2 are disjoint, then the following statements are equivalent:

(1) B1 can be connected to R−∞ by paths which is disjoint from B2.
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(2) B1 cannot be connected to R+∞ by paths which is disjoint from B2.
(3) B2 can be connected to R+∞ by paths which is disjoint from B1.
(4) B2 cannot be connected to R−∞ by paths which is disjoint from B1.

Proof: If (1) is true, and (2) is false, then the B2 does not disconnect the ends,
contradicting the hypothesis of the lemma. Thus (1 ⇒ 2). A similar argument
shows that (3 ⇒ 4). Next, let U∞ be the lift to R∞ of the standard geodesic of
R, and consider Bi ∩U∞. The points in the intersection are at most a bounded
distance apart, bounded by the finite diameter of Bi. Thus there is a last vertex
or edge in U∞ which is contained in Bi. Notice that there must be at least one
vertex or edge in the intersection since Bi disconnects the ends and U∞ connects
them. Moreover, the last vertices/edges in U∞ of B1 and B2 are distinct since
B1 and B2 are disjoint. Finally the Bi which contains the later vertex/edge is
connected to the end R+∞ by the remaining portion of U∞. This shows that
at least one of the Bi is connected to R∞ by paths which are disjoint from the
other, and as a consequence (2 ⇒ 3). An analogous argument shows (4 ⇒ 1).
2

If any of the four equivalent conditions are satisfied then write B1 < B2.
Notice that B1 < B2 implies (assumes) that they are disjoint.

Corollary 5.10 For i = 1, 2, let Bi be a finite union of open cones in R∞

which is topologically connected and whose removal disconnects the ends R+∞

and R−∞. If B1 < B2, then B2 6< B1. Moreover, if B1 and B2 are disjoint,
then either B1 < B2 or B2 < B1.

Proof: The first statement is immediate since condition (2) for the inequality
B1 < B2 and condition (3) for the ineqality B2 < B1 directly contradict each
other. The second statement is immediate from the proof of Lemma 5.9. 2

Lemma 5.11 For i = 1, 2, let Bi be a finite union of open cones in R∞ which is
topologically connected and whose removal disconnects the ends R+∞ and R−∞.
If B1 < B2 and B2 < B3, then B2 is ‘between’ B1 and B3 in the sense that any
path connecting a point in B1 to a point in B3 must contain a point in B2. In
particular B1 and B3 are disjoint, and moreover, B1 < B3.

Proof: By the definition of <, B1 is connected to R−∞, and B3 is connected to
R+∞ by paths which are disjoint from B2. If B1 were connected to B3 by a path
disjoint from B2, then B2 would not disconnect the ends. This contradiction
proves the first statement. If B1 and B3 are not disjoint, the the empty path
connects the common point to itself. Finally, notice that by the first part of the
lemma, the paths connecting B1 to R−∞ which are disjoint from B2, must also
be disjoint from B3. 2

For i = 1, 2, let Bi For i = 1, 2, let Bi be a finite union of open cones in R∞

which is topologically connected and whose removal disconnects the ends R+∞

and R−∞.
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Corollary 5.12 Let F = {Bi|i ∈ I} be a collection where each Bi is a finite
union of open cones in R∞ which is topologically connected and whose removal
disconnects the ends R+∞ and R−∞. If the elements of F are pairwise disjoint,
then < defines a discrete total linear order on F which is order isomorphic to
the integers, the positive integers, the negative integers, or the integers from 1
to n.

Proof: The ordering is total and linear as an immediate consequence of Corol-
lary 5.10 and Lemma 5.11. To see that it is discrete, let B1 and B2 be arbitrary
members of F with B1 < B2. Since B1 ∪ B2 contains only a finite number of
open cones, by Corollary 5.8 there are only a finite number of open cones which
are not in either B1, B2, R+∞ or R−∞. In particular, there are only a finite
number of members of F which contain one of these open cones, and thus only a
finite number of C in F with B1 < C < B2. Since F is totally ordered, there is
a well-defined member of F which comes after B1 and a well-defined member of
F which comes before B2. The final comment simply lists the possible discrete
total orders. 2

5.3 Width and Orientation

The width of a general relator R, written ωR, can be described as the smallest
non-negative integer such that the removal of a ball of radius ωR centered at
any vertex in R∞ will disconnect the ends. Let u be a vertex in R, u0 a lift of
u to R∞, W an oriented representative, and n a positive integer. If the removal
of a ball of radius n centered at u0 disconnects the ends of R∞, then the ends
will also be disconnected by the removal of a ball of radius n centered at any
other lift of u. Also notice that the orientation of W and even the choice of
the representative W is irrelevant since the reversal of the orientation merely
switches the labels on the ends, and another representative would leave the lifts
of u identical. By the above reasoning, it is sufficient to check that the ends
are disconnected for a single lift of each of the finite vertices in R instead of
the infinite number of vertices in R∞. The following lemma shows that such a
number always exists.

Lemma 5.13 Let R be a general relator, and let f , v, W and vi, i ∈ Z be as
described above. There is a unique smallest integer ωR such that for all vertices
u in R∞, the removal of a ball of radius ωR centered at u will always disconnect
the ends.

Proof: The existence of such a unique minimum non-negative integer will
be immediate once it is shown that there is at least one which satisfies the
conditions. To begin let T be the fixed maximal spanning tree described in
the previous section and let k be the maximum distance between vertices in
the tree T , so that ui and wi are within k units of each other for all u and
w in R, even when the possible paths are restricted to those which only use
vertices with subscript i. Next, consider the edges of R. If a particular edge is
lifted to R∞ then its endpoints have subscripts, and the absolute value of the
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difference between these subscripts is a value which is independent of the lift of
the edge. This is because any two lifts differ by an automorphism of R∞ and
the automorphism which sends v0 to vi also sends uj to ui+j for all u ∈ R and
for all j ∈ Z. Since R is finite, there are only a finite number of edges in R and
thus a maximum absolute change in the value of a subscript when traversing a
single edge. Call this largest value m.

Finally, if n is chosen so that n is greater than 2k + m|W |, then the ball
Ball(ui, n) contains all vertices with subscripts in the range [i−m, i + m]. This
can be seen by tracing a path from ui to vi to the vj with the correct subscript,
and then to the final vertex with subscript j. These can be chosen so that their
lengths are at most k, |i−j| · |W |, and k, respectively. This must disconnect the
vertices with large negative subscripts from those with large positive subscripts.
For suppose otherwise: let X be a path from any vertex with a subscript less
than i − m with a vertex with subscript greater than i + m. Since it cannot
contain any vertices with a subscript in [i − m, i + m], it must contain a single
edge which starts at a vertex with subscript less than i−m and ends at a vertex
with subscript greater than i+m, but this contradicts the definition of m. Since
u and i are arbitrary, this shows that there is at least one n which works, and
this completes the proof. 2

If 4ωR ≤ |R| then the general relator R is called thin. Let U be a path in a
general relator R from v to u and let W be an oriented representative of R based
at v, and let vi, i ∈ Z be defined as above using the word W . If the path U in
R∞ which starts at v0 ends at a vertex in the same connected component as
the vertices vi with large positive subscripts once the ball Ball(v0, ωR) has been
removed from the 1-skeleton of R∞, then U is said to have the same orientation
as W , or rather that U is positively oriented relative to W . If U ends at a
vertex in the same connected component as the vertices vi with large negative
subscripts then U is said to have the opposite orientation as W , or that U is
negatively oriented relative to W . If neither is the case, and this possibility does
occur, then U is called unoriented relative to W .

Lemma 5.14 Let R be a general relator and let U be a path in R whose lift to
R∞ has endpoints which are a distance of at least 2ωR apart. If U starts at a
vertex v in R, and W is an oriented representative of R which is based at the
same vertex v then U is oriented either positively or negatively relative to W .

Proof: Let the vertices vi, i ∈ Z be defined as usual from W and a particular
lift v0 of v. By the definition of ωR it is known that when the ball Ball(v0, ωR)
is removed from the 1-skeleton of R∞, the vi with large negative and the vj

with large positive subscripts are contained in distinct connected components,
but it is not known whether there are other connected components. The proof
will show that all of the vertices in the other connected components must be
very close to v0. Let u be the endpoint of the path U lifted to R∞ so that it
starts at v0, and assume that u is in a connected component other than the two
expected ones.
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Consider a path in R∞ from a vertex vi with a large negative subscript to
a vertex vj with a large positive subscript. If this path contains a vertex in a
component other than the two expected ones and the ball Ball(v0, ωR), then
there must be a subpath which starts and ends in Ball(v0, ωR) which contains
the vertex in the other component. Since Ball(v0, ωR) is connected (through
paths to and from v0), this subpath can be removed and replaced by a subpath
completely in Ball(v0, ωR). Continuing in this way, the path from vi to vj will
eventually contain only vertices in the components of vi and vj , and the ball
Ball(v0, ωR).

The assumption about the path U implies that the ball Ball(u, ωR) does
not contain any of the vertices in Ball(v0, ωR). But this in turn means that
Ball(u, ωR) does not contain a vertex of the path described above, and so does
not disconnect the component of vi from the component of vj , contradicting the
definition of ωR. Thus U must end in one of the two standard components. 2

Up until this point, the orientation of a path U has only been defined relative
to an oriented representative of R. The orientation of a path U relative to an
unoriented representative W will now be defined, provided that U is a subword
of the cycle W . The definition goes as follows. Let W ′ be the cyclic conjugate
of the cycle W or W−1 such that U is an initial segment of the word W ′, that
is, so that W ′ = UV for some word V . The orientation of U relative to the
unoriented representative W is then the orientation of U relative to the oriented
representative W ′. Using this definition, it is possible to have a representative
loop W = XUY U−1 and to have both instances of the word U be positively
oriented relative to W . Intuitively, the orientation of U is positively oriented
relative to W if the subword U , as it is situated in W , helps to complete the
loop, and it is negative if, as it is situated in W , goes in the opposite direction.

5.4 Simple Representatives

Although by Lemma 5.1 every general relator contains a representative loop,
it is not true that this representative must be simple or even that a simple
representative must exist at all. A presentation of Z is given in Section 6 which
will provide a counterexample. The lemmas below show that if, however, a
general relator is thin, then there does have to exist a simple representative,
which can then be used to create a deformation retraction.

Lemma 5.15 For all geodesic paths X read in R, there exist paths Y , P and
Q in R such that the path Y is a geodesic read in a standard geodesic loop U ,
the lengths of P and Q are each less than ωR, and the cycle XPY Q is readable
in R as a contractible loop. Since both X and Y are geodesic, ||X | − |Y || ≤
|P | + |Q| < 2ωR.

Proof: Lift the path X to R∞ and consider its relation to the line U∞, the lift
of a standard geodesic loop U . For convenience the lift of X will also be called
X . Since the balls of radius ωR disconnect R∞, there is a vertex or edge of U∞

contained in the ball centered at the start of X . And since edges are included in
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an open ball only if its endpoints are, there must be a vertex. If Q is the geodesic
path from the vertex in U∞ to the start of X , then the length of Q is strictly
less than ωR. Similarly, there is a path P from the endpoint of X to a vertex
of U∞ whose length is strictly less than ωR. By Lemma 5.4 the portion of U∞

marked off by the end of P and the start of Q is a geodesic path which will be
called Y . Since XPY Q is a loop in the universal cover, it is contractible. The
homotopy which proves the contractibility of XPY Q in R∞, when composed
with the projection down into the boundary of R, provides a contraction of the
image of the loop XPY Q in the boundary of R. Finally, X geodesic implies
that |X | ≤ |Y | + |P | + |Q| and Y geodesic implies that |Y | ≤ |X | + |P | + |Q|.
These inequalities can be rearranged to show that ||X |−|Y || ≤ |P |+ |Q| < 2ωR.
2

The next lemma is a technical result which will be used to prove Lemma 5.17.

Lemma 5.16 Let X = X1X2 be a geodesic loop in a general relator R with
|Xi| ≥ 2ωR for i = 1, 2. Let x0 be a lift of x to R∞, let xi be the endpoint of
the path reading X i which starts at x0, let x′

i be the endpoint of the path reading
X1 starting at xi, and let Bi and B′

i be the open balls of radius ωR centered at
xi and x′

i respectively. The following four implications are true:
(1) If Bi < B′

i then B′
i−1 < Bi < B′

i < Bi+1

(2) If B′
i < Bi then Bi+1 < B′

i < Bi < B′
i−1

(3) If B′
i < Bi+1 then Bi < B′

i < Bi+1 < B′
i+1

(4) If Bi+1 < B′
i then B′

i+1 < Bi+1 < B′
i < Bi

In particular, B0 < B′
0 implies that Bi < Bj for all integers i < j, and

B′
0 < B0 implies that Bj < Bi for all integers i < j.

Proof: Since all of these implications have essentially identical proofs, it is
sufficient to show that Bi < B′

i implies B′
i < Bi+1. First of all, each of these

three balls is a finite subgraph of the 1-skeleton of R∞ whose removal disconnects
the infinite ends by the definition of ωR and by Lemma 5.13. Next, B′

i and
Bi+1 are disjoint since X2 is the shortest path between their centers and it
was to have a length of at least 2ωR. Similarly Bi and B′

i are disjoint and
Bi and Bi+1 are disjoint, since the shortest distances between their centers
are |X | ≥ m|R| ≥ |R| ≥ 4ωR and |X1| ≥ 2ωR, respectively. Therefore, by
Corollary 5.12, Bi, B′

i and Bi+1 are linearly ordered. Without loss of generality,
assume that Bi < Bi+1 < B′

i. By Lemma 5.11, the path X1 from xi to x′
i

must contain a point in Bi+1. Let X1 = X11X12 be a partition of X1 so that
the endpoint of X11 lies in Bi+1. The fact that X12X2 is a subword of X
guarantees that it is a geodesic, its least is at least that of X2 which in turn is
at least 2ωR, but since it starts and ends in Bi+1, there is a path connecting the
startpoint to the endpoint of length strictly less than 2ωR, contradiction. Thus
the assumption that Bi+1 < B′

i must have been false. The final statements
follow immediately by iterating the other implications. 2

Lemma 5.17 For all geodesic loops X in a thin relator R, ||X |−m|R|| < 2ωR

where m is the winding number of the loop X, and moreover the winding number
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of X is uniquely determined by this inequality. In particular, |X|
|R| rounded to the

nearest integer is the winding number of X.

Proof: Let U be a standard geodesic loop read in R and let n be its winding
number. Orient the loops U and X so that they induce the same orientation
on R. Next, let x be a point in the loop X , let P be a path of minimal length
from x to any point u in U , and without loss of generality assume that X and
U are the words determined by the vertices x and u. Since the loops X and U
are geodesic loops, by definition X and U are geodesic words. Since the loops
Xn and Um both have the same winding number, namely, nm, it follows that
XnPU−mP−1 is a loop of winding number 0.

Let x0 be any point in universal cover R∞ which is sent to x by the covering
map f . Next, let u0 be the endpoint of the path P , lifted to R∞ so that it
starts at x0. Then define xi and ui as the endpoints of the paths X i and U i

lifted to R∞ to start at x0 and u0, respectively. Since the loop XnPU−mP−1

has winding number 0 in ∂R, it lifts to a loop based at x0 in R∞. Notice that
this shows that the path P lifts so that it starts at xn and ends at um. If the
loop XnPU−mP−1 is lifted so that it starts at xn then we can conclude that
the path P lifted to start at x2n will end at u2m. In general, the vertex xjn is
connected to the vertex ujm by a path whose length is at most the length of
P , for all integers j. The above steps could be repeated with a loop Y in ∂R
of winding number 1, based at a vertex y and with a path Q starting at y and
ending at x. The same argument would show that yjmn is connected to xjn by
a path whose length is at most the length of Q, and it is connected to the vertex
ujm by a path whose length is at most the length of QP . This will now be used
to show that the vertices xi for large positive i are contained in the positive end
R+∞.

Consider the removal of the ball of radius ωR centered at x0. By the defi-
nition of ωR this ball disconnects the ends of R∞. Since ujm for large positive
values of j is within |QP | of yjmn, and since by Lemma 5.4 U∞ is an infinite
geodesic, it follows that j can be chosen large enough so that the path QP
from yjmn to ujm is disjoint from the ball around x0. If this were false, then
|QP |+ωR would bound |U jm| for all j, contradiction. Similarly, there is a large
negative k such that the path QP from ykmn to ukm is disjoint from the ball
centered at x0. This shows specifically that the path U (j−k)m connecting ukm

to ujm in R∞ is a path connecting the two disconnected ends R+∞ and R−∞,
and must therefore pass through the ball centered at x0. In particular, there is
a point in U∞ which is connected to x0 by a path of length less than ωR. Since
the path P was chosen to have minimal length, this shows that |P | < ω.

Next, by repeating the above arguments with xi replacing x0 as the center
of the ball to be removed, there always exists some vertex in U∞ which is
connected to xi by a path of length less than ωR. Define vi to be the last vertex
or edge in Ball(xi, ωR)∩U∞. Since edges are contained in open balls only when
their endpoints are as well, the last vertex or edge is in fact a vertex. Let Pi

denote the shortest path from xi to vi. Notice that |Pi| < ωR for all i. Also note
that by symmetry v0 and vn are connected by a cyclic conjugate of the word
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Um whose length is exactly |Um| = m|U | = mn|R|. The second equals sign
follows from the definition of |R| as the length of its standard geodesic divided
by its winding number. Since U∞ is a geodesic in R∞, it follows that mn|R| is
the minimum distance in R∞ from v0 to vn.

Because R is thin and X is a geodesic loop, |X | ≥ m|R| ≥ |R| ≥ 4ωR. In
particular, there is a partition of X = X1X2 such that |Xi| ≥ 2omegaR for
i = 1, 2. Let Bi be the open ball Ball(xi, ωR). Since it is known that B0 < Bm,
it follows by Lemma 5.16 that Bi < Bj for all i < j. In particular, the vertices
vi occur in order within U∞, and since U∞ is a geodesic the length of the
minimal path from v0 to vn is exactly the minimal distance from v0 to v1 plus
the minimal distance from v1 to v2 plus . . . plus the minimal distance from
vn−1 to vn. This in turn means that there must be some subscript i (0 ≤ i < n)
such that the distance from vi to vi+1 is at most m|R|. For this i identified
above, there is a loop XPi+1V P−1

i which goes from xi to xi+1 to vi+1 to vi

and back to xi. The word V (or its inverse) is a subword of U∞. Since X is
a geodesic loop in the general relator R, the path X lifts to a geodesic in R∞

(since any shorter path in R∞ is mapped under the covering map f to a shorter
path in R, contradiction). Thus, |X | ≤ |Pi| + |Pi+1| + |V | ≤ 2ωR + m|R| by
the above estimates. On the other hand |X | ≥ m|R| by Corollary 5.3. Finally,
m|R| ≤ |X | < m|R| + 2ωR, or ||X | − m|R|| ≤ 2ωR, as was to be shown. If
in addition R is a thin relator, then by definition |R| ≥ 4ωR, and in particular
the above inequalities become m|R| ≤ |X | < m|R| + 2ωR ≤ m|R| + 1

2 |R|, or

m ≤ |X|
|R| < m + 1

2 , which completes the proof. 2

Lemma 5.18 If X and Y are loops in a thin relator R which are based at the
same vertex, and X followed by Y is a geodesic loop in R, then X and Y are
identically oriented. In particular, the winding number of XY is that of X plus
that of Y .

Proof: By Lemma 5.17 the length of the geodesic loop XY is strictly within
2ωR of the winding number of XY times |R|. Since XY is a geodesic, Y does
not have winding number 0, or else it could be removed without changing the
homotopy class of the loop. Consequently, |Y | ≥ |R| and |X | ≤ |XY | − |R|.
Using the fact that R is thin in combination with Lemma 5.17, the winding
number of X is seen to be strictly less than that of XY . A similar argument
can be used to show the winding number of Y is less than that of XY . Since
the winding number of XY is a combination of the winding number of X and
the winding number of Y with the appropriate signs attached, the appropriate
signs must both be positive in this case. 2

Although the content of Lemma 5.18 has great intuitive appeal, the as-
sumption that the relator is thin is necessary for the conclusion to follow, as
Example 1 in Section 6 will show. The same counterexample will also show that
the conclusion of the following lemma is unwarranted when the word ‘thin’ is
removed.
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Lemma 5.19 If X is a geodesic representative of a thin general relator R, then
X is simple.

Proof: Let X be a geodesic representative which is not simple. In this case
X can be written as the sum of two distinct loops, X1 and X2, based at the
same vertex. By Lemma 5.18, the sum of the winding numbers of X1 and X2

equals the winding number of X , which is 1. Thus one of the loops is of winding
number 0 and can be removed without changing the homotopy class of the loop.
This would imply that the origin loop X is not a geodesic, contradiction, so the
assumption that X is not simple must be false. 2

Lemma 5.20 If X is a geodesic representative of a thin general relator R, then
there is a deformation retraction from ∂R to X.

Proof: By Lemma 5.19, the representative X is simple, and since X is simple
the functor f from Ln to R is injective and can be viewed as an inclusion
map. Because the winding number of X is 1, it induces an isomorphism on
fundamental groups. All of the higher homotopy groups are trivial in both
spaces which means that f is actually a weak homotopy equivalence, and by
Lemma 1.6 there is a deformation retraction from ∂R to X . 2

5.5 Geodesic n-gons

If a loop V = V1V2 . . . Vn is read in a labeled circular category C and each Vi is
a geodesic in the homotopy class relative its endpoints in C, then the loop V is
called a geodesic n-gon in C. Let V be a geodesic n-gon in the boundary of a
general relator R and let the endpoints of Vi be called vi−1 and vi respectively.
If the loop V is a representative of R and for each i, Ball(vi, ωR) does not
contain any of the other endpoints or any of the edges of the geodesic paths
other than the ones which contain vi as an endpoint, then V is called a geodesic
n-gon representing R. This condition is precisely what is needed to prove the
following lemma.

Lemma 5.21 If V = V1V2 . . . Vn is a geodesic n-gon representing a general
relator R, then |V | < |R| + 2nωR.

Proof: Let U be the standard geodesic and suppose that it has a winding
number of k. Lift V k to R∞ and consider a particular reading of the infinite
geodesic U∞. Let v0 be the initial vertex of V k and let vi be the terminal vertex
of the initial segment V i for all i = 1, . . . , k. By the definition of ωR there is
a vertex ui in U∞ which passes strictly within ωR units of each vi. Moreover,
since U has winding number k the vertex uk can be chosen so that there are
paths from v0 to u0 and from vk to uk which have the same label. In particular,
pushing the path from v0 to u0 into R and then lifting the result so that it
starts at vk will select the vertex uk having this property. One consequence of
this choice is that the length of the subword of U∞ marked off by u0 and uk

is exactly k|R|, and thus there is an integer i such that ui and ui+1 mark off a
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subword of U∞ of length at most |R|. Without loss of generality, assume that
i = 0 is an integer with this property. Attention now shifts to the word V read
from v0 to v1.

The terminal vertex of each Vj is within ωR units of a vertex in U∞, for
j = 1, . . . n − 1. Let Uj be the portion of U∞ marked off by the vertices of
U∞ selected to correspond to the endpoints of Vj in V for all j = 1, . . . , n.
Since the definition of a geodesic n-gon representing R implies that the selected
vertices in U∞ occur between u0 and u1 in order, the sum of the lengths of the
Uj , j = 1, . . . , n is equal to the length of the path in U∞ between u0 and u1

and thus is at most |R|. Since each Vj is a geodesic, |Vj | < |Uj | + 2ωR for all
j = 1, . . . , n. Combining these inequalities yields the result. 2

By the diameter of a general relator R is meant the largest distance between
two vertices in R, and it is denoted Diameter(R).

Lemma 5.22 If R is a thin general relator then Diameter(R) ≤ 1
2 |R| + 2ωR.

Proof: Let u and v be vertices in R and let U be a geodesic path between
them. If |U | < 2ωR then the lemma holds for this pair of vertices, so suppose
that |U | ≥ 2ωR. Since U is a geodesic, the lift of the vertex u to R∞ is strictly
between two distinct lifts of the vertex v. The lift of the path U connects the
lift of u to one of the lifts of v. Let V be a geodesic path in R∞ from the other
neighboring lift of v to the lift of u. The image of V U in R is now a geodesic
2-gon representing R. By Lemma 5.21 |R|+ 4ω > |U |+ |V | ≥ 2|U | since U is a
geodesic in R. Thus |U | is less than 1

2 |R| + 2ωR, completing the proof. 2

Suppose that V = V1V2 . . . Vn is a geodesic n-gon in the boundary of a general
relator R, but that it is not a geodesic n-gon representing R because there is an
i such that Ball(vi, ωR) contains the vertex vi−1. If V ′ is a geodesic path vi−1 to
vi+1 which is homotopic to ViVi+1 then the path ViVi+1 can be replaced by the
path V ′, in a process called the consolidation of a pair of vertices. The new loop
is a geodesic (n−1)-gon in the boundary of R, and its length has been shortened
by less than 2ωR units. To see this notice that since Vi+1 is a geodesic, |Vi+1| ≤
|V ′|+ |Vi|, and this can be rewritten as |Vi+1|+ |Vi|− |V ′| ≤ 2|Vi| < 2ωR. When
these observations are combined with Lemma 5.21, the result is the following.

Lemma 5.23 If V = V1V2 . . . Vn is a geodesic n-gon in the boundary of a gen-
eral relator R, and there exists a sequence of consolidations of pairs of vertices
which results in a geodesic k-gon which represents R, then |V | < |R| + 2nωR.

Proof: The comments above show that the n − k consolidations shorten the
length less than 2(n−k)ωR, and by Lemma 5.21, the resulting k-gon has length
less than |R| + 2kωR. 2

Lemma 5.24 Let V = V1V2 . . . Vn be a geodesic n-gon of winding number 1 in
the boundary of a general relator R. If every subword of the form ViVi+1 · · ·Vj

in the cycle V which has an orientation is positively oriented with respect to V ,
then |V | < |R| + 2nωR.
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Proof: The properties of V listed in the lemma are inherited under consoli-
dation of pairs of vertices. Moreover, once no more consolidations are possible,
it is clear that the result is a geodesic n-gon representing R. The result then
follows by Lemma 5.23. 2

5.6 Relator Metrics

In order to generalize the small cancellation hypotheses to the context of general
relators it is necessary to introduce appropriate functions which can be used to
measure the extent to which a particular path wraps around the boundary of a
general relator. These functions will be called relator metrics.

Let R be a general relator. A relator metric on R, denoted dR, is any metric
on R∞, the universal cover of the boundary of R, which satisfies two additional
properties: (1) it must be invariant under label-preserving automorphisms of
the universal cover, and (2) the distance between the endpoints of a path which
forms a loop when pushed into R must be at least the winding number of the
loop. A relator metric on R can be used to measure the length of a path in R,
by defining its length as the length of a lift of the path to the universal cover.
By property (1) this definition is well-defined. By an abuse of notation, dR

will also represent the function which assigns a length to every path in R, so
that the length of a path U will be written dR(U). Alternatively, the function
assigning a length to every path in R can be defined directly without using the
universal cover. Specifically, a function dR which assigns a non-negative real
number to every path in R is called a relator metric if it satisfies the following
six properties:

1. dR(U) = dR(V ) whenever UV −1 is a contractible loop in ∂R

2. dR(U) ≥ 0 and dR(U) = 0 iff U is a contractible loop in ∂R

3. dR(U) = dR(U−1)

4. dR(UV ) ≤ dR(U) + dR(V )

5. if U is a path which forms a loop in ∂R then dR(U) ≥ wind.num.(U)

6. if U and V are paths in R which differ by an automorphism of R then
dR(U) = dR(V ).

Property 1 guarantees that the function is only dependent on the homotopy
class of the path, which implies that it defines a function on the endpoints of
the lift of the path to the universal cover. Properties 2,3, and 4 are the usual
axioms for a metric written in terms of paths pushed down to R. Finally, the
fifth and sixth properties correspond to the extra conditions placed on relator
metrics as described above. A general relator R together with a relator metric
on R is called a measured relator. A set of general relators R together with the
set of corresponding relator metrics dR, one for each R ∈ R, is called a set of
measured relators.
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In traditional small cancellation theory, the relators are cyclically reduced
so that the loops formed by these cycles are deterministic and have a width of 0.
The natural measure of distance in such a setting is the graph metric on R∞. In
particular if U is a path in R then the length of U can be defined as the geodesic
distance between the endpoints of U when it is lifted to R∞. For traditional
relators this is equivalent to the length of the reduction of U in the free group.
Another metric, which is a variation on the graph metric, is what will be called
the normalized graph metric. The length of a path U in the normalized graph
metric is given by dividing the length of U in the graph metric by the length of
the relator in which it is read. The normalized graph metric of a path U in a
relator R will be denoted |U |R. Note that if U is a path in R which lifts to a

geodesic in R∞ then |U |R = |U |
|R| . Also, property 5 is always an equality for the

normalized graph metric. Finally, since a length |R| was defined for all general
relators R, the normalized graph metric is well-defined for any general relator.

Lemma 5.25 The sum of the lengths of the arcs of a representative cell of a
measured relator is at least 1. That is, if W = U1U2 . . . Uj is a representative

of a measured relator R then
∑j

i=1 dR(Ui) ≥ 1. Consequently, if UXV Y is a
representative of R in which both X and Y measure at most 1 − 3α, and both
U and V measure less than α, then both X and Y measure at least α.

Proof: By properties 4 and 6,
∑j

i=1 dR(Ui) ≥ dR(W ) ≥ 1. For the sec-
ond statement, the measures of the four pieces add up to at least 1, but since
dR(X) ≤ 1 − 3α, dR(U) < α, and dR(V ) < α, it follows that dR(Y ) > α. The
proof for X is analogous. 2

General relators are more complicated than traditional relators because they
typically have a non-zero width. As a consequence, distance can be measured in
many different ways, using possibly distinct metrics. This gives rise to a variety
of ways in which a word or a cycle may be ‘reduced’. The different types of
reductions are described below as a prelude to the general theory.

Let R be a set of measured relators, and let µ be a real number with 1
2 ≤

µ < 1. A word W is called µ-reduced if it is reduced in the free group and
there do not exist words U and V and a general relator R ∈ R such that U is
a subword of W , UV is a representative of R, and |U | > µ|UV |. Alternatively,
the inequality can be written as |U | > µ

1−µ
|V |. In this form it is clear that

over a set of standard relators, a word is 1
2 -reduced iff it is Dehn-reduced in

the usual sense, that is, iff it does not contain strictly more than one-half of a
representative of a relator. Over a set of general relators, the notion of being
one-half of a relator loses its sense, but being µ-reduced is still well-defined. As
a result, even in the general case, a word will be called Dehn-reduced iff it is
1
2 -reduced with respect to R. A cycle W will be called µ-reduced iff all of the
cyclic conjugates of the word W are µ-reduced. Cycles which are 1

2 -reduced are
called Dehn-reduced cycles.

The other types of ‘reduced’ words and cycles will be defined using relator
metrics. Let R be a set of measured relators, and let µ be a non-negative real
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number. A word W is called µ-free if it is reduced in the free group and does
not contain strictly more than µ of a relator in R as measured by the relator
metric. Specifically, there cannot exist a word U and a general relator R such
that U is a subword of W which is readable in R with dR(U) > µ. The cycle
of W is called µ-free iff all of the cyclic conjugates of the word W are µ-free.
Next, let R be a set of measured relators, and let µ be a real number strictly
between 0 and 1. A word W is called µ-complement-free if it is reduced in
the free group and there does not exist a subword of W with a complement in
a particular relator measuring less than µ. Specifically, there must not exist
words U and V and a general relator R such that U is a subword of W , UV is
a representative of R, and dR(V ) < µ. A cycle is called µ-complement-free iff
all of its cyclic conjugates are µ-complement-free. Notice that by the properties
of relator metrics, dR(V ) < µ means that dR(U) > 1− µ. Thus a word or cycle
W which is not µ-complement-free is not (1− µ)-free. Or, said differently, if W
is (1 − µ)-free then it is also µ-complement-free.

Both the normalized graph metric and relator metrics will be retained since
graph metrics are necessary to complete the inductive step in Dehn’s algorithm,
but relator metrics are more convenient for various constructions.

5.7 Automorphism Groups

Under certain conditions, the automorphism groups of general relators are easy
to describe. One such condition involves what are called crucial cones. Let R be
a general relator, and consider an open cone in ∂R which is not contained in the
boundary of any other open cone in ∂R. Let B be this open cone together with
all of the open cones in its boundary which are not contained in any open cones
in R except those which are themselves contained in this particular open cone.
Topologically speaking, B is the complement of the closure of the complement
of a maximal closed cone in R. In the case of a traditional relator, this is a
description of the open edges in the boundary of the relator. Notice that this
collection of open cones B contains an open cone of maximum rank and that all
of B is contained in the closure of this open cone. Moreover, the closure of B
is itself either an edge or a general relator S contained in ∂R. Let B0 be a lift
of this B to R∞, and let S0 be the lift of S which contains B0. If the removal
of B0 disconnects the ends of R∞ then define B+ to be the intersection of S0

with the positive end R+∞. Similarly, let B− be the intersection of S0 with
the negative end R−∞. If the removal of B0 not only disconntects the ends of
R∞ but it is also true that B+ and B− do not contain any loops which have
nontrivial winding number in ∂S, then B0 is called a crucial cone in R∞ By
extension, B will be called a crucial cone in ∂R. In a traditional relator, all
of the open edges of the boundary of the 2-cell are crucial. The terminology
derives from the fact that B is crucial for the completion of loops in ∂R, in the
sense that every representative of R must contain at least one vertex or edge in
B.

A slight generalization of this goes as follows: let C be a subcomplex of
∂R such that g(C) = C for all g ∈ Aut(R), and let C∞ = f−1(C) where
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f : R∞ → ∂R is the usual covering map. So long as C is connected and C
contains a representative of R, it can be proved that C∞ has at most two ends,
denoted C+∞ and C−∞, using the same proof as before. Such a subcomplex C
will be called a core of the general relator R. As above, let B be the complement
of the closure of the complement of a maximal open cone in C, let S be the
closure of B, let B0 be a lift of B to C∞, let S0 be the lift of S to C∞ which
contains B0, and let B+ and B− be the intersections of S0 with C+∞ and C−∞

respectively. If B0 disconnects the ends of C∞, and B+ and B− do not contain
any loops with nontrivial winding number when viewed as paths in S0, then B0

will be called a crucial cone in C∞ and B will be called a crucial cone in C.
In the following, R will be said to have a crucial cone in its boundary if there
exists some core C and some B for which B is a crucial cone of C.

Now suppose that R is a general relator which has a crucial cone and fix a
core C which contains one. Since the crucial cones in C∞ disconnect the ends of
C∞, and since by construction they are pairwise disjoint, by Lemma 5.12 they
are totally ordered. The proofs of the lemmas stated earlier in this section are
unchanged if C and C∞ are used instead of ∂R and R∞. One way to see this is
to notice that since C is a subcomplex, the cone over C is a general relator in
its own right. Next, since all of the lifts of a crucial cone in C are crucial cones
in C∞, there is no first or last crucial cone in C∞ and the total ordering of the
crucial cones in C∞ is order isomorphic to (Z, <). If this ordering is imposed
on the crucial cones in C, there is a well-defined notion of a next and a previous
crucial cone along the boundary ∂R in a particular direction, although it is no
longer, strictly speaking, an ordering. If there is only one crucial cone in ∂R,
then this next crucial cone in ∂R may turn out to the original crucial cone itself.

It should also be noted that the property of being a crucial cone is preserved
under automorphisms of the relator R, and it is also preserved under automor-
phisms of R∞. By one of the defining properties of C, an automorphism of R
is also an automorphism of C. In addition, the total ordering of the crucial
cones in C∞ is either preserved or reversed under an automorphism depending
on whether the automorphism preserves or reverses the ends of C∞. This is im-
mediate from the definition of the ordering. Thus, if R contains a crucial cone
in its boundary there is a group homomorphism from Aut(R∞) to Aut(Z, <)
which is the infinite dihedral group D∞. The homomorphism is given by ob-
serving the action of the automorphism on the linearly ordered crucial cones
in C∞. Similarly, if C contains exactly r crucial cones, then there is a group
homomorphism from Aut(R) to the dihedral group of order 2r, which is denoted
D2r.

The kernels of these homomorphisms contain those automorphisms of R∞

and ∂R which fix all of the crucial cones in C∞ and C respectively. Notice
that the morphism from Aut(R∞) to D∞ also shows that the only elements in
Aut(R∞) of finite order are either orientation-reversing or else they are auto-
morphisms in the kernel of this map. The following lemmas will show that the
kernels of these homomorphisms are 2-groups. Lemma 5.26 and Lemma 5.27
will be proved by simultaneous induction on the rank n of the general relator
R under consideration. As a final note, a set of general relators is called closed
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under subcones if whenever S is a general relator contained in R ∈ R, S is also
in R.

Lemma 5.26 Let R be a set of general relators closed under subcones and
suppose that all general relators in R have at least one crucial cone in their
boundary. If H is a subgroup of the automorphism group of a general relator
R ∈ R, then for some r there is a group homomorphism from H to D2r, whose
kernel is a 2-group. In particular, H is isomorphic to a cyclic or a dihedral
group extended by a 2-group.

Proof: Let C be a core of R and let r be the number of crucial cones in C.
Since the presence of crucial cones in C already implies the existence of a group
homomorphism f : Aut(R) → D2r, it only remains to show that the kernel of
this map is a 2-group. Let B be a crucial cone in C, and let B0 be a lift of B to
C∞. If g is an automorphism of R which fixes all crucial cones in C, then there
is an automorphism g′ of R∞ which fixes B0 and is equal to g when composed
with the covering map from C∞ to C.

Let S be the general relator which results from the closure of B0 Define B+

and B− be the intersection of S with C+∞ and C−∞ respectively. Since B0 is
a crucial cone in C∞, B0 disconnects the two infinite ends of C∞, and B+ and
B− are thus disjoint. Moreover, since the action of g′ either preserves the ends
or switches them, it follows that either g′(B+) = B+ and g′(B−) = B−, or else
g′(B+) = B− and g′(B−) = B+. By definition, B+ and B− do not contain
the lift loop in S with a nontrivial winding number. Thus the general relator S
with subcomplexes B+ and B− satisfies all of the hypotheses of Lemma 5.27.
Moreover, since the rank of S is strictly less than of R, Lemma 5.27 can be
applied to show that g′ is an automorphism whose order is a power of 2. This
in turn implies that the order of g itself is a power of 2, and that the kernel of
the homomorphism f is a 2-group. 2

Lemma 5.27 Let R be a set of general relators closed under subcones and
suppose that all general relators in R have at least one crucial cone in their
boundary. If R is a general relator in R, B1 and B2 are disjoint subcomplexes
of ∂R which do not contains any loops with a nontrivial winding number, and
H is the subgroup of Aut(R) of automorphisms which either sends B1 to B2 and
vice versa or else which fixes B1 and B2 separately, then H is a 2-group.

Proof: Let C be a core of R and let r be the number of crucial cones in C.
The presence of crucial cones in C already implies the existence of a group
homomorphism f : Aut(R) → D2r. Let g be an automorphism in H , and
consider g2. By the definition of H , g2 must fix both B1 and B2, and in addition,
it is orientation-preserving. Since B1 does not contain any loop with a nontrivial
winding number, by Lemma 1.13 it is possible to lift B1 to R∞. Call this lift B0.
Corresponding to the automorphism g2 of C, there is an automorphism of R∞

(and C∞) which fixes B0. Since this automorphism of C∞ is also orientation-
preserving, but of finite order, it must fix all of the crucial cones in C∞. As a
consequence, g2 must fix all of the crucial cones in C, and thus g2 is a member
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of the kernel of the map from Aut(R) to D2r. By Lemma 5.26, the order of g2

must be a power of 2. This shows that the order of g itself is a power of 2, and
since g was chosen at random, the group H is a 2-group. 2
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Part III

Constructions

In Part III general presentations and various constructions over general pre-
sentations are investigated. In Section 6 R-categories are defined and their
properties are studied. Included in this section is a definition of a general ver-
sion of the traditional Poincaré construction, which is used to define the group
of a general presentation. Section 7 extends the combinatorial group theory
notion of a planar map in the context of general relators. More flexible struc-
tures which correspond to maps on surfaces such as spheres are also described.
Finally, in Section 8 the Cayley category of a general presentation is defined
and its properties are discussed.

6 R-Categories

This section contains a detailed study of R-categories. After general presenta-
tions and R-categories are defined, the notion of the collapse of an R-category
is introduced. This leads to a generalization of the usual Poincaré construction.
The section concludes with a detailed description of the relationship between
general presentations and traditional presentations.

6.1 General Presentations

Let R be a set of relators. A presentation is a set of generators A together with
a set R of relators labeled by A. The group G defined by the presentation is
the quotient of the free group on the alphabet A by the normal closure of the
relators in R thought of as words in A∗. Presentations are written G = 〈A|R〉.
The Cayley graph of a presentation G = 〈A|R〉 is C(G, A). The Cayley graph
of a presentation is of interest both because of the information it carries and
because it is constructible if and only if the word problem for the presentation
is decidable.

The familiar Poincaré construction of a presentation is a 2-dimensional cell
category whose fundamental group is the group described by the presentation.
Specifically, it is a 2-dimensional cell category with 1 object of dimension 0, ob-
jects of dimension 1 corresponding to the orbits of A, and objects of dimension
2 corresponding to the relators in R. One way of producing the Poincaré con-
struction of a presentation is to take the generators A, viewed as labeled edges,
and the relators in R, viewed as labeled 2-cells, and first identify all of the
vertices and then collapse the resulting complex until a collapsed 2-dimensional
cell category labeled by A emerges. The operation of collapsing a category is
precisely defined below.

Example 1 The presentation G = 〈u, v|u2 = v3, uv = vu〉 is a presentation of
the integers. The Cayley graph of G is shown in Figure 15. The edges labeled u
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Figure 15: A presentation of Z

and v are oriented so that they start at the lesser number and end at the greater
number. The Poincaré construction of the presentation is a 2-dimensional cell
category homotopically equivalent to S1. Let X be the Poincaré construction of
the presentation and let R = Cone(X). Even though the cone category R is not
a general relator since X is not a cone complex, X can, if desired, be altered to
produce a general relator which provides the promised counterexamples, by first
subdividing the 1-skeleton into thirds, adding a new vertex in the center of each
2-cell, connecting each new vertex to each of the old vertices in its boundary,
and then subdividing each of the recently added edges into a large number of
pieces, say one hundred pieces each. With such an alteration it is clear that any
geodesic loop in the new construction will be contained in the old 1-skeleton. For
convenience the original construction X will be used in the description below.

In R the shortest path of winding number 1 is uv−1 which is of length 2 and
non-simple. The edge u is itself a loop which has winding number 3 and the
edge v is a loop with winding number 2. The length of R is 1

3 , the edge u is
the standard geodesic, and its width, defined below, is 2 since the removal of
a vertex and all of the vertices located one edge away does not disconnect the
universal cover of the boundary of the relator (see Figure 15). The construction
R, however, is not thin, and it does not satisify the conclusions of Lemma 5.18
and Lemma 5.19.

A general presentation, denoted 〈A|R〉, is defined as an alphabet A of in-
vertible generators and a set R of general relators labeled by A which is closed
under subcones. That is, if R is in R, and S is a general relator contained in
R, then S is in R. The group associated with a general presentation will not be
defined until after the introduction of the general Poincaré construction later
in this section. A rank function on a general presentation is a function from
A ∪ R to N such that the rank of each generator in A is 1, and all of the gen-
eral relators R ∈ R are assigned a rank of at least 2 under the restriction that
whenever there is a label-preserving circular functor f : R → S between two
general relators R, S ∈ R, then rank(R) ≤ rank(S) with equality iff the f is an
isomorphism. Every general presentation can be assumed to be equipped with
such a function, since the height function proves that such a function always
exists.

The set of all general relators of rank k is denoted Rk, and the set of all
general relators of rank at most k is written R(k). Clearly, R is partitioned into
a disjoint union of the sets R1, R2, etc., and R(k) = R(k − 1) ∪Rk = ∪k

i=1Ri.
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The condition on the rank function guarantees that if R is a general relator in
Rk, then all of the relators in its boundary are contained in R(k − 1). Notice
that R1 = R(1) = ∅. A general presentation G = 〈A|R〉 where R is a set of
measured relators is called a measured presentation.

Let 〈A|R〉 be a general presentation. A labeled circular category in which
every slice category is either a vertex, a generator from A or a general relator
in R is called a circular category over 〈A|R〉 or, more simply, an R-category
with the set of labels implicitly understood. If the underlying circular category
is also a circular complex, then the result could more accurately be labeled an
R-complex. Notice that the rank function of the general presentation induces
a rank function on every R-category which assigns vertices a rank of 0, labeled
edges a rank of 1, and all other objects c a rank based on the rank of the gen-
eral relator isomorphic to its slice category. A label-preserving circular functor
between R-categories is called an R-functor. Notice that such a functor auto-
matically preserves the induced ranks on its objects. An R-functor f : C → B
is called onto if every object b ∈ B is the image of some object c ∈ C. An
automorphism of an R-category C is an R-functor from C to itself which is a
isomorphism. The automorphisms of an R-category C form a group called the
automorphism group of C.

6.2 Collapse of an R-Category

An R-category C is called collapsed if whenever there exist R-functors f, g :
B → C where B is a connected R-category and f(v) = g(v) for a vertex v in B,
then f and g must be equal. Equivalently C is called collapsed if its 1-skeleton
is deterministic and distinct circular cones of dimension at least 2 have distinct
boundaries. To say that two open cones c1 and c2 have the same boundaries
means that C/c1 and C/c2 are isomorphic as labeled circular complexes and
that the attaching functors agree on corresponding parts of the boundaries.
Specifically, h : C/c1 → C/c2 is an isomorphism which shows that c1 and c2 have
the same boundaries, if the attaching functor φc1

is equal to the composition of
h with the attaching functor φc2

. Clearly, the first definition implies the second,
while Lemma 6.3 shows that the two definitions are equivalent.

A geometric description of an identification of the closed cone C/c1 with the
closed cone C/c2 goes as follows. Because h is an isomorphism between cat-
egories, its geometric realization is a homeomorphism between the polyhedra
C/c1 and C/c2. Since attaching maps such as φc1

and φc2
are also homeomor-

phisms once restricted to their open cones c1 and c2, there is a homeomorphism
φc2

hφ−1
c1

between points in the open cone c1 and the open cone c2 in the ge-
ometric circular category C. The collapse of c1 and c2 is the quotient of C
obtained by identifying the points in the open cones c1 and c2 under the above
homeomorphism. The quotient map from C to the quotient is a continuous
map.

A categorical description of the same operation is to identify the objects c1

and c2 in C, and to identify an arrow f : d → c1 with an arrow g : d → c2 iff h
sends f to g. Notice that the letters f and g on the righthand side represent the
objects in the slice categories which correspond to the arrows f and g in C. This
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relation determines a unique quotient category in the sense of MacLane [11], and
a unique functor from the original category onto the quotient category. These
correspond to the quotient space and the quotient map described above.

The collapse of a finite R-category C can be obtained by identifying the
endpoints of oriented edges which have the same initial vertex and the same
label, identifying open circular cones which have the same boundaries and then
repeating. Since the category is finite, and the number of objects is decreasing,
the process must stop. And since the collapsing operations are confluent the re-
sult, called the collapse of C, is well-defined. For more general R-categories, the
usual limit construction suffices: define an equivalence relation on the objects
and arrows of an R-category C where two objects (arrows) are equivalent iff
there is a finite sequence of collapses after which they are equal. It only remains
to check that the result of quotienting by this relation is a well-defined, collapsed
R-category C and that the obvious functor f : C → C is a label-preserving cir-
cular functor. The category C is called the collapse of C and the functor f is
called the collapsing functor. The collapsing functor has the additional prop-
erty that every other functor from C to a collapsed category B factors through
f . This proves the following lemma.

Lemma 6.1 If R is a set of general relators, and C is an R-category, then
there exist a collapsed R-category C and an onto R-functor f : C → C which
are universal in the sense that, given any collapsed R-category B and R-functor
g : C → B, there is a unique functor h : C → B such that hf = g.

The reversibility of the order in which collapses take place makes it pos-
sible to continue to collapse the edges of C until a deterministic 1-skeleton
emerges, and then to collapse all 2-cones until a collapsed 2-skeleton emerges,
etc. Because the collapsing of higher-dimensional cones does not affect lower-
dimensional skeleta, the deterministic 1-skeleton which emerges is the 1-skeleton
of the final completely collapsed version, similarly for the collapsed 2-skeleton,
the collasped 3-skeleton, etc. This result is summarized in the following lemma.

Lemma 6.2 Let R be a set of general relators, and let C be an R-category. For
every positive integer k there is an R-category Ck with a collapsed k-skeleton,
and an R-functor f : C → Ck which is universal in the sense that, given any R-
category B with a collapsed k-skeleton and an R-functor g : C → B, there is a
unique functor h : Ck → B such that f followed by h is equal to g. Moreover, in
the particular case where B is the collapse of C, the functor h is an isomorphism
when restricted to the k-skeletons of each category.

If 〈A|R〉 is a general presentation and every general relator R ∈ R is a col-
lapsed R-category in its own right, then R is called a collapsed set of general
relators. The fact that an R-category is collapsed restricts the number of possi-
ble R-functors available. This is true when the collapsed category is either the
domain or the range of the functor.
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Lemma 6.3 Let C be a connected R-category, and let B be an R-category which
is collapsed in the sense that it has a deterministic 1-skeleton, and distinct cones
of rank at least 2 have distinct boundaries. If f, g : C → B are R-functors with
f(v) = g(v) for some vertex v of C, then f and g are identical. Thus, the two
definitions of collapsed categories are equivalent.

Proof: Since C is connected, the 1-skeleton of B is deterministic, and the
functors f and g agree at a point, f and g must agree on the entire 1-skeleton
of C. Next assume that f and g agree on the k-skeleton of C. Since the images
under f and g of a (k + 1)-cone agree on the boundary of the cone and C is
collapsed the images must be identical. Thus f and g agree on the (k + 1)-
skeleton of C, and by induction they agree completely. 2

Lemma 6.4 If f : B → C is an R-functor between R-categories, and f is
injective on objects, then f is actually an embedding of B as a subcategory of
C.

Proof: If f is not an embedding, then it is not injective on arrows. Since f
is injective on objects, however, these arrows must originate in the same hom-
set in B. In particular, they have the same terminal object, say b. Next, the
arrows terminating at b in B are in 1 to 1 correspondence with the arrows
terminating at b in B/b, which are in 1 to 1 correspondence with the arrows
terminating at f(b) in C/f(b) since f is an R-functor, and these are in 1 to 1
correspondence with the arrows terminating at f(b) in C, contradiction. Thus
f is an embedding. 2

Lemma 6.5 If f : B → C is an R-functor between R-categories, B is collapsed,
and f is injective on vertices, then f is an embedding of B as a subcategory of
C.

Proof: If f is not an embedding, then by Lemma 6.4 it is not injective on
objects. It is, by assumption, injective on vertices, so the identification must
be between objects with rank at least 1. Notice that the identified objects
must have the same rank since rank is preserved by R-functors. If two distinct
objects b1 and b2 in B are chosen so that f(b1) = f(b2), but f is injective when
restricted to objects of lesser rank, then the isomorphisms linking B/b1 and
B/b2 with C/f(b1) = C/f(b2) can be combined to show that B/b1 and B/b2

are isomorphic. Because of the way in which b1 and b2 were chosen, b1 and b2

must also have identical boundaries. Since B is collapsed, this is impossible,
and the assumption that f is not an embedding must be false. 2

6.3 Poincaré Constructions

A collapsed R-category with a single vertex is known as a Poincaré construction.
The fact that Poincaré constructions are collapsed places severe restrictions on
the number of possible R-functors as is shown above. The restrictions are in
fact enough to show that Poincaré constructions are in 1 to 1 correspondence
with general presentations.
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Lemma 6.6 Let B and C be collapsed, connected R-categories which have au-
tomorphism groups which act transitively on their vertex sets. If, in addition,
B is contained in C then all of the automorphisms of B extend uniquely to
automorphisms of C.

Proof: Let u and v be vertices in B. By assumption there are automorphisms
f and g of B and C, respectively, which send u to v, and by Lemma 6.3 they
are unique. If the range of f is extended to C via the embedding of B, and the
domain of g is restricted to B, then both are functors from B to C which send
u to v. Lemma 6.3 now shows that they are identical. 2

Lemma 6.7 If B and C are R-categories, f, g : C → B are R-functors, and
B is a Poincaré construction, then f and g are identical.

Proof: Since by definition B has only one vertex Lemma 6.3 can be applied
to each of the connected components of C to show that the functors f and g
are identical. 2

Lemma 6.8 If B and C are R-categories, B is a Poincaré construction, and
the generators and general relators used to construct C are all used in the con-
struction of B, then there is a unique R-functor from C to B. Consequently,
distinct objects in a Poincaré construction have non-isomorphic slice categories.

Proof: Once it is shown that such an R-functor exists, Lemma 6.7 guarantees
that it is unique. The existence will be shown by induction on the rank of C. If
C has rank 0 then the functor sending the objects of C to the unique vertex of B
is clearly an R-functor. Next suppose that the lemma is true for all R-categories
of rank less than k, and let C have rank exactly k. By the induction hypothesis
there is a unique functor f from the (k − 1)-skeleton of C into B. Since the
objects of rank k in C are terminal objects, it is enough to extend the functor
to each of these objects individually. If c is an object of rank k in c then by
assumption there must be an object b in B such that C/c is isomorphic to B/b
as R-categories. Moreover, the boundary of C/c mapped into C and then into
B must agree with the image of the corresponding boundary of B/b in B by
induction. Thus the extension of f so that c is sent to b preserves the fact that
f is an R-functor. Doing this for all objects of rank k shows that the lemma is
true for R-categories of rank k. Thus by induction the lemma is true for all R-
categories of finite rank, and since R-categories of infinite rank are constructed
skeleton by skeleton, the lemma is also true in general. The final statement
of the lemma follows from the first since distinct objects with isomorphic slice
categories would have characteristic functors which would contradict the first
statement. 2

Lemma 6.9 A Poincaré construction is uniquely determined by the generators
and general relators used in its construction. In particular there is a 1 to 1
correspondence between Poincaré constructions and general presentations.
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Proof: Let B1 and B2 be two Poincaré constructions for which the exact same
set of generators and general relators occur as slice categories. By Lemma 6.8
there is a unique circular functor f : B1 → B2 and again there is a unique
circular functor g : B2 → B1. By Lemma 6.8 again, the R-functor gf must be
equal to the identity map on B1 and the R-functor fg must be equal to the
identity map on B2. Thus the functors f and g are R-category isomorphisms
and B1 and B2 are isomorphic as R-categories.

To show the second part simply notice that by starting with a general pre-
sentation 〈A|R〉 it is possible to take edges labeled by the orbits of A, and all
of the general relators in R, and then identify all of the vertices involved, and
finally collapse the result to produce an R-category which contains precisely the
generators and general relators of the general presentation. By the first part of
the lemma, this Poincaré construction is uniquely determined, and the general
presentation can clearly be recovered from the construction. 2

In light of Lemma 6.9, define the content of a labeled circular category C as
the set of generators and general relators which occur in C as slice categories.
Lemma 6.9 can then be restated as: Poincaré constructions are uniquely deter-
mined by their content. The unique Poincaré construction corresponding to a
general presentation 〈A|R〉 will be called the Poincaré construction of the pre-
sentation and it will sometimes be denoted P(A,R). The fundamental group
of the Poincaré construction as a topological space provides a way of assigning
a group to every general presentation. If the fundamental group is G then G
is called the group of the presentation and for simplicity this is indicated as
G = 〈A|R〉.

Notice that a set of generators and general relators which is not closed under
subcones still creates a well-defined Poincaré construction which could be used
to define the group of such a presentation. If such general presentations are
allowed, however, additional care must be taken since not all slice categories of
rank at least 2 would be general relators, and the statement of Lemma 6.9 would
have to be altered. To avoid these situations, general presentations will always
be assumed to be closed under subcones, or else it is at least tacitly understood
that a general presentation refers to a set of general relators which have been
‘closed’ in this way.

6.4 Covers and Retractions

The earlier results on coverings and deformation retractions can be extended to
R-categories.

Lemma 6.10 If f : C → B is a covering map and B is an R-category, then C
can also be given an R-category structure under which the map f becomes an
R-functor. As a consequence the deck transformations of f are also R-functors.

Proof: By Lemma 3.14 C is the geometric realization of a cone category, and
f is the topological version of a cone functor between cone categories. Since a
circular category is a cone category with restrictions on the types of cones, and
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since the slices of C are isomorphic to slices of B by the definition of a cone
functor, C is also a circular category. Finally, the induced labeling on C turns C
into an R-category. The last statement follows since every deck transformation
is a trivial covering of C. 2

Lemma 6.11 Let R be a set of general relators, and let B be an R-category
whose fundamental group is G. For every normal subgroup H of G there is an
R-category C and an R-functor f : C → B such that f is a regular covering,
the fundamental group of C is H, and the group of deck transformations of f
are automorphisms of C which form a group isomorphic to G/H.

Proof: From Lemma 1.6 it is clear that a regular cover exists which satisfies
the conditions on the fundamental group and the group of deck transformations,
and by Lemma 6.10, these can be given the structure of an R-category and R-
functors. 2

Lemma 6.12 Let B be the Poincaré construction of a general presentation
G = 〈A|R〉. The regular covers of B correspond to the normal subgroups of its
fundamental group G, and the 1-skeleton of the regular cover associated with the
normal subgroup H is the Cayley graph C(G/H, A). In particular, if C is the
universal cover of B, then a path in C is a loop, and thus homotopic to a point,
iff the word read by the path is equivalent to 1 in the group G.

Proof: The first assertion is a special case of Lemma 6.11. Since by the def-
inition of a regular cover the 1-skeleton is a connected A-graph on which the
label-preserving automorphisms act transitively on the vertices, it must be the
Cayley graph of its automorphism group, by Lemma 4.4. Next, a path in C is
also a path in its 1-skeleton which is the Cayley graph C(G, A) by Lemma 6.12.
By Lemma 4.5, this path is a loop iff the word read by the path is equivalent
to 1 in the group G. Finally, since the universal cover is simply connected by
definition, such a loop is homotopic to a point. 2

Lemma 6.13 Let G = 〈A|R〉 be a fixed general presentation. There is a 1
to 1 correspondence between the normal subgroups H of G, the Cayley graphs
C(G/H, A), the regular covers of the Poincaré construction P(A,R), and the
collapses of these regular covers.

Proof: The correspondence between the normal subgroups of G, their Cayley
graphs, and the regular covers of the Poincaré construction of the presentation
has already been alluded to in Lemma 6.11 and Lemma 6.12. By Lemma 6.1 the
regular cover of the Poincaré construction corresponding to the normal subgroup
H has a unique collapse. By Lemma 6.2 the 1-skeleton of the collapsed category
is identical to that of the regular cover and by Lemma 6.12 this 1-skeleton is
the Cayley graph C(G/H, A). Since the regular cover can be reconstructed from
this 1-skeleton, the correspondence between regular covers and their collapses
must be 1 to 1. 2
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A general presentation over a set of thin general relators is closely connected
with certain specific standard presentations of the same group. The connection
between the two types of presentation is elucidated through the use of deforma-
tion retractions. Let R be a set of general relators, and let R′ be a set of cycles
in 1 to 1 correspondence with R such that given any general relator R ∈ R, the
corresponding cycle in R′ can be read as a simple representative of R. The set
R′ is called a set of standard representatives for R. Recall that if the general
relators in R are assumed to be thin, then by Lemma 5.19 there always exists
at least one set of standard representatives for R.

Lemma 6.14 Let R be a set of general relators and let R′ be a set of standard
representatives for R. If C is an R-category then there is a deformation retrac-
tion of C onto a 2-dimensional subcomplex of the simplicial subdivision of C
which can be viewed as a simplicial subdivision of an R′-category. In addition,
the deformation can be chosen so that the 1-skeleton remains fixed throughout.

Proof: The proof proceeds by induction on the rank of the R-category C.
First of all, notice that the lemma is trivially true if C is an R-category of rank
1, since in this case C is simply an A-graph, and thus trivially an R′-category.
The deformation retraction mentioned in the lemma is the identity retraction
which keeps the 1-skeleton fixed throughout. Suppose that the lemma is true
for all sets of general relators R and R-categories of rank at most k. Let R(k)
be the subset of R consisting of the general relators in R of rank at most k.
It should be clear that an R-category of rank k is also an R(k)-category. Let
R′(k) be the subset of R′ corresponding to the general relators in R(k).

Consider a general relator R in R of rank k +1 with a corresponding simple
representative U in R′. Since the boundary of R, ∂R, is an R(k)-category,
by assumption there is a deformation retraction of ∂R onto a 2-dimensional
subcomplex, say S, of the simplicial subdivision of ∂R which can be viewed as
a simplicial subdivision of an R′(k)-category. By Lemma 1.11 the deformation
retraction of ∂R onto S can be extended to a deformation retraction of R onto
Cone(S). Since the 1-skeleton is fixed throughout, the loop U is a simple loop S
as well as in ∂R, and the injection of U into S is a weak homotopy equivalence,
and thus by Lemma 1.6 there is a deformation retraction from S to U . By
Lemma 1.12 there is a deformation retraction from Cone(S) onto S∪U Cone(U).
Combining these two deformations, it has been shown that for all relators R of
rank k + 1 there is a deformation retraction of R onto S ∪U Cone(U) which
extends the prior retraction of ∂R onto S. Since the 1-skeleton remains fixed
throughout, U is in the 1-skeleton, and Cone(U) is the 2-cell of a relator in R′,
the deformation from R to S ∪U Cone(U) satisfies the conditions of the lemma.

Next consider an arbitrary cone category C of rank k + 1. By assumption
there is a deformation retraction of the k-skeleton which satisfies the lemma.
Since this retraction of the k-skeleton of C induces a deformation retraction
of the boundary of each general relator R of rank k + 1 which is attached to
the k-skeleton via the attaching map φR. By the argument above, there is a
deformation retraction of R onto an R′-category which extends the deformation
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retraction of its boundary. The image of this deformation retraction of R is
consistent with the earlier retraction of the k-skeleton, so that the deformation
retractions on each of the relators of rank k + 1 combined with the deformation
on the k-skeleton yield a single deformation on C which satisfies the lemma.

Finally, a deformation retraction on an arbitrary cone category C which
satisfies the requirements of the lemma can be constructed inductively via the
deformation retractions on the various skeleta. 2

Lemma 6.15 If R is a set of thin general relators and C is an R-category,
then Hi(C) = 0 for all i > 2.

Proof: By the previous lemma, every R-category has the homotopy type of a
2-dimensional cell category. Since homology groups are well-defined up to ho-
motopy type, it is sufficient to show that the conclusion holds for 2-dimensional
cell categories. But since cell categories are particular types of CW complexes,
and the n-th homology groups of a CW complex are generated by the charac-
teristic maps on its n-cells, the homology groups beyond dimension 2 must be
trivial. 2

Lemma 6.16 Let R be a set of general relators, and let R′ be a set of standard
representatives for R. The Poincaré construction P(A,R′) can be viewed as a
connected subcomplex of the simplicial subdivision of the Poincaré construction
P(A,R), and the inclusion map is a homotopy equivalence. In particular, the
fundamental groups of the two constructions are the same, showing that G =
〈A|R′〉 is a standard presentation of the group of the general presentation 〈A|R〉.

Proof: By Lemma 6.14, there is a deformation retraction of the Poincaré con-
struction P(A,R) onto an R′-category during which the 1-skeleton remains
fixed. In particular, the R′-category which results contains only 1 vertex, and
there is a unique way of attaching every labeled 2-cell in R′ to the 1-skeleton. Fi-
nally, since every general relator R ∈ R occurs exactly once in the Poincaré con-
struction, then every standard representative in R′ occurs exactly once, and the
resulting deformation retraction must be already collapsed as an R′-category.
By Lemma 6.9 it is the Poincaré construction of the presentation 〈A|R′〉. Since
deformation retractions preserve homotopy type, the fundamental groups must
be the same. 2

According to Lemma 6.16, if R′ is a set of standard representatives of a set R
of general relators, then G = 〈A|R〉 = 〈A|R′〉. As a consequence, G is indepen-
dent of the choice of standard representatives. Given any general presentation
G = 〈A|R〉, there is a general presentation G(k) = 〈A|R(k)〉 for each value of
k ∈ Z+. If R has a set of standard representatives R′, then the general presen-
tations of G, G(1), G(2), etc., can be converted into standard presentations. In
this case there are obvious group homomorphisms from G(k) onto G(k+1) since
G(k + 1) is obtained from G(k) by the addition of relations, and the group G
can itself be described as the direct limit of the groups G(k). This observation
is recorded below. The final lemma is an application of Lemma 6.16 which will
be needed later.
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Lemma 6.17 Let G = 〈A|R〉 be a general presentation, and let R have a set
of standard representatives. Then G is the direct limit of the groups G(k).

Lemma 6.18 The universal cover of a deformation retraction is a deformation
retraction of the universal cover. In particular, if R is a set of general relators
and R′ is a set of standard representatives, then P(A,R′) can be viewed as a
subspace of P(A,R), and the universal cover of the former can be viewed as a
subspace of the universal cover of the latter.

Proof: Let C be the universal cover of an R-category B with covering map
f : C → B, and let h : B × I → B be a deformation retraction from B onto
a subcomplex. Since C is simply connected, so is C × I , and thus the function
g : C × I → B defined by g(c, x) = h(f(c), x) must lift through f to C by
Lemma 1.13. A routine verification shows that the lift of g is a deformation
retraction of C onto the universal cover of the subcomplex of B. 2

A similar result holds for regular covers of R-categories, but it will not be
needed here. The deformation retraction of a collapse, however, is not necessar-
ily even of the same homotopy type as the collapse of the deformation retraction,
as illustrated by Example 2 in Section 8.

7 R-Structures

In this section the focus is on maps (in the sense of small cancellation theory),
R-diagrams, and R-spheres. After the key concept of a map is defined, some
examples are given, and a few results from Lyndon and Schupp ([9]) are quoted.
In the few cases where the proofs in [9] are stronger than the statements of the
lemmas to which they are attached, the statements given here have been altered
to capture the full import of the proofs. The extra flexibility will be used in
the general version of small cancellation theory. The section concludes with a
general version of van Kampen’s Lemma which is applicable in all R-categories
so long as the general relators in R are thin.

7.1 Maps

A map is an embedding of the geometric realization of a finite 2-dimensional cell
category in the Euclidean plane or, equivalently, it is a bounded finite union of
disjoint subsets of the plane homeomorphic to points, open intervals and open
disks, and subject to those conditions implicit in the first chacterization. The
implicit conditions are, namely, that the topological boundary of an open disk
be the union of a finite set of points and open intervals, and that the topological
boundary of an open interval be a finite set of points. The latter is the definition
of a map given by Ol’shanskii in [15].

Let N be a component of the complement of a connected map M . The
boundary of N is the unique reduced loop in M for which there is an ε-
deformation to a loop in N for all arbitrarily small ε > 0. The boundary of
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M

Figure 16: Non-simple boundary loops

a connected map M is the set of boundaries of the components of its comple-
ment, and the boundary of a disconnected map M is the union of the boundaries
of its connected components. The set of loops which is the boundary of M is
denoted ∂M .

Example 1 In Figure 16 a map M is shown schematically. The shaded portion
represents the union of the embedded points, lines and cells. The boundary of
the map consists of three loops. The two boundary loops arising from the
bounded components of the complement happen to be simple loops and the
boundary loop defined using the unbounded component is not simple. This
example shows how the use of ε-deformations in the definition selects the way
of traversing the non-simple loop which corresponds to our intuitive notion of a
boundary.

If M is connected and simply connected — the most important case — then
∂M is a single loop. If M is an annular map, that is, if M is connected and the
complement of M has exactly two components, then ∂M consists of two loops,
which may or may not be disjoint.

Example 2 The map sketched in Figure 17 is an example of an annular map
in which the two boundary loops are not disjoint.

By a region of M is meant either an open 2-cell D in M or a component of
the complement of M . Every edge in M is on the border of exactly two regions.
The standard orientation of the plane induces an orientation of every region of
M , and thus an orientation of the loops ∂D and an orientation of the loops
in ∂M . Every edge of M is given opposite orientations by the two regions it
borders. Thus every oriented edge in M is a properly oriented edge of a unique
boundary loop of a unique region of M .

Notice that any orientation of the plane induces a clockwise orientation on
one of the boundary cycles of an annular diagram and a counter-clockwise ori-
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Figure 17: Non-disjoint boundary loops
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Figure 18: A self-bordering cell with attaching map

entation on the other. Since the standard orientation of the plane is counter-
clockwise, and boundary cycles are oriented according to the orientation of the
component of the complement which they bound, the standard orientation of
the boundary cycles of an annular diagram are counterclockwise on the inner
cycle and clockwise on the outer cycle.

An arc of the 2-cell D is a path in ∂D whose image is an arc in M . A
boundary arc of D is an arc of D whose image is in ∂M . An interior arc of
D is an arc of D which is not a boundary arc. The number of arcs in D is
called the degree of D and written d(D). The number of interior arcs in D is
called the interior degree of D and written i(D). Notice that a single arc in M
might have two distinct preimages in ∂D if the two orientations of the edges
in the arc both lift to oriented edges in D, in which case it is counted twice in
d(D) and i(D). A boundary cell is a 2-cell D whose image in M intersects ∂M ,
and a cell which is not a boundary cell is an interior cell. A boundary cell D
such that ∂D ∩ ∂M consists of a single boundary arc is called an exposed cell.
The notation

∑
∗ denotes a summation performed only over the exposed cells.

Finally, a C(p)-map is a map with no vertices of degree 1 and with i(D) ≥ p
whenever D contains no boundary arcs.

71



D

Figure 19: An exposed cell

D

D

Figure 20: Two non-exposed cells

Example 3 On the righthand side of Figure 18 is a map containing a single
2-cell which is self-bordering. It also contains two vertices and three edges. On
the lefthand side is the slice of the 2-cell D. Notice that paths from u′ to v′ and
from u′′ to v′′ are both sent under the attaching map φD to the arc between u
and v, which causes this arc to be counted twice when calculating the degrees
of D. Specifically, the degree of D, d(D), is 4, while the interior degree of D,
i(D), is 2, even though the map contains only 3 arcs, and only 1 interior arc.
Notice that even though ∂D is a simple loop, the image of ∂D under φD is no
longer simple.

Example 4 A typical exposed cell is shown schematically in Figure 19, while
Figure 20 shows two examples of 2-cells which are almost but not quite exposed
cells. The first example is not exposed because the intersection of ∂D and ∂M
is a single arc plus an isolated point on the other side of the cell. The existence
of a single arc of D which contains all of the edges in the overlap is a necessary
but not a sufficient condition for D to be exposed. In the second example, the
edges in the intersection of ∂D and ∂M lie on a path but D is not exposed since
the vertex of degree 3 in the interior of the path means that the path is not a
single arc.
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D

Figure 21: A boundary cell

Example 5 In order for a cell to qualify as a boundary cell it is not necessary
for it to contain an edge of ∂M . A vertex from ∂M is sufficient. This situation
is illustrated in Figure 21.

Using slightly different notation, Lyndon and Schupp [9] prove the following
three lemmas.

Lemma 7.1 If M is a connected and simply connected C(6)-map with more
than one 2-cell, then ∑

∗(4 − i(D)) ≥ 6

.

Lemma 7.2 (Greedlinger) If M is a connected and simply connected C(6)-
map with more than one 2-cell, then there exist exposed cells satisfying one of
the following:

1) i(D1), i(D2) ≤ 1
2) i(D1), i(D2), i(D3) ≤ 2
3) i(D1), i(D2) ≤ 2 and i(D3), i(D4) ≤ 3
4) i(D1) ≤ 2 and i(D2), i(D3), i(D4), i(D5) ≤ 3
5) i(D1), i(D2), i(D3), i(D4), i(D5), i(D6) ≤ 3

Notice that Greedlinger’s Lemma is more than just a statement of the conse-
quences of the previous lemma. It states, for example, that if only two exposed
cells have internal degrees less than 4 then both must internal degrees ≤ 1, even
though i(D1) = 0 and i(D2) = 2 satisfies the earlier inequality.

Lemma 7.3 Let M be an annular C(6)-map and let X and Y be the boundary
loops of M . If for every exposed cell D in M an edge of X in ∂D implies
i(D) > 4, and an edge of Y in ∂D implies i(D) > 3, then every 2-cell in M
has exactly two boundary arcs, one arc in each boundary loop, and its internal
degree is at most 2.

These lemmas correspond to lemmas V.4.3, V.4.5 and a combination of lem-
mas V.5.3 and V.5.5 in [9]. In Lemma V.5.3, Lyndon and Schupp make use of
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Figure 22: Islands and bridges

the additional assumption that M is a C(7)-map, but with a little extra work,
this can be reduced to the assumption that M is a C(6)-map, given the assump-
tion which has been added in this formulation that i(D) > 4 for exposed cells on
one of the boundary loops. More specifically, in equation (5.3) the second and
third summations are non-positive, and the first sum must be negative under
the conditions listed above. This contradiction shows that hypothesis (C) in
Lemma V.5.3 is false, and thus hypothesis (C) in Lemma V.5.5 is true.

In a map such as that described in Lemma 7.3, an arc shared by the two
boundary loops of M is called a bridge, since it looks like a bridge connecting
two islands. An island is a connected component of the annular diagram once
the bridges are removed. The boundary of an island consists of a path in each
of the boundary cycles such that the two paths have the same endpoints but
their interiors are disjoint. An internal arc in such a diagram is called a rung,
and boundary arcs which are not bridges are called sides. The terminology
arises from thinking of the islands as ladders.

Example 6 The annular map shown in Figure 22 illustrates the terminology
above. It contains three islands which contain one, two and five 2-cells respec-
tively. The island with five cells contains four rungs and ten side arcs. The
island with only one cell contains two side arcs and no rungs. The three islands
are linked together by three bridges.

7.2 R-Diagrams and R-Spheres

A map M is said to be labeled by A if the embedded cell category is labeled
by A. To accommodate later usage, the definitions given below will be stated
in terms of an arbitrary set of cycles. If R is a set of standard relators, then
R itself can be viewed as a set of cycles. If R is a set of general relators, then
a set of cycles can be produced by considering all of the representatives of the
general relators in R. By Lemma 5.1 there exists at least one representative
for each general relator in R. By an abuse of notation, R will also be used to
denote the set of cycles derived from a set of general relators.

Let M be a map labeled by A and let R be viewed as a set of cycles. If
D is a 2-cell of M attached by the map φD : D → M then the labeling of M
induces a labeling on the boundary of D. A van Kampen diagram over R is a
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labeled map M such that the cycle read on the boundary of each 2-cell is in R.
Diagrams over R are also called R-diagrams. More generally, if M is a labeled,
2-dimensional cell category, and for every 2-cell D attached to M the cycle read
on the boundary of D is contained in R, then M is called an R-structure. If in
addition the cell category M is homeomorphic to a 2-sphere, then M is called
an R-sphere.

Let M and N be R-diagrams and let f : N → M be a label-preserving cell
functor. The R-diagram N is called a subdiagram of M if the composition of f
with the embedding of M into the plane can itself be made into an embedding by
an ε-deformation of the composition for all ε > 0. This definition is formulated
so that the simply connected diagram obtained by cutting along a simple path
connecting the two boundary loops of an annular diagram is an example of a
subdiagram. Similarly, if N is an R-diagram, M is an R-sphere, and f : N → M
is a label-preserving cell functor such that for all ε > 0 there is an ε-deformation
which turns f into an embedding into the underlying 2-sphere, then N is called
a subdiagram of the R-sphere M .

If every cycle W is readable as a representative cycle in at most one general
relator R in R, then R is said to have distinct representatives. When a set R
of general relators has distinct representatives, it is possible to assign a number
to each 2-cell in an R-structure based on the rank of the general relators it
represents. The rank of an R-structure is defined to be the maximum of the
ranks of its cells, and the type of an R-structure, denoted Type(M), is the
number of 2-cells of each rank, plus the number of edges in the structure. If
M is an R-structure of rank k, then the type of M is an ordered k-tuple. Types
are ordered lexiconigraphically, first by rank and then by the number of cells in
each rank from largest to smallest, and finally by the number of edges.

Specifically, if M and N are R-structures of types Type(M) and Type(N)
respectively, then Type(M) < Type(N) if the rank of M is less than that of N ,
or if they are both of rank k but M has fewer cells of rank k, or if they both
have rank k and they both have the same number of rank k cells but M has
fewer cells of rank k − 1, etc., or if M and N have exactly the same number
of cells in every rank and M contains fewer edges. The most important fact
about the ordering of types is that, because it is a lexiconigraphic ordering of
noetherian orders, it is itself noetherian, meaning that all infinitely decreasing
chains must stabilize. In particular, it is possible to use induction on types.

Let α be a fixed positive constant. A path U in a measured relator R is long
relative to α iff dR(U) ≥ α, otherwise it is said to be short relative to α. Such
paths will also be referred to simply as long and short when the constant α is
understood from context. An arc U in a diagram ∆ is called a long arc if U
is in the boundary cycle of a 2-cell D which represents a measured relator R,
and U is long under the reading of U in R given by composing the reading of
U in ∂D with the reading of ∂D as a representative in R. In small cancellation
presentations different readings of the same representative in a relator differ by
an automorphism of the relator and thus yield the same length on the arc U
by Property 6. In other situations, a particular reading of the boundary cycles
of the cells in the measured relators which they represent must be chosen and
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Figure 23: Removing a cancellable pair

fixed as part of the definition of a diagram over such a set of measured relators.

Lemma 7.4 Let R be a set of measured relators, and suppose that α ≤ 1
p
. If

∆ is an R-diagram with no vertices of degree 1 and no internal arcs which are
long relative to α, then ∆ is a C(p + 1)-map.

Proof: If D is a representative cell in ∆ with no boundary arcs, then by
definition it contains only short internal arcs, each of which has length strictly
less than α ≤ 1

p
. Since by Lemma 5.25 the lengths must add to at least 1, there

must be at least p + 1 arcs. This shows that for every such D, d(D) ≥ p + 1
and completes the proof. 2

Two R-diagrams are called equivalent if they have exactly the same list of
boundary cycles, even when orientations and repetitions are taken into con-
sideration. The goal of much of small cancellation theory is to start with an
R-diagram and then systematically alter it to obtain an equivalent diagram
which has additional, more managable properties. The most familiar type of
alteration is the removal of what is known as a cancellable pair. The description
of a cancellable pair given below is a slight generalization of the usual defini-
tion. Let N be an R-diagram with exactly two closed 2-cells which intersect
in exactly one closed edge, and suppose that N has no other 2-cells, edges or
vertices. If the 1-skeleton of N can be mapped into a general relator R so that
the boundary cycle of each of the 2-cells is sent to a representative of R, and
the image of the boundary cycle of N has winding number 0, then N is called
a cancellable pair. If ∆ is an R-diagram or an R-sphere which contains N as a
subdiagram, then intuitively N can be ‘cut out’ and the hole can be ‘sewn up’.
Complications can arise because of the creation of new R-spheres. These will be
treated in more detail below. An uncomplicated case is illustrated schematically
in Figure 23.

It should be noted that the image of N in ∆ may contain many more than
two boundary arcs and one internal edge. The numbers are derived from a
consideration of N as an R-digram in its own right prior to its embedding in
∆. In particular, even if two cells in ∆ contain more than one internal edge
from which these cells form a cancellable pair, the embedding of the R-diagram
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effectively selects one of the edges for consideration. Finally, notice that in
traditional small cancellation theory, the set R of possible cycles is reduced, so
that the possible cancellable pairs are severely restricted. In particular, if N is
a cancellable pair over a traditional set of reduced cycles and v is a vertex on
the shared edge of N , the boundary cycle of one 2-cell starting at v, reading
counter-clockwise, must be the same as the boundary cycle of the other 2-cell
read clockwise starting at v. Thus the notion of a cancellable pair given here is
an extension of the traditional concept.

7.3 Boundaries

Let M be an R-diagram, and let W1, W2, . . . , Wk be the properly oriented
boundary cycles of M , with possible repetition. If there does not exist an
R-diagram whose properly oriented boundary cycles are a non-empty proper
subset of this list then these cycles are said to be linked. The concept of an R-
diagram with linked boundaries can be reformulated in terms of R-spheres. Let
R+ be the union of the cycles R and the boundary cycles of an R-diagram M .
The embedding of M in the plane combined with the standard embedding of the
plane into the 2-sphere creates an embedding of M in the 2-sphere which can
then be viewed as a R+-sphere. From this perspective, one cell has been added
to M for each connected component of the complement of M in the 2-sphere.
Then these new cells will be called ‘phantom’ cells.

The boundaries of M are not linked if there is an R+-sphere whose phantom
cells can be put in 1 to 1 correspondence with some, but not all, of these phantom
cells. The orientations, labels, and the number of repetitions of the boundary
cycles, as well as the absence of any other phantom cells, are clearly important
factors in determining whether a particular R-sphere demonstrates that a list
of cycles is not linked. Conversely, the boundary cycles of M are linked if no
such R+-sphere exists. By far the most important examples of diagrams with
linked boundaries are arbitrary connected and simply connected R-diagrams
and annular R-diagrams in which the boundary cycles do not bound connected
and simply connected R-diagrams.

The next two lemmas involve identifications of boundaries. The first is
a simple topological result, while the second is a variation which takes into
account the labeling on the boundary. Despite the simplicity of their proofs,
these results will be extremely useful. The difference between Lemma 7.5 and
Lemma 7.6 is that in the latter the identifications do not collapse edges to
points. The lemmas are stated in terms of one-point products. If B and C
are topological spaces, then a one-point product is given by selecting a point
in B and a point in C and then identifying them. The one-point product of a
finite list of spaces is simply a repetition of this operation a finite number of
times. In this definition, the points selected can vary from product to product.
Thus, for example, the one-point product of a finite number of edges is a finite
tree, and every finite tree is the one-point product of a finite number of edges.
In an arbitrary topological space the choice of points to attach is completely
arbitrary. In circular categories, however, the choice of points will be restricted
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to the vertices in the 1-skeletons.

Lemma 7.5 If M is a connected and simply connected map, then the identi-
fication of its entire boundary to a single point yields a structure which is a
one-point product of a finite number of spheres.

Proof: The identification of the boundary to a point will be done in stages.
First remove all cut edges by identifying them to a point one at a time. Next
proceed by induction on the number of cut vertices which exist in M . If none
exist, then either M is a single point or, since there are no cut edges, the
boundary loop of M is simple and its identification to a point produces a sphere.
If a cut vertex exists then the inductive hypothesis can be applied to each of
the connected components formed by its removal and then these structures can
be reattached using a one-point product. 2

Lemma 7.6 Let R be a set of cycles, and let M be a connected and simply
connected R-diagram. If the boundary cycle of M is a Dyck word, then there is
an identification of the boundary edges so that the result is a one-point product
of a finite number of R-spheres and labeled edges.

Proof: The proof proceeds by induction on the length of the boundary cycle.
By Lemma 4.2 the length is even, so the minimal length is 2, and the boundary
cycle must be aa−1 for some a ∈ A. If the edges labeled a and a−1 are distinct
then their identification forms a sphere both in the case where the diagram
contains two vertices and where it contains only a single vertex. If these edges
are not distinct then this edge is in itself the complete diagram. In either case,
the lemma is true for diagrams whose boundary cycles have length 2.

Next assume that the result has been shown for all diagrams whose boundary
cycles have length at most 2(k − 1), k > 1, and let M be a diagram with
a boundary cycle of length 2k. By Lemma 4.2 there exist a pair of adjacent
oriented edges in the boundary cycle labeled aa−1 for some a ∈ A. Let e1

and e2 be such a pair of adjacent edges with v the vertex between them in the
boundary cycle. If the initial vertex of e1 and the final vertex of e2 are distinct
then the map can be stretched so that the edges e1 and e2 and their vertices are
identified in a portion of the unbounded component of the complement, thus
keeping the map planar. The inductive hypothesis can then be applied to this
new diagram.

If, however, the initial vertex of e1 and the terminal vertex of e2 are one and
the same vertex, say a vertex called u, then the subdiagram bounded by the
loop e1e2 is connected, simply connected and attached to the rest of M only at
u. If this subdiagram is temporarily removed then the inductive hypothesis can
be applied to each of the two connected components. Finally, it is clear that
the pieces can be reattached at appropriate points using a one-point product.
This completes the proof. 2

Notice that since in Lemma 7.6 the only identifications are of edges, the
number and the rank of the 2-cell is unchanged, and the type of the R-structure
remains constant.
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7.4 A General Van Kampen Lemma

Lemma 7.7 and Lemma 7.8 will provide the connection between the geometry of
R-diagrams and the algebra of presentations which is needed to prove a general
version of van Kampen’s Lemma. For proofs see [9].

Lemma 7.7 (van Kampen) Let G = 〈A|R〉 be a group presentation. A word
W ∈ A∗ is equivalent to 1 in G iff there is a connected and simply connected
R-diagram M whose boundary cycle is W .

Lemma 7.8 Let G = 〈A|R〉 be a group presentation, and let X and Y be words
which are not equivalent to the identity in G. The words X and Y are conjugate
in G iff there is an annular R-diagram M with boundary cycles X and Y −1.

These results can be extended to general presentations using the earlier
results on deformation retractions.

Lemma 7.9 Let G = 〈A|R〉 be a general presentation. If the general relators in
R are thin, then a word W ∈ A∗ is equivalent to 1 in G iff there is a connected
and simply connected R-diagram M whose boundary cycle is W .

Proof: Since the general relators are thin, there is a set of standard represen-
tatives R′ for R by Lemma 5.19. By Lemma 6.16, G = 〈A|R′〉 is a standard
group presentation for G. Since all R′-diagrams are also R-diagrams, the result
follows by Lemma 7.7. 2

Lemma 7.10 Let G = 〈A|R〉 be a general presentation, and let X and Y be
words which are not equivalent to the identity in G. If the general relators in
R are thin, then the words X and Y are conjugate in G iff there is an annular
R-diagram M with boundary cycles X and Y −1.

Proof: The proof is the same as in the previous lemma. Since the general rela-
tors are thin, there is a set of standard representatives R′ for R, by Lemma 5.19.
By Lemma 6.16 G = 〈A|R′〉 is a standard group presentation for G. Since all
R′-diagrams are also R-diagrams, the result follows by Lemma 7.8. 2

An R-diagram like that described in Lemma 7.9 is called a proof that W
equals 1 in G, and the R-diagrams described in Lemma 7.10 are called conju-
gacy diagrams, or proofs that X and Y are conjugate in G. A more detailed
analysis using the Simplicial Approximation Theorem would allow the condi-
tion that the relators are thin to be removed from the hypotheses of Lemma 7.9
and Lemma 7.10, but these lemmas will suffice for the general small cancella-
tion theory discussed here, since all of the general relators in a general small
cancellation presentation will necessarily be thin. Two useful consequences of
Lemma 7.9 are given below.

Lemma 7.11 Let R be a set of thin general relators, and let C be an R-
category. If W is a contractible loop in C, then there is a connected and simply
connected R-diagram whose boundary cycle is W .
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Proof: By Lemma 1.9 there is a map from the unit disk into C where the
restriction of the map to the boundary recovers the reading of the loop W .
Composing this with the unique map to the Poincaré construction of these
general relators (Lemma 6.8) yields an image of a disk which shows that W is
contractible in the Poincaré construction. By definition this means that W is
equivalent to 1 in the group, and by Lemma 7.9 an R-diagram such as the one
described must exist. 2

Lemma 7.12 Let R be a set of thin general relators, and let R be a general
relator in R. If W is a loop in R of winding number 0, then there is a connected
and simply connected R-diagram ∆ with boundary W which contains 2-cells
which represent only general relators in ∂R. In particular, the 2-cells in ∆
represent only general relators whose height is strictly less than that of R.

Proof: Since W has winding number 0 it is contractible in ∂R, and thus
Lemma 7.11 can be used to complete the proof. 2

7.5 Removing Cancellable Pairs

The next several lemmas show how cancellable pairs can be systematically re-
moved.

Lemma 7.13 Let R be a set of graded, thin general relators with distinct rep-
resentatives. If ∆ is a R-sphere which contains a cancellable pair N as a sub-
diagram, then the cancellable pair N can be removed by a process which cre-
ates a one-point product of labeled edges and R-spheres called ∆′ such that
Type(∆) > Type(∆′).

Proof: If the image of the two open cells of N and the single internal edge
are removed from ∆, then the remaining R-structure is connected and simply
connected, and since it can be embedded in the plane, it is also an R-diagram,
say ∆′. The boundary of ∆′ is by definition a cycle W which can be read as
a loop of winding number 0 in the boundary of some general relator R ∈ R.
By Lemma 7.12 there is a connected and simply connected R-diagram ∆′′ with
the boundary W , but whose 2-cells represent general relators only in ∂R. The
R-diagram ∆′′ can be embedded in the plane upside-down, so that its boundary
cycle is W−1, and attached to ∆′ at a single point producing a new connected
and simply connected R-diagram with boundary cycle WW−1. The boundary
cycle is clearly a Dyck word, and the type of this R-diagram is strictly less
than that of the R-sphere ∆ since two cells representing R were removed but
only cells of strictly lower rank were added. Finally, Lemma 7.6 can be used to
identify the boundary edges and complete the proof. 2

Lemma 7.14 Let R be a set of graded, thin general relators with distinct rep-
resentatives. If ∆ is a one-point product of a finite number of labeled edges and
R-spheres, then the process of repeatedly removing cancellable pairs can be used
to create a one-point product of R-spheres and labeled edges called ∆′ such that
Type(∆) ≥ Type(∆′) and ∆′ contains no cancellable pairs.
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Proof: The proof proceeds by induction on the type of ∆. If ∆ has no cells
then it is a finite tree, and the lemma is true. So suppose that ∆ is a finite
one-point product of labeled edges and R-spheres and that the lemma has been
shown for all such R-structures of strictly lower type. If there does not exist a
cancellable pair in ∆ then ∆ itself satisfies the lemma, so let N be a cancellable
pair in ∆. Since the two 2-cells in N share an edge, N must actually be a
subdiagram of one of the R-spheres in the product which forms ∆. Since the
procedure used in Lemma 7.13 to remove a cancellable pair removes two 2-cells
and an internal edge but no vertices, any vertices used for one-point attachments
remain even after the removal of the cancellable pair. Thus it is possible to form
the same one-point products with the other labeled edges and R-spheres after
the cancellable pair has been removed. Since this new product has strictly lower
type, the induction hypothesis completes the proof. 2

Lemma 7.15 Let R be a set of graded, thin general relators with distinct repre-
sentatives. If ∆ is an R-diagram whose boundaries are linked, then there exists
an equivalent R-diagram ∆′ with no cancellable pairs, and Type(∆) ≥ Type(∆′).

Proof: The proof again proceeds by induction on the type of ∆. If ∆ contains
no 2-cells then clearly ∆ has no cancellable pairs, and ∆ itself satisfies the
lemma. So suppose that ∆ is an R-diagram with linked boundaries and that
the lemma has been shown for all such R-diagrams of strictly lower type. If
there does not exist a cancellable pair in ∆ then ∆ itself satisfies the lemma, so
let N be a cancellable pair in ∆.

Adding phantom cells for each of the connected components of the comple-
ment creates an R+-sphere ∆′. The cancellable pair N is a subdiagram of ∆′ as
well. If the cancellable pair N is removed using the procedure in Lemma 7.13,
then the phantom cells persist in the result. Moreover, since they are linked,
they must all be contained in the same R+-sphere. Ignoring the other labeled
edges and R+-spheres in the one-point product and removing the phantom cells
leaves an R-diagram with exactly the same boundaries as ∆, but of strictly
lower type. The induction hypothesis can now be used to complete the proof.
2

8 Cayley Categories

The primary goal of this section is to introduce the Cayley category of a general
presentation, and to prove its fundamental properties. Along the way a few
results are given on regular covers and automorphism groups of R-categories.
The section concludes with a pair of key examples of these concepts.

8.1 Automorphisms

The next several lemmas investigate the automorphism group of regular covers
of Poincaré constructions, as well as those of the collapsed versions of these
spaces. Of particular interest will be the collapse of the universal cover of a
Poincaré construction because of its role in the later developments.
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Lemma 8.1 Let C be a regular cover of the Poincaré construction of a gen-
eral presentation. There is an isomorphism between two closed cones C/c1 and
C/c2 iff c1 and c2 are lifts of the same object c in the Poincaré construction
iff there is a deck transformation of C which sends c1 to c2. Moreover, such
automorphisms, when they exist, are unique.

Proof: The first two conditions are equivalent by Lemma 6.8, while the equiv-
alence of the last two follows from the definition of a regular cover. The unique-
ness of this automorphism is guaranteed by Lemma 1.14. 2

Lemma 8.2 If C is a regular cover of the Poincaré construction of a general
presentation, then the group of label-preserving automorphisms of C is isomor-
phic to that of C. Moreover, both automorphism groups are determined by their
action on a single vertex.

Proof: Since the 1-skeleton of C is a Cayley graph by Lemma 6.12 and Cay-
ley graphs are deterministic, Lemma 6.2 shows that the 1-skeleton of C is the
same as that of C. In addition the construction of C is invariant of any label-
preserving automorphism, so the deck transformations of C must induce label-
preserving automorphisms of C, and since the 1-skeleton remains the same,
distinct automorphisms of C must remain distinct. Thus the label-preserving
automorphisms of C contain at least the deck transformations of C as a sub-
group. Finally, since any such automorphism must send a vertex to a vertex, and
an automorphism is trivially a covering map, Lemma 1.14 shows that the two
groups are identical, and that their actions are determined by a single vertex.
2

Lemma 8.3 Let G = 〈A|R〉 be a general presentation, and let C be the uni-
versal cover of its Poincaré construction. If C is the collapse of C, then the
1-skeleton of C is the same as the 1-skeleton of C, and thus is the Cayley graph
C(G, A). Moreover, the automorphism group of C is transitive on its vertices
and isomorphic to G.

Proof: The result is a special case of Lemma 8.2 using the fact that the fun-
damental group of C is trivial and the deck transformations form the group G.
2

Lemma 8.4 Let G = 〈A|R〉 be a general presentation and let C be the universal
cover of its Poincaré construction. If C is the collapse of C then C is connected
and simply connected.

Proof: By Lemma 8.3 the 1-skeleton of C is a Cayley graph, and thus by
Lemma 4.4 the 1-skeleton is connected. By Lemma 4.8 this means that C is
connected. The proof that C is also simply connected will proceed by contra-
diction. If C is not simply connected then it has its own universal cover, say C ′

with a covering map h : C ′ → C . By Lemma 1.13, there is a lift of f : C → C to
g : C → C ′. Let v be a vertex in C and let u = g(f−1(v)) which is well-defined
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since f is an isomorphism on the 1-skeleton by Lemma 6.2. If u′ is another
vertex in C ′ such that h(u′) = h(u) = v, then choose a path U from u to u′.
Under h this creates a loop at v, which becomes a loop U at f−1(v), since f is
isomorphic on the 1-skeletons. Thus under g, the path in C ′ must have started
out as a loop, and u = u′. This shows that h−1(v) contains only a single vertex.
Since by Lemma 1.15 the cardinality of h−1(v) is the order of the fundamental
group of C, C is simply connected. 2

The following lemma shows in more detail the relationship between the uni-
versal cover of a Poincaré construction and its collapse.

Lemma 8.5 Let G = 〈A|R〉 be a general presentation, and let f : C → C be
the R-functor between the universal cover of the Poincaré construction of the
presentation and its collapse. If c is an open cone in C, then the number of
open cones in f−1(c) is the order of the group Aut(C/c) divided by the order of
the normal subgroup of automorphisms g such that φcg = φc. In particular, if
the attaching functor φc is injective on vertices then the objects in f−1(c) are
in 1 to 1 correspondence with Aut(C/c).

Proof: First of all, if c is a vertex or an edge, then the lemma is trivially
true, so assume that c is an open cone of rank at least 2. Let c1 and c2 be
two open cones in f−1(c). Since they both map to the same general relator in
the Poincaré construction, by Lemma 8.1 there is a unique automorphism of
C which takes c1 to c2. This induces an isomorphism between C/c1 and C/c2

since the automorphism is a circular functor (Lemma 6.11 and the definition of
a circular functor). Under f the isomorphism becomes an automorphism of the
closed cone C/c with itself.

Conversely, given any automorphism g of C/c let W be a path read in the
1-skeleton of C/c from a vertex v to g(v). Under φc the word W is also a path
read in C . Since by Lemma 6.2 the 1-skeleton remains unchanged under the
collapsing functor f , it is also read in the 1-skeleton of C. By Lemma 8.1 there is
a unique automorphism of C which sends f−1(φc(v)) to f−1(φC(g(v))). Since
the automorphism of C/c induced by W fixes the 1-skeleton of C/c and the
open cone c, the corresponding images in C are also fixed. This in turn means
that this automorphism of C must send an open cone in f−1(c) such as c1 to
another open cone in this set. By Lemma 4.5 the automorphism of C induced
by W is the identity iff the path W forms a loop in C (or C iff the word W is
equivalent to 1 in G. 2

An R-category C is called proper if it is an R-complex. By Lemma 3.4
this is true iff the characteristic functors of the slice categories are injective on
vertices. A general presentation is called proper when the universal cover of its
Poincaré construction is proper. Since the R-functor from the universal cover
of a Poincaré construction is an isomorphism when restricted to the 1-skeleton
by Lemma 8.3, the universal cover is proper iff its collapse is as well. Thus
Lemma 8.5 has the following corollary.
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Corollary 8.6 If G = 〈A|R〉 is a proper general presentation, then the uni-
versal cover of its Poincaré construction is collapsed iff there are no non-trivial
automorphisms of the general relators R ∈ R.

8.2 Cayley Categories

A Cayley category is a collapsed, connected, simply connected R-category whose
group of label-preserving automorphisms acts transitively on its vertex set. By
Lemma 8.3 and Lemma 8.4, the collapse of the universal cover of a Poincaré
construction is an example of a Cayley category. The goal of the next few
lemmas is to show that these are actually the only examples.

Lemma 8.7 Let B be a Cayley category and let v be a vertex of B. If R is a
general relator used in the construction of B and u is a vertex in R then there
exists a unique R-functor from R to B which sends u to v. Similarly, if a is
the label on one of the oriented edges of B then there exists a unique oriented
edge with v as its initial vertex which is labeled by a.

Proof: The existence portion of these two statements follows from the facts
that they occur somewhere in B and that by definition the automorphism group
of B acts transitively on its vertices. Since generators and general relators are
connected and B is collapsed, Lemma 6.3 guarantees the uniqueness of each. 2

Lemma 8.8 Let B be a Cayley category, and let ∆ be a connected and simply
connected R-diagram with boundary cycle W . If B contains all of the generators
used and general relators represented in ∆, then the path W is always read as
a loop in B.

Proof: The proof is by induction on the number of 2-cells in ∆. If ∆ contains
no cells, then it is a finite tree. Start by sending the base of the loop W to a
vertex in B. The partial functor into the 1-skeleton of B can be extended one
edge at a time. By Lemma 8.7 there is always an edge in B which extends the
functor while preserving the label on the edge. The completed functor shows
that W is read as a loop in B. If ∆ contains exactly one cell, then the boundary
of this cell can be read in the unique copy of the general relator it represents
attached to the appropriate point in B. This partial map can then be extended
to the finite trees which might be attached to the boundary of the single cell
one edge at a time, exactly as before. Finally, suppose that the lemma has been
shown for all R-diagrams with fewer than k cells and let ∆ have exactly k cells,
k > 1. Using a cell which contains an edge in the boundary, ∆ can easily be
split into two subdiagrams which have strictly fewer cells and whose boundary
cycles once combined yield a word which reduces to W in the free group. Since
by induction both of these words label loops in B, so does their concatenation.
Moreover, since the 1-skeleton of B is deterministic, the reductions in the free
group necessary to produce W can be accomplished in B as well, showing that
W is read as a loop. 2
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Lemma 8.9 Let G = 〈A|R〉 be a general presentation in which all of the general
relators are thin, and let B be a Cayley category whose content is identical with
that of G. If W is a word which is equivalent to 1 in G then the path W always
forms a loop when read in B.

Proof: By Lemma 7.9 there is a connected and simply connected R-diagram
whose boundary cycle is W , and then Lemma 8.8 completes the proof. 2

Lemma 8.10 Let G = 〈A|R〉 be a general presentation in which all of the
general relators are thin. If B1 and B2 are Cayley categories whose content is
identical with that of G, then they have isomorphic 1-skeletons. In particular the
1-skeleton of a Cayley category which contains generators A and general relators
R is the Cayley graph C(G, A) where G is the group of the general presentation
G = 〈A|R〉.

Proof: Let B be either Cayley category. If a word W is equivalent to 1 in
G then by Lemma 8.9 it is read as a loop in B. Conversely let W be read
as a loop in B. Since B is simply connected, this loop is also contractible.
Thus, by Lemma 7.11 there is a connected and simply connected R-diagram
with boundary cycle W , and by Lemma 7.9 W is equivalent to 1 in G. By
definition, the 1-skeleton of B is deterministic and the automorphism group acts
transitively on its vertices. Since by Lemma 4.8 it is also connected, Lemma 4.4
shows that it is a Cayley graph. Since it is now known that W is read as a loop
in B iff W is equivalent to 1 in G, the Cayley graph in question must be C(G, A).
Since all Cayley categories with this content have C(G, A) as their 1-skeleton,
the proof is complete. 2

Lemma 8.11 Let G = 〈A|R〉 be a general presentation, and let B be a Cayley
category whose content is identical with that of G. A path in B forms a loop iff
the word read by the path is equivalent to 1 in G. In particular, given words X
and Y , XY −1 is equivalent to 1 in G iff X and Y are equivalent in G iff X and
Y can be read in the Cayley category as paths which start and end at the same
vertices.

Proof: The first statement is a combination of Lemma 8.10 and Lemma 4.5
while the second is an immediate consequence of the first. 2

Lemma 8.12 All Cayley categories with the same content are isomorphic. In
particular Cayley categories are in 1 to 1 correspondence with general presenta-
tions and Poincaré constructions, and all Cayley categories are the collapse of
the universal cover of a Poincaré construction of some general presentation.

Proof: Let B1 and B2 be two Cayley categories which have the same content.
By Lemma 8.10 there is an isomorphism between the 1-skeletons of B1 and B2.
Suppose that there is an R-isomorphism from the (k − 1)-skeleton of B1 to the
(k−1)-skeleton of B2. If b is an object of B1 of rank exactly k, then b is a terminal
object and extension of the functor to b will have no effect on the other elements
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of the k-skeleton, and thus can be chosen independently. By assumption the
image of the boundary of b is already set in correspondence with objects and
arrows in B2. In particular, if a vertex in the image of B1/b is considered,
there is a particular vertex in B2 to which it corresponds. By Lemma 8.7
there exists an R-functor from B1/b extending this correspondence. Since by
Lemma 6.3 this agrees on the boundary of b with the existing identification of
the (k − 1)-skeletons, there is a coherent extension of the functor to the object
b. When this is done for all objects of rank k, an R-functor has been produced
from the k-skeleton of B1 to that of B2. Since by Lemma 8.7 the choices were
forced, and since the same procedure could be applied from B2 to B1 with
the identical correspondence, the R-functor between the k-skeletons must be
an isomorphism. Continuing in this way produces the desired isomorphism
between B1 and B2. As mentioned above, the existence of a Cayley category
whose content is the same as that of a given general presentation has already
been shown by Lemma 8.3 and Lemma 8.4. This completes the proof. 2

In [9] Lyndon and Schupp define a similar construction for traditional 2-
dimensional presentations over reduced sets of relators, which they call the
Cayley complex of the presentation. The construction defined in [9] is collapsed
and it agrees with the definition given here of the Cayley category of a presen-
tation in the cases where both are defined.

8.3 Cyclics and Dihedrals

The two examples given below are good illustrations of the constructions de-
scribed in the previous sections.

Example 1 Let Zn = 〈a|an〉 be the cyclic group of order n. The Cayley graph
C(Zn, a) is the abstract loop Ln with all positively oriented edges labeled by
a. The cone over this loop is the labeled 2-cell corresponding to the cycle an.
If a single copy of this 2-cell is attached to the Cayley graph the result is the
Cayley category of the presentation. If, on the other hand, n distinct copies
of the relator are attached to the loop which is the Cayley graph, then the
resulting construction is the universal cover of the Poincaré construction of the
presentation. Finally, the Poincaré construction can be obtained by identifying
the vertices either of the Cayley category or of the universal cover, and then
collapsing the result. The Poincaré construction consists of a single vertex, a
single loop edge labeled a, with a single copy of the 2-cell attached.

Example 1 highlights the distinction between the universal cover of the
Poincaré construction and the Cayley category of a presentation. The uni-
versal cover has many convenient topological properties which are not shared
by the Cayley category. However, if the primary intent of an investigation is to
prove results about the van Kampen diagrams over the presentation, then the
Cayley category is a more appropriate construction to study.
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Figure 24: The dihedral group D6

Example 2 Let D2n = 〈a, b|a2, b2, (ab)n〉. The Cayley graph C(D2n, {a, b})
consists of a vertex set ∼= Z2n with two edges between every pair of consecutive
vertices. Between the vertices 2i and 2i + 1 there are two positively oriented
edges, one starting at each vertex and ending at the other, both labeled a.
Similarly, between 2i+1 and 2i+ 2 there are two positively oriented edges, one
starting at each vertex and ending at the other, both labeled b. In Figure 24
the Cayley graph of D6 is represented. The arrows are meant to indicate that
starting at the vertex 0 and reading clockwise around the outside of the circles
produces the word (ba)3, and that reading counter-clockwise around the inside
of the circles produces the word (ab)3.

Let S be the Cayley graph C(D2n, A) in which between each pair of vertices a
2-cell labeled either a2 or b2 is attached depending on the labeled edges available.
The Cayley category of the presentation is given by attaching two copies of the
2-cell labeled (ab)n onto the construction S so that their edges are disjoint.
Topologically, the construction is a 2-sphere. It is simply connected but not
contractible. The universal cover is given by attaching n distinct copies of the
2-cell labeled (ab)n to both the top and the bottom, and 2 distinct copies of the
2-cells labeled a2 and b2 whenever they occur.

Let R = Cone(S). The general presentation 〈A|a2, b2, R〉 is an alterna-
tive presentation of D2n. Since the relators a2 and b2 are contained in R, the
Poincaré construction of this presentation is given by identifying the vertices of
R and collapsing the result. The universal cover of the Poincaré construction is
more easily visualized as 2n copies of the general relator R attached to a single
copy of the boundary ∂R = S. The Cayley category is isomorphic to the general
relator R itself.

Since the relators in the standard presentation are simple representatives
of the general relators in the general presentation, by Lemma 6.16 there is a
deformation retraction of the Poincaré construction of the general presentation
onto the Poincaré construction of the standard presentation. By Lemma 6.18,
this deformation lifts to a deformation retraction between the universal covers.

87



That there is no deformation retraction between the Cayley categories is clear
since in the case of the general presentation the Cayley category is contractible
while in the case of the standard presentation it is not. Finally, for large n the
general presentation given here is a general small cancellation group as defined
in Section 9.

Because 2-dimensional relators are sufficient to describe any group, geomet-
ric group theory is usually done with 2-dimensional cell categories. But by
allowing more general, higher-dimensional relators, most of the desirable prop-
erties of ordinary relators are preserved, and in addition, more groups fall within
the purview of small cancelation theory. In particular, general relators allow the
Burnside groups for sufficiently large exponents to be described as generalized
twelfth groups. Moreover, in Section 12 it will be shown that the Cayley cat-
egory of a general small cancellation presentation is contractible even in cases
such as the presentation of the dihedral groups as given above, where the Cayley
complex of a retracted presentation of the same group is not contractible. The
contractibility of this canonical geometric construction is indicative of the ben-
efits, both geometrically and algebraically, to the researcher who uses general
relators.
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Part IV

Small Cancellation Theory

In Part IV the focus is narrowed once again to examine those general presen-
tations which satisfy a version of small cancellation theory. In Section 9 the
general small cancellation theory alluded to in the title of the article is pre-
sented along with its most immediate consequences. In Section 10 it is shown
how Dehn’s algorithm can be applied to R-diagrams over general small cancella-
tion presentations to prove the decidability of the word and conjugacy problems
for these groups. Finally, in Section 11 finitely presented general small cancel-
lation groups are shown to be Gromov hyperbolic groups, and arbitrary general
small cancellation groups are shown to be the direct limit of hyperbolic groups.

9 General Small Cancellation Theory

This section begins by discussing the traditional small cancellation theory and
the ways it can be generalized. Then the axioms used to define general small
cancellation groups and presentations are given. After discussing the axioms, a
few of the more immediate consequences are shown.

9.1 Traditional Small Cancellation Theory

Let R be a set of standard relators. In traditional small cancellation theory the
relators in R are thought of as a set of cyclically reduced words closed under
inverse and cyclic conjugates. If R and S are distinct words in R, and R = UV1

and S = UV2, then U is called a piece relative to R. Alternatively, a piece can
be thought of as a possible label on an internal arc in an R-diagram which has
no cancellable pairs. In the first definition it is important to realize that the
words R and S may be cyclic conjugates and thus belong to the same cycle even
though they are distinct words. Similarly, in the second definition the 2-cells on
either side of the internal arc may represent the same relator.

A third definition uses R-functors. Let the relators in R be viewed as closed
cones over labeled abstract loops reading cycles which are reduced in the free
group. A word U is not a piece relative to R if whenever U is read in relators
R and S by R-functors f and g respectively, there always exists an R-functor
h : R → S such that hf = g. By Lemma 2.1, the functor h must be an
isomorphism (since in the traditional theory all relators have the same rank),
thus showing that this definition is equivalent to the first two definitions.

The traditional theory focuses on two types of hypotheses called C(p) and
C ′(α). The first is stated in terms of pieces and the second uses the normalized
graph metric. A set of standard relators is said to satisfy C(p) if the relators
are cyclically reduced and no word in R is the product of fewer than p pieces.
The notions of a C(p) set of relators and a C(p)-map are closely related.
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Lemma 9.1 If R is a C(p) set of standard relators, and ∆ is an R-diagram
with cyclically reduced boundaries and no cancellable pairs, then the underlying
map of ∆ is a C(p)-map.

Proof: To prove the result it is sufficient to show that there are no vertices
of degree 1, and that all internal arcs are pieces. Since the boundary cycles of
∆ are cyclically reduced, and since R is a C(p) set of relators, the boundary
cycle of every region is cyclically reduced. If ∆ contained a vertex v of degree 1,
then a small disk around v would be strictly contained in some region and the
boundary cycle of this region would not be cyclically reduced, contradiction.
If an internal arc is not a piece of a relator, then the label on the arc is the
initial segment of a unique word in R and either the arc is on the border of two
distinct 2-cells, or the arc is read in the boundary of a single 2-cell in two distinct
ways. In the former case the cells must form a cancellable pair, contradicting
the assumption about ∆. And in this latter case, the two readings yield opposite
orientations of the boundary, forcing the boundary of the 2-cell to be a word in
the free group which is conjugate to its own inverse. By Lemma 4.2 the only
word for which this is true is the empty word. Thus every internal arc must be
a piece and the proof is complete. 2

Lemma 9.2 Let R be a C(p) set of standard relators. If ∆ is an R-diagram
whose boundary cycles are cyclically reduced and linked, then there exists an
equivalent R-diagram ∆′ over a C(p)-map with Type(∆) ≥ Type(∆′).

Proof: Since a collection of reduced cycles clearly has distinct representatives
and a rank function which assigns every relator the rank of 2, the result follows
immediately from Lemma 7.15 and Lemma 9.1 2

A set of cyclically reduced standard relators R is said to satisfy C ′(α) if
every piece of every relator has a length strictly less than α in the normalized
graph metric. More specifically, let R be viewed as a set of measured relators
by defining dR(U) as the length of the path U in the normalized graph metric
on R for all paths U in R. The condition C ′(α) is satisfied by R if whenever
U is a piece relative to R and U is readable in R, then dR(U) < α. In other
words, R satisfies the condition C ′(α) if whenever dR(U) ≥ α for some path U
in R, then U is not a piece relative to R. The third description of a piece, given
above, can be used to state the condition C ′(α) in the form in which it appears
in the general theory. A set of standard relators R is said to satisfy C ′(α) if
whenever U is read in relators R and S by R-functors f and g respectively and
dR(U) ≥ α, there exists an R-functor h such that hf = g.

The above discussion motivates the following definition. Let R be a set of
measured relators, let C be an R-category, and let µ be a non-negative real.
The R-category C is called µ-closed if whenever a word U is read in C by
an R-functor g and U is also read in a general relator R by a functor f with
dR(U) ≥ µ, there exists a unique functor h : R → C such that hf = g. As
an example, Cayley categories are constructed so that every general relator is
attached to every vertex in every possible way, so Cayley categories are 0-closed.
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Another example is the condition C ′(α). A set of standard relators R satisfies
C ′(α) iff every relator R ∈ R is α-closed with respect to R. The notion of
being µ-closed is related to the earlier notions of being µ-reduced, µ-free, or
µ-complement-free. If a labeled abstract path or loop is µ-closed, then the word
or cycle with which it is labeled is µ-free. Conversely, because of the inclusion or
exclusion of equality, abstract paths and loops labeled by µ-free words and cycles
are structures which are λ-closed for all λ > µ, but not necessarily structures
which are µ-closed. For example, in the traditional theory, where the normalized
graph metric is the relator metric used, it is clear that a word is µ-reduced iff
it is µ-free, and it is also clear that a word can contain exactly one-half of a
relator so that it is 1

2 -reduced (Dehn-reduced) but not necessarily 1
2 -closed.

Lemma 9.2 can be combined with the lemmas from Lyndon and Schupp to
yield the results below. The results are stated in terms of k-remnants. A word
V is called a k-remnant if some word R ∈ R has the form R = U1U2U3 . . . UkV
where U1, . . . , Uk are pieces.

Lemma 9.3 Let R be a set of standard relators satisfying C(6). If W is a
cyclically reduced word equivalent to 1 in the group G = 〈A|R〉 then either W is
equal to 1, W is a relator, or a cyclic conjugate of W has the form U1V1 . . . UnVn

where each Vk is an i(Vk)-remnant such that the number n of the Vk and the
numbers i(Vk) satisfy the relation

n∑

k=1

(4 − i(Vk)) ≥ 6

Proof: Consider a reduced proof-diagram whose boundary reads W which
must exist by Lemma 7.7 and Lemma 9.2. If W is not equal to 1 or to a relator
in R, then the reduced diagram must contain more than one 2-cell. The result
follows from Lemma 7.1 by simply letting the words Vk represent the label on
the unique boundary arcs of the exposed cells of the diagram. 2

Lemma 9.4 Let R be a set of standard relators satisfying C ′(α) for some α ≤
1
8 . If X and Y are cyclically Dehn-reduced words which are conjugate in the
group G = 〈A|R〉 but not equivalent to 1 in G, then there exists an annular R-
diagram ∆ with boundary cycles X and Y −1 such that ∆ contains no cancellable
pairs, and every 2-cell in ∆ has internal degree of at most 2. Moreover, every
2-cell contains exactly one arc in each boundary cycle, and the length of the
boundary arcs is always more than 1

4 and no more than 1
2 of the length of the

relator represented by the cell.

Proof: Since R is a C(6) set of relators, the diagram ∆ is a C(6)-map by
Lemma 9.1. Let D be an arbitrary exposed cell. Without loss of generality, let
the unique boundary arc of D be part of the boundary cycle labeled X . Since
X is Dehn-reduced at most half of the boundary of D is contained in X , which
means that at least half of the boundary of D is internal. Since the internal arcs
are pieces (Lemma 9.1), and by assumption each piece is strictly less than 1

8 of
the boundary, the internal degree must be greater than 4. Thus every exposed
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cell D in ∆ has i(D) > 4, and Lemma 7.3 can be applied to complete the proof.
The lower bound on the length the boundary arcs follows from the observation
that both rungs if they exist are strictly less than 1

8 of the boundary and a side
is at most 1

2 , so the other side must contain more than 1
4 of the boundary. 2

Lemma 9.4 implies in particular that there are cyclic conjugates X1 of X and
Y1 of Y and a piece U of some relator R such that UX1 = Y1U . Moreover, more
than 1

4 of the length of R is contained in both X1 and Y1, significantly restricting
the number of relators which can take on this role. The above lemmas quickly
lead to the solution to the word problem and the conjugacy problem for small
cancellation groups using a procedure known as Dehn’s algorithm. Since the
traditional versions are well-known and the general versions will be covered in
depth later, no further details will be given here. One application will be given
here since it is not as familiar, and since it is also the basis of the construction
used in Section 13 to create α-closures of words and cycles. The following lemma
is a consequence of the details given in the proof of Lemma 9.4.

Lemma 9.5 Let R be a set of standard relators satisfying C ′(α) for some α ≤
1
8 . If X is a cyclically Dehn-reduced word which is not equivalent to 1 in the
group G = 〈A|R〉, then there exists a finite R-structure which contains every
cyclically Dehn-reduced word conjugate to X in the group G read as a loop in
its 1-skeleton, homotopic to the loop reading X.

Proof: First find the necessarily finite set of all paths in the abstract loop X
which read more than one-fourth of a relator R in R, whose length is at most
|X |. Next, simply attach all of the appropriate relators R, thought of here as
labeled 2-cells, to these paths in the loop X so that the intersection of the loop
X and ∂R contains the particular path in question. If the resulting structure
is collapsed then a finite R-structure is formed which satisfies the conclusion of
the lemma.

To see that this is true, let Y be any non-trivial cyclically Dehn-reduced
word conjugate to X in G, and let ∆ be a reduced annular diagram proving
that X and Y are conjugate. The structure of ∆ is given by Lemma 9.4. The
result follows from the observation that the cell category of ∆ maps into the
construction. Begin by sending the boundary cycle of ∆ labeled X to the image
of the loop X under the collapsing functor. Then extend this map to the cells
of ∆. The structure of ∆ described in Lemma 9.4 guarantees that all of the
cells needed for the extension have already been added to the construction, and
the collapsed nature of the construction guarantees that all identifications of
boundary edges in ∆ are also identified in the construction. Once ∆ is mapped
into the construction it is clear that the construction must contain a loop reading
Y and the image of ∆ provides the homotopy to the loop reading X . 2

One thing to be aware of is that the R-structure constructed in Corollary 9.5
may not be planar, although for 2-dimensional complexes at worst it is homeo-
morphic to a Möbius band. Example 1 illustrates this worst-case scenario.
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a b c a

(baba) (bcbc) (acac)

(abab) (cbcb) (caca)

Figure 25: A Möbius strip which contains all reduced conjugates of U

Example 1 Consider the set of relators R = {(ab)5, (bc)5, (ca)5} and the word
X = ababa(bcbc)−1acac. If the left and right edges labeled a in Figure 25
are identified with the proper orientation, then the resulting non-planar R-
structure is the construction described in Corollary 9.5 applied to X . In this
instance it produces a Möbius band. In reading the figure, the reader should
keep in mind that the parentheses indicate the order in which the label is written
(left to right) may conflict with the order in which the letters occur in the arc
(indicated by the direction of the arrow). For instance, the arc at the bottom of
the leftmost rectangle is labeled abab, which means that the letters a, b, a, b are
encountered when reading the arc from right to left. From an examination of
the construction, it becomes clear that there are exactly 2 cycles, other than X
itself, which are non-trivial, Dehn-reduced, and conjugate with X in the group
G = 〈a, b, c|R〉.

9.2 General Small Cancellation Axioms

Various axioms for a 2-dimensional generalized small cancellation theory have
been proposed by Rips ([18]) and Ol’shanskii ([16]). These axiom systems are
related but not identical to the system proposed below. The main innovation in
the present case is the introduction of the geometry of the general relators and
the resulting insight into the structure of the Cayley graph of the group. The
description of the axioms of a general small cancellation presentation involves
five constants. The constant α is analogous to the constant used in traditional
small cancellation theory in that it measures the degree to which one relator
can be contained in another without being subsumed. The other constants are
more or less specific to general relators. The axioms are as follows:

Axiom 1 There is a constant α such that every general relator R ∈ R is α-
closed with respect to R. In particular, if U is a word readable in general relators
R and S via R-functors f and g respectively, and dR(U) ≥ α, then, since S is
α-closed, there exists a unique R-functor h : R → S such that hf = g.

Axiom 2 There is a constant β such that whenever a word U is readable
in general relators R, S ∈ R by R-functors f and g respectively, and either
rank(R) < rank(S) or rank(R) = rank(S) but there does not exist an R-functor
h : R → S with hf = g, then dS(U) < β.
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Axiom 3 There is a constant γ such that for all general relators R ∈ R, ωR ≤
γ|R|.

Axiom 4 There is a constant δ such that the length of a path U in a general
relator R ∈ R in the relator metric dR is within δ of its length in the normalized
graph metric on the boundary of R. Specifically |dR(U) − |U |R| ≤ δ.

Axiom 5 There is a constant ε such that whenever U is the shortest possible
path from a vertex in a general relator R ∈ R to a loop with non-zero winding
number in R, the length of U in the relator metric is at most ε. That is,
dR(U) ≤ ε.

Axiom 6 If W = XUY U−1 is a representative of a general relator R in which
both instances of U are properly oriented with respect to W , and dR(U) ≥ α, then
there exists a word V such that the cycle XV Y V −1 is readable as a contractible
loop in ∂R extending the reading of X given by W . The cycle thus bounds a
connected and simply connected R-diagram ∆ with rank(∆) < rank(R).

Axiom 7 The constants α, β, γ, δ, and ε satisfy the following constraints:
β ≤ α, and γ, δ, ε < α, and 2γ + δ ≤ α ≤ 1

6 .

A general small cancellation presentation G = 〈A|R〉 is a measured presenta-
tion which satisfies the axioms listed above. A group which possesses a general
small cancellation presentation is called a general small cancellation group.

9.3 Basic Consequences

As stated above, the constant α corresponds to the constant used in the tradi-
tional theory. The other four constants provide bounds on various aspects of
general relators. The constant β bounds the length of a path in a general relator
of lower rank when it is measured by the relator metric of a general relator of
higher rank. The constant γ bounds the ratio of the width of the general relator
to its length. The constant δ bounds the difference between the normalized
graph metric and the relator metric on the boundary of a general relator. And
the constant ε bounds the length of geodesics going across general relators as
measured by their relator metrics.

The general small cancellation theory presented here claims to be an exten-
sion of the more traditional theory in the following sense. Every traditional small
cancellation presentation which satisfies the condition C ′(α) for some α ≤ 1

6 is
also a general small cancellation for the same value of α, with β = α, and with
γ = δ = ε = 0. The constants γ, δ, and ε are zero because traditional relators
have width 0 and the metric used is the normalized graph metric. The com-
parison can also be made more explicit. The hypothesis C ′(α) is formulated
in terms of pieces. Axiom 1 states that all pieces measure less than α in the
relator metric, which in this case is the same as the normalized graph metric on
R. To see this, view the relators R and S as closed cones of height 2. Then by
Lemma 2.1 the functor mentioned in the axiom must be an isomorphism. Thus,
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words which contain more than α of the boundary of a relator are readable in
only one relator in R. The fact that Axiom 2 is true when β = α is true more
generally, and this is the content of Lemma 9.6. In the traditional theory, the
relators are cyclically reduced, which makes the loops labeled by these cycles
deterministic with width 0. Thus Axiom 3 is satisfied. By using the normalized
graph metric, the lefthand side of Axiom 4 is always 0, and thus the inequality
is true. Again, since the width of the relators is 0, Axiom 5 is immediate. And
by Lemma 4.2, Axiom 6 is predicated on a situation which never occurs in the
traditional theory. The constraints in Axiom 7 are immediate.

In the general case, Axiom 1 is a rough way of saying that either two general
relators have a small overlap or one of them is contained in the boundary of the
other, Axiom 3 guarantees the ‘niceness’ of the relators, and Axiom 4 guarantees
the ‘niceness’ of the relator metrics. Axiom 6 provides a reduction in a situation
which does not occur in the 2-dimensional relators. The other two axioms are
derivable from those already listed. In Lemma 9.6 it is shown that β = α satisfies
Axiom 2, and in Lemma 9.7 it is shown that ε = γ + δ satisfies Axiom 5.

Lemma 9.6 If G = 〈A|R〉 is a measured presentation satisfying Axiom 1, then
Axiom 2 is also satisfied for the constant β = α.

Proof: Suppose that dS(U) ≥ α in one of the situations described by Ax-
iom 2. By Axiom 1 there is a functor h′ : S → R with h′g = f . But then
Lemma 2.1 combined with the assumptions of Axiom 2 shows that R and S
have the same rank and that h′ is an isomorphism. If h : R → S is the inverse
of the isomorphism h′, then hf = g, which is contrary to the initial assumption.
2

Lemma 9.7 If G = 〈A|R〉 is a measured presentation satisfying Axiom 3 and
Axiom 4, then Axiom 5 is also satisfied for the constant ε = γ + δ.

Proof: If U is the geodesic described in Axiom 5, then by the definition of the
width of a general relator and Axiom 3 respectively, |U | < ωR ≤ γ|R|. Thus,
by Axiom 4, dR(U) < γ + δ. 2

The reason for the redundancy is to introduce all five of the constants at the
same time and in the same place. The constants are retained because certain
constructions, such as the α-closure of an R-category, are only possible if these
constants satisfy stricter inequalities than the easy bounds mentioned above.
The only constraints which have been included in Axiom 7 are those needed
to reproduce the most basic results of small cancellation theory. Other useful
restrictions will be added as needed in specific situations. The remaining results
in this section will show that general small cancellation presentations satisfy
the special conditions needed to apply some of the lemmas developed earlier.
Specifically, the general relators in a general small cancellation presentation
are thin and collapsed, all long arcs are oriented, and the set R has distinct
representatives.
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Lemma 9.8 Let G = 〈A|R〉 be a general small cancellation presentation. If R
is a general relator in Rk, then R is thin and collapsed, and ∂R is α-closed with
respect to R(k − 1).

Proof: By Axiom 7, γ ≤ 1
12 < 1

4 . Thus 4ωR < |R| and R is by definition
thin. Next, notice that the 1-skeleton of R is deterministic by the definition of
a general relator. Let S be a general relator in R. By Lemma 5.1, the boundary
of S includes a representative cycle U , and by one of the properties of relator
metrics the word U has dS(U) ≥ 1. Thus by Axiom 1 there is a unique functor
from S to R which includes this reading of the word U in R. In particular, no
two distinct closed cones in R have identical boundaries. Thus R is collapsed.
Finally, the fact that ∂R is α-closed with respect to R(k − 1) is an immediate
consequence of Axiom 1 and the fact that R-functors from lower-ranked general
relators into R must have their image in ∂R. 2

Lemma 9.9 Let G = 〈A|R〉 be a general small cancellation presentation. If U
is a path in a general relator R, and U is long in R, then U is also oriented
with respect to R. More specifically, whenever dR(U) ≥ α, |U | ≥ 2ωR.

Proof: Since by definition dR(U) is a function on the endpoints of the path U
lifted to R∞, without loss of generality U can be assumed to be a geodesic in
R∞. Then by Axiom 4, Axiom 7, and Axiom 3 respectively, |U | ≥ (α− δ)|R| ≥
2γ|R| ≥ 2ωR. 2

Lemma 9.10 If G = 〈A|R〉 is a general small cancellation presentation, and a
word W is readable in relators R1 and R2 with dR1

(W ) ≥ β and dR2
(W ) ≥ β,

then R1 and R2 are isomorphic as R-categories, and the isomorphism can be
chosen so that the paths reading W are identified. In particular, for each word
W there is at most one general relator R in which dR(W ) ≥ β.

Proof: Without loss of generality, assume that rank(R1) ≤ rank(R2). Then
by Axiom 2, rank(R1) = rank(R2) and there is a functor from R1 to R2 sending
the reading of W in R1 to the reading of W in R2. By Lemma 2.1, this functor
is an isomorphism. 2

Lemma 9.11 If G = 〈A|R〉 is a general small cancellation presentation, and a
cycle W is readable as a loop with non-zero winding number in relators R1 and
R2, then R1 and R2 are isomorphic as R-categories, and the isomorphism can
be chosen so that the loops reading W are identified. In particular, the set R
has distinct representatives.

Proof: By the definition of relator metrics, dR1
(W ) ≥ 1 and dR2

(W ) ≥ 1.
Thus Lemma 9.10 can be used to complete the proof. 2

Lemma 9.12 Let G = 〈A|R〉 be a graded, measured presentation, and let
α, β, γ, δ, and ε be fixed constants. The presentation of G is a general small
cancellation presentation iff for all k ∈ integers G(k) = 〈A|R(k)〉 is a general
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small cancellation presentation. In particular, if sets of general relators Rk are
created so that G(k) = 〈A|R(k)〉 is a general small cancellation presentation
for the same set of constants then G = 〈A|R〉 is a general small cancellation
presentation.

Proof: Notice that a counterexample to either Axiom 1 or Axiom 2 involves
only two general relators, that a counterexample to Axiom 3, Axiom 4, or
Axiom 5 involves only one general relator, that the ranks of the general relators
needed to produce a counterexample to Axiom 6 are bounded by the rank of
R, and that a counterexample to Axiom 7 does not involve any of the general
relators. Thus any counterexample proving that G = 〈A|R〉 is not a general
small cancellation presentation can also be used to show that the presentation
of G(k) is not a general small cancellation presentation for some positive integer
k. 2

10 Dehn’s Algorithm

This section begins with a proof that certain R-diagrams can be altered to
produce equivalent R-diagrams over C(p)-maps. Once the proof is completed,
it will be possible to apply the known results on C(p)-maps to diagrams over
general small cancellation presentations. These results are then used to prove
that the word and conjugacy problems are decidable using a version of Dehn’s
algorithm. Another use of Dehn’s algorithm is to show that the Cayley category
of a general small cancellation presentation is proper. This result is given at the
end of the section.

10.1 Dehn-reduced Words and Cycles

Recall that a word W is Dehn-reduced with respect to R if W is reduced in the
free group and there do not exist a word U , a word V , and a general relator
R ∈ R such that U is a subword of W , UV −1 is a representative of R and
|U | > |V |. If such a situation does arise then it is clear that replacing U with
V in W produces a strictly shorter word which is equivalent to W in the group
G = 〈A|R〉.

Lemma 10.1 If G = 〈A|R〉 is a general small cancellation presentation and
R′ is a subset of R, then it is decidable whether a word W is Dehn-reduced with
respect to R′ .

Proof: If W is not reduced in the free group, then this fact is easy to discover
in finite time. If there exists a word U , a word V and a general relator R ∈ R′

showing that W is not Dehn-reduced, then this can also be discovered in finite
time, since 2|W | ≥ 2|U | > |U |+ |V | ≥ |R|, showing that there is a bound on the
length of the general relators which need to be considered. Since by Lemma 9.11
general relators have distinct representatives, and the alphabet A is finite, this
bound of the length of the general relator R guarantees that only a finite number
of general relators exist which can satisfy this condition. Finally, since the list
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of general relators of interest is finite and is derived solely from the length of
W , it is easy to exhaustively check whether there exist words U and V in each
general relator in the list which together satisfy the requirements. 2

Lemma 10.2 Let G = 〈A|R〉 be a general small cancellation presentation and
let R′ be a subset of R. For every word W there exists an effectively constructible
word of shorter length which is Dehn-reduced with respect to R′ and equivalent
to W in G.

Proof: First of all, by Lemma 10.1 it is decidable whether a given word W is
Dehn-reduced with respect to R′ or not. If W is not Dehn-reduced then it can
be reduced either by removing the subword of the form aa−1 or by replacing the
subword U with the word V to create a strictly shorter word which is equivalent
to W in G. Since these reductions shorten the length of the word, only a finite
number of such reductions can occur before the word is Dehn-reduced. 2

Recall that a word W is called µ-free with respect to a set of general relators
R if W is reduced in the free group and there do not exist a subword U of W
and a general relator R ∈ R such that dR(U) > µ.

Lemma 10.3 If U is a word readable in a general relator R and dR(U) >
1
2 + 2γ + δ then there exist a subword U ′ in U and a word V such that U ′V −1

is a representative of R and |U ′| > |V |. In particular, words which are Dehn-
reduced with respect to a set of general relators R must also be ( 1

2 + 2γ + δ)-free
and thus ( 1

2 + α)-free with respect to R.

Proof: Since dR(U) ≥ α, the path U is oriented, by Lemma 9.9. Lift U to a
path in R∞ and call the initial vertex v0 and the final vertex u. Pick v1 as the
unique vertex such that the path from v0 to v1 is a representative and v1 and u
are on the same side of v0, meaning that both vertices are in the same connected
component of R∞ when Ball(v0, ωR) is removed. The proof is divided into two
cases.

Case 1: If there is a vertex u′ of the lifted path U contained in Ball(v1, 2ωR)
then define V to be a geodesic from v1 to u′ and define U ′ as the initial segment
of U which ends at u′. By definition |V | < 2ωR ≤ 2γ|R| by Axiom 3. Also,
by construction U ′V −1 is a representative of R, so that |U ′|+ |V | ≥ |R| by the
definition of |R|, and |U ′| > (1 − 2γ)|R|. Finally, 1 − 2γ > 2γ by Axiom 7, so
|U ′| > (1 − 2γ)|R| > 2γ|R| > |V |.

Case 2: If there is not such vertex, then the balls of radius ωR centered at
v0, v1, and u are disjoint. More specifically, since these balls disconnect R∞,
the ball centered at u must be between those centered at v0 and v1. Define
V to be a geodesic path from v1 to u, and define U ′ = U . The word UV −1

is clearly a representative of R. It only remains to show that |U | > |V |. If,
without loss of generality, it is assumed that U is also geodesic, then since UV −1

is a geodesic 2-gon which represents R, Lemma 5.21 shows that |U | + |V | <
|R|+ 4ωR ≤ (1 + 4γ)|R|. Next, since dR(U) > 1

2 +2γ + δ, Axiom 4 implies that
|U | > ( 1

2 + 2γ)|R|. Combining these inequalities shows that ( 1
2 + 2γ)|R| > |V |,
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and thus |U | > |V |. Finally, the fact that Dehn-reduced words are also ( 1
2 + α)-

free follows from Axiom 7. 2

Lemma 10.4 Let G = 〈A|R〉 be a general small cancellation presentation, let
B be an R-category, and let R′ be a subset of R. If B is µ-closed with respect
to R′ for some µ ≥ 1

2 + 2γ + δ, then given any path X in B, there is a path Y
between the same two vertices which is µ-free with respect to R′, homotopic to
X relative to its endpoints, and equivalent to X in G′ = 〈A|R′〉. In addition
|X | ≥ |Y |.

Proof: If X is not itself µ-free with respect to R′ then there exist a word U
and a general relator R ∈ R′ such that U is a subword of X and dR(U) > µ.
By Lemma 10.3 there are words U ′ and V such that U ′ is a subword of U and
thus of X , and the replacement of U ′ with V creates a shorter word between the
same two vertices, homotopic to the original path X . Since the length of the
word is strictly descreasing, such replacements can occur only a finite number
of times before they stop at a word which satisfies the conditions of the lemma.
2

Recall that a cycle W is called Dehn-reduced iff all of the cyclic conjugates
of the word W are Dehn-reduced, and similarly, that the cycle W is called µ-free
iff all of the cyclic conjugates of the word W are µ-free. Notice that even if a
cycle W is Dehn-reduced this does not imply that the cycle W 2 is Dehn-reduced
since there may exist a subword U of length slightly longer than W which leads
to a reduction. A similar comment applies to µ-free cycles.

Lemma 10.5 Let G = 〈A|R〉 be a general small cancellation presentation and
let R′ be a subset of R. For every cycle W there exists an effectively constructible
cycle of shorter length which is Dehn-reduced with respect to R′ and conjugate
to W in G. Moreover, the resulting Dehn-reduced cycle is ( 1

2 +2γ + δ)-free with
respect to R′.

Proof: By Lemma 10.2 the word W can be Dehn-reduced with respect to R′.
If one of the cyclic conjugates of the result is not Dehn-reduced then Dehn-reduce
the cyclic conjugate and repeat this process. Since the reductions shorten the
length of the cycle and since cyclic conjugation leaves the length unchanged, the
process must stop after a finite number of steps. The result is clearly conjugate
to W in G, and Dehn-reduced with respect to R′. Finally, since all of the cyclic
conjugates are Dehn-reduced with respect to R′, all of the cyclic conjugates are
also ( 1

2 + 2γ + δ)-free with respect to R′ by Lemma 10.3. Thus the resulting
cycle is ( 1

2 + 2γ + δ)-free with respect to R′. 2

Lemma 10.6 Let G = 〈A|R〉 be a general small cancellation presentation, let
B be an R-category, and let R′ be a subset of R. If B is µ-closed with respect
to R′ for some µ ≥ 1

2 + δ + 2γ, then given any loop X in B, there is a loop
Y which is µ-free with respect to R′, homotopic to X, and conjugate to X in
G′ = 〈A|R′〉. In addition |X | ≥ |Y |.
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Proof: The result follows by merely applying Lemma 10.4 repeatedly to the
cyclic conjugates of the loop obtained so far. Since the length of the loop is
strictly decreasing, the process stops after a finite number of steps at a loop
which satisfies the conditions of the lemma. 2

Although it is immediate that a word W is Dehn-reduced whenever the
cycle W is Dehn-reduced, the reverse is not always true. The lemmas below
illustrates some conditions under which it is possible to conclude that a cycle is
Dehn-reduced from the fact that a word is Dehn-reduced.

Lemma 10.7 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If the word W n+1 is Dehn-reduced with respect to R′,
then the cycle W n is Dehn-reduced with respect to R′.

Proof: The result follows from the observation that all words readable in the
cycle of W n with a length less than |W n| are also readable in the word W n+1.
Thus, if the cycle W n is not Dehn-reduced, then the word W n+1 is also not
Dehn-reduced. 2

If a path is read in a collapsed R-category and there is an automorphism of
this R-category which sends the start vertex of the path to its end vertex, then
this automorphism is called the automorphism represented by the path. Notice
that the definition of a collapsed R-category guarantees that this automorphism
is unique whenever it exists, thereby justifying the use of the definite article.

Lemma 10.8 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. In addition, let W be a word, and let R be a general
relator which does not contain any power of W as a loop. If U is a W -periodic
word which is readable in R with dR(U) > 2β, then |U | < 2|W |.

Proof: Assume |U | ≥ 2|W |, and without loss of generality, assume that W is
an initial segment of U , so that U = WV and |V | ≥ |W |. If dR(V ) ≥ β, then by
Axiom 2, the readings of V as initial and final segments of U and thus in R differ
by an automorphism of R. Since W is a path in R between the initial vertices
of these readings, W represents this automorphism of R. As a consequence, W n

is a loop in R for some power of W , contradicting the assumptions stated in the
lemma. Thus dR(V ) must be strictly less than β. Similarly, if dR(W ) ≥ β, then
the readings of W as initial segments of U and of V lead to an automorphism
of R which can be represented by W , which again leads to power of W being
a loop in R. Thus dR(W ) must also be strictly less than β. But in this case,
by the properties of relator metrics, dR(U) ≤ dR(W ) + dR(V ) ≤ 2β. This final
contraction shows that the initial assumption that |U | ≥ 2|W | must itself be
false. 2

Lemma 10.9 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If W is a word such that no power of W is ever readable
as a loop with nontrivial winding number in any of the general relators in R′,
and either the word W 3 or the cycle W 2 is Dehn-reduced with respect to R′,
then the cycle W i is Dehn-reduced with respect to R′ for all i > 1.
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Figure 26: The four varieties of long arcs

Proof: Suppose that the cycle of W i is not Dehn-reduced with respect to R′.
Then there exists a W -periodic word U and a general relator R ∈ R′ with a
path U readable in R such that |U | ≥ 1

2 |R|. By Axiom 4, dR(U) ≥ 1
2 − δ > 2β

by Axiom 7. Thus by Lemma 10.8, the length of U is less than twice that of W ,
so that U is readable in both the word W 3 and the cycle W 2. The path U and
the relator R prove that the word W 3 and the cycle W 2 are not Dehn-reduced,
contradiction. 2

10.2 Long Arcs and Ladders

The first step in applying Dehn’s algorithm to diagrams over general small
cancellation presentations is to show that the key diagrams can be modified so
that the underlying maps are C(6)-maps. This is shown in Lemma 10.16. Once
this is established, the results quoted from [9] can be applied. The proof proceeds
by showing that each of four kinds of long internal arcs in a diagram can be
removed in such a way that the type of the diagram is always strictly decreasing.
The four kinds of long internal arcs are long negative arcs, long positive arcs
between a single cell and itself, long positive arcs between 2 distinct cells of
different ranks, and long positive arcs between 2 distinct cells of the same rank.
The relations between these kinds of arcs are depicted in Figure 26. In each of
the four cases it will be shown that the diagram can be altered to produce an
equivalent diagram of lower type. Since diagram types satisfy the descending
chain condition, it is clear that every sequence of reductions must terminate in a
finite number of steps in a diagram in which none of the above situations occur.

Lemma 10.10 Let G = 〈A|R〉 be a general small cancellation presentation. If
W = UV is a representative of a general relator R ∈ R such that dR(U) ≥ α
and the orientation of U is the opposite of that of W , then there exist paths V1,
V2, and U ′ such that V = V1V2, the loop U ′V2 is a representative of R, and
|U ′| < |U |.

Proof: Figure 27 schematically illustrates the argument below. First lift W
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Figure 27: Shortening long negative arcs

from R to R∞ and let v0 and v1 be its initial and terminal vertices, respectively.
Furthermore, let u be the terminal vertex of the path U in W . Next, draw balls
of radius ωR around v0, v1, and u. Since U and W have opposite orientations,
the ball centered at v0 must be strictly between the balls centered at v1 and
u. In particular, since the path V starts at u and ends at v1 there must exist
a vertex u′ in V which lies strictly within ωR units of v0. Use the vertex u′

to define paths V1 and V2 such that V = V1V2, and define U ′ to be a geodesic
path from v0 to u′. Clearly, U ′V2 is a representative of R, and by Lemma 9.9,
|U | ≥ 2ωR while by construction |U ′| < ωR. 2

Lemma 10.11 Let G = 〈A|R〉 be a general small cancellation presentation,
and let ∆ be an R-diagram whose boundary cycles are linked. If D is a 2-cell
in ∆ and U is an internal arc which is both long and negative in D, then there
is an R-diagram ∆′ which is equivalent to ∆ but with Type(∆) > Type(∆′).

Proof: Let W = UV be the boundary cycle of D. By Lemma 10.10 there are
words V1, V2, and U ′ such that V = V1V2, the loop U ′V2 is a representative of
R, and |U ′| < |U |. The proof divides into three cases.

Case 1: If U ′ is non-empty, then simply remove the edges and vertices in
the interior of the arc U along with the interior of the cell or cells on either
side of U . Then add a new arc corresponding to the word U ′ which starts at
the initial vertex of U and ends at the terminal vertex of V1. A new cell or
two new cells can then be attached to the new holes. By construction U ′V2 is
a representative of R. Since the cell on the other side of the arc U ′ originally
contained U in its boundary, by Axiom 1 the relator S which the cell represents
contains a complete copy of R. Since U ′V −1

1 U−1 is a loop of winding number 0
in R, the same is true as a loop in S. Thus the replacement of U with U ′(V1)

−1

creates a new boundary cycle which is also a representative of S. Notice that
this argument remains unchanged even in the case where the arc U borders
the same cell in two distinct ways. Since the new R-diagram contains exactly
the same number of cells in each rank but fewer edges, the type of the new
R-diagram is strictly less than that of ∆.

Case 2: If U ′ is empty and the initial vertex of U is distinct from the terminal
vertex of V1 then the construction proceeds as in Case 1, except that once the
interior of U and the interior of the cell(s) on either side of U have been removed,
the map can be stretched so that these vertices are identified in the space where
the cell(s) used to be. The rest of the proof is as before.
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Case 3: If U ′ is empty, and the initial vertex v of U is identical with the
terminal vertex of V1, then first attach phantom cells to ∆ to form an R+-sphere,
and then remove the interior of the arc U along with the interior of the cells on
either side of U . The fact that these vertices are identical forces the conclusion
that the cells on either side of U are distinct. Let D′ be the other cell, and
let UV ′ be its boundary. The result of the removals is a connected and simply
connected R+-diagram with v as a cut point. This R+-diagram can be viewed
as the one-point product of two connected and simply connected R+-diagrams
with boundary cycles U ′V2 = V2 and U ′V −1

1 V ′ = V −1
1 V ′. Each of these will be

considered separately. Since U ′V2 is a representative of R, a cell can be added
to form an R+-sphere. By the same argument as in Case 1, the cycle U ′V −1

1 V ′

is a representative of the same general relator as the original boundary of D′.
Thus a cell can be added to this R+-diagram so that it becomes an R+-sphere
as well. Consider the location of the phantom cells. Since the boundary cycles
are linked they must all be in one or the other of the R+-spheres. From this
sphere, remove the phantom cells and the result will be an R-diagram of strictly
lower type, which is equivalent to ∆. 2

Lemma 10.12 Let G = 〈A|R〉 be a general small cancellation presentation,
and let ∆ be an R-diagram whose boundary cycles are linked. If D is a labeled
2-cell in ∆, with boundary cycle W , and U is an internal arc of D in two distinct
ways which is long in D, then there is an R-diagram ∆′ which is equivalent to
∆ but with Type(∆) > Type(∆′).

Proof: If either instance of U in the boundary ∂D is negatively oriented then
Lemma 10.11 can be applied to complete the proof, so assume that both in-
stances are positively oriented with respect to ∂D. The cycle read by the
boundary of D has the form XUY U−1 for some non-empty words X and Y .
The words X and Y must be non-empty since both instances of U are positively
oriented. If, say, X was empty then since R is deterministic, the two paths la-
beled U would have the same image in R, showing that they have opposite
orientations with respect to ∂D.

If the interior of D and the interior of the arc U are removed, the result is
an annular hole with boundary cycles labeled X and Y . Let u be the vertex
in the boundary cycle from which X can be read, and let u′ be the vertex in
the other boundary cycle from which Y can be read. The R-diagram of strictly
lower rank with boundary cycle XV Y V −1, whose existence is guaranteed by
Axiom 6, can be placed in the annular hole so that the initial vertex of the first
instance of V is attached to u, and the terminal vertex of this instance of V is
attached to u′. See Figure 28 for an illustration. The boundary of the hole is
a Dyck word, and since all of the cells added have strictly lower rank than the
one which was removed the result is an R-diagram of strictly lower type.

At this point the diagram contains all of the original boundary cycles plus
a region bounded by a Dyck word. If phantom cells are added for each of
the boundary cycles of ∆ then the result is a connected and simply connected
R+ diagram whose boundary is a Dyck word. By Lemma 7.6 the boundary
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Figure 28: An illustration of Lemma 10.12

edges can be identified and since the boundary cycles of ∆ are linked, all of the
phantom cells end up in the same R-sphere of the one-point product. Ignoring
the other items in the one-point product and removing the phantom cells leaves
an R-diagram ∆′ which is equivalent to ∆ and of strictly lower type. 2

Lemma 10.13 Let G = 〈A|R〉 be a general small cancellation presentation,
and let ∆ be an R-diagram whose boundary cycles are linked. If D1 and D2

are distinct 2-cells in ∆ with the same rank, U is an internal arc which borders
both D1 and D2, and U is long in D1, then D1 and D2 form a cancellable
pair. In consequence there is an R-diagram ∆′ which is equivalent to ∆ but
with Type(∆) > Type(∆′).

Proof: Let UV1 be the representative of D1 and UV2 be the representative of
D2. Since U is long in D1 and contained in the boundary of D2, by Axiom 1
the entire relator R1 maps into R2. Since by assumption R1 and R2 have the
same rank, by Lemma 2.1 R1 and R2 are isomorphic and will hereafter be
referred to as R, and the functor from R1 to R2 can then be described as an
automorphism of R. Since the arc U is long in D1, U is long in D2 as well. By
Lemma 10.11 both instances of U can be assumed to be positively oriented. The
cycle V1(V2)

−1 is then a loop which is readable in R and its winding number is
0. Thus the 2-cells D1 and D2 form a cancellable pair. Since by Lemma 9.11 R
has distinct representatives, Lemma 7.15 yields the desired result. 2

Lemma 10.14 Let G = 〈A|R〉 be a general small cancellation presentation,
and let ∆ be an R-diagram whose boundary cycles are linked. If D1 and D2 are
distinct 2-cells in ∆ of different ranks, and U is an internal arc which borders
both D1 and D2 with U long in D1, then there exists an R-diagram ∆′ which is
equivalent to ∆ but with Type(∆) > Type(∆′).
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Proof: Let UV1 be the representative of D1 and UV2 be the representative of
D2. Since U is long in D1, and contained in the boundary of D2, by Axiom 1
the entire relator R1 maps into R2. By Lemma 2.1 this means that the rank
of R1 is at most that of R2. Since the ranks are assumed to be distinct, R1

must be of strictly lower rank, and the functor from R1 to R2 sends R1 into
the boundary of R2. Thus the loop read by the representative of R1 is a loop
with winding number 0 in R2, and V1(V2)

−1 is also a representative of R2. Thus
the diagram ∆′ obtained by simply erasing the interior of the arc U is also an
R-diagram and one of strictly lower type. 2

Lemma 10.15 Let G = 〈A|R〉 be a general small cancellation presentation.
If ∆ is an R-diagram whose boundary cycles are linked, then there exists an
effectively constructible R-diagram ∆′ which is equivalent to ∆, contains no
long internal arcs, and for which Type(∆) ≥ Type(∆′).

Proof: If ∆ has no long internal arcs then there is nothing to prove, so assume
that such an arc exists. Depending on which kind of long internal arc it is, one
of the previous four lemmas can be applied to produce an equivalent diagram of
strictly lower type. If the new diagram is also not reduced then the same process
can be repeated. Since diagram types satisfy the descending chain condition,
the process must terminate after a finite number of steps at an R-diagram
equivalent to ∆ which contains no long internal arcs. 2

Lemma 10.16 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

p
. If ∆ is an R-diagram whose boundary cycles are linked and cyclically

reduced, then there is an R-diagram ∆′ which is equivalent to ∆ and such that
the underlying map of ∆′ is a C(p+1)-map. In particular, since all general small
cancellation presentations satisfy α ≤ 1

6 , the R-diagram ∆′ is over a C(7)-map.

Proof: The result follows immediately from Lemma 10.15 and Lemma 7.4. 2

The next several lemmas apply the results quoted about C(6)-maps to dia-
grams over general small cancellation presentations.

Lemma 10.17 Let G = 〈A|R〉 be a general small cancellation presentation. If
W is a cyclically reduced word which is equivalent to 1 in G but which is not
a representative of any general relator in R, and ∆ is a connected and simply
connected R-diagram with boundary cycle W over a C(7)-map, then ∆ contains
at least two exposed cells with internal degree at most 3. Moreover, the labels
on the boundary arcs of these exposed cells show that the cycle W contains at
least two disjoint subwords U for which there is a general relator R such that
dR(U) > 1 − 3α.

Proof: The combination of Lemma 10.16 and Lemma 7.2 produces the two
2-cells, while Lemma 5.25 furnishes the measurement on the boundary arc. 2
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Lemma 10.18 Let G = 〈A|R〉 be a general small cancellation presentation. If
a non-trivial word W is equivalent to 1 in G, then either W is not reduced in
the free group, or there is a subword U in W and a general relator R ∈ R such
that dR(U) > 1−3α. As a consequence, if 3α+2γ +δ ≤ 1

2 , then the only Dehn-
reduced word which is equivalent to 1 in G is the identity itself. In particular,
these results are true when α ≤ 1

6 and γ = δ = 0 or whenever α ≤ 1
8 .

Proof: Assume that W is equivalent to 1 in G and reduced in the free group.
The only way that cycle W could not also be cyclically reduced in the free group
is if the first and the last letters of W are inverses of each other. Removing these
letters and repeating the process if necessary shows that there are words V and
W ′ such that W = V W ′V −1 and W ′ is cyclically reduced in the free group. If
W ′ is the empty word, then W itself is not reduced, contradicting the initial
assumption. Thus W ′ is non-trivial and by Lemma 10.17 there is a connected
and simply connected R-diagram ∆ over a C(7)-map with boundary cycle W ′

which contains at least two exposed cells with internal degree at most 3. The
R-diagram ∆ can be altered to form a new R-diagram ∆′ with boundary W
by adding a path reading V attached to ∆ at the appropriate vertex. This
addition potentially occurs in the middle of the unique boundary arc of one of
the exposed cells, but this leaves at least one exposed cell D with its boundary
arc uninterrupted. The unique boundary arc U of D and the general relator R
which it represents complete the proof. 2

Lemma 10.19 Let G = 〈A|R〉 be a general small cancellation presentation,
and let X and Y be cycles which are conjugate but not equivalent to the identity
in G. If X is 4α-complement-free and Y is 3α-complement-free, then there exists
an annular R-diagram ∆ with boundary cycles X and Y −1 in which every 2-cell
D has exactly two boundary arcs, one in the loop X and the other in Y , and
with internal degree at most 2. Moreover, both boundary arcs are long relative
to D. In particular, if 4α + 2γ + δ ≤ 1

2 , then any two Dehn-reduced cycles in
G are the boundary cycles of an annular R-diagram such as ∆. This is true,
more specifically, when α ≤ 1

8 and γ = δ = 0, and whenever α ≤ 1
10 .

Proof: Since X and Y are conjugate and non-trivial, by Lemma 7.10 there
is an annular R-diagram ∆ with oriented boundary cycles X and the inverse
of Y . By Lemma 10.16, it can be assumed that ∆ is over a C(7)-map. An
application of Lemma 7.3 shows that ∆ has the desired structure. The fact
that both boundary arcs are long in D follows from Lemma 5.25. Finally, the
inequality listed in the statement of the lemma was chosen to guarantee that
Dehn-reduced cycles, which are ( 1

2 + 2γ + δ)-free by Lemma 10.5, would also
be (1 − 4α)-free, and thus 4α-complement-free. The specific examples clearly
satisfy this inequality because of the restriction on the choices of the constants.
2

Lemma 10.20 Let G = 〈A|R〉 be a general small cancellation presentation,
and let X and Y be words which are equivalent but not equivalent to the identity
in G. If X is 4α-complement-free and Y is 3α-complement-free, then there exists
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a connected and simply connected R-diagram ∆ with boundary cycle XY −1 in
which every 2-cell D has either exactly two boundary arcs, one in the loop X
and the other in Y , and with internal degree at most 2, or one boundary arc
which contains an endpoint of X in its interior, and with internal degree at
most 1. Moreover, both boundary arcs are long relative to D. In particular,
if 4α + 2γ + δ ≤ 1

2 , then any two equivalent Dehn-reduced words in G form
a boundary cycle of an R-diagram such as ∆. This is true, more specifically,
when α ≤ 1

8 and γ = δ = 0, and whenever α ≤ 1
10 .

Proof: If X and Y have the same first letter or the same last letter, then
remove the common letter from both words, and repeat this process until it no
longer occurs. The removed letters will be added in afterwards. If either the
new X or the new Y is equivalent to 1 in G then they both are, and since they
are Dehn-reduced, Lemma 10.18 shows that they are empty words. If letters
have been removed which need to be added back in, then the original X and Y
were equal and the loop X satisfies the conditions of the lemma. On the other
hand if the new X and the new Y are not equivalent to 1 in G, then XY −1 is the
boundary of a connected and simply connected R-diagram ∆ by Lemma 7.9.
By Lemma 10.16, it can be assumed that ∆ is over a C(7)-map.

Since X and Y are 4α-complement-free and 3α-complement-free words, every
exposed cell D of ∆ either contains an edge of X and has i(D) > 4, or it contains
an edge of Y and has i(D) > 3, or it contains one of the endpoints of X in the
interior of its unique boundary arc. Since by Lemma 7.9 the endpoints of the
path X are distinct, the map can be stretched and these points identified to form
an annular R-diagram ∆′ with boundary cycles X and Y −1. If letters have been
removed from the original words then a path reading these removed letters can
be added instead between the endpoints of X . The map remains C(7) under
this procedure, and all exposed cells D now satisfy the conditions necessary to
apply Lemma 7.3. This shows that the original R-diagram ∆ has the desired
structure. The fact that all boundary arcs are long in X and in Y follows from
Lemma 5.25. Finally, the inequality listed in the statement of the lemma was
chosen to guarantee that Dehn-reduced words, which are ( 1

2 + 2γ + δ)-free by
Lemma 10.2, would also be (1 − 4α)-free, and thus 4α-complement-free. The
specific examples clearly satisfy this inequality because of the restriction on the
choices of the constants.2

10.3 The Word and Conjugacy Problems

The following lemma shows that under mild additional restrictions on the choice
of constants the word problem for general small cancellation groups is always
decidable.

Lemma 10.21 If G = 〈A|R〉 is a general small cancellation presentation with
3α + 2γ + δ ≤ 1

2 , then the group G has a decidable word problem. In particular,
these results are true when α ≤ 1

6 and γ = δ = 0 or whenever α ≤ 1
8 .
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Proof: Since words X and Y are equivalent in G iff the word W = XY −1

is equivalent to 1, it is sufficient to show that it is decidable whether words
are equal to 1. By Lemma 10.2 given any word W there is a word Z which is
effectively constructible, Dehn-reduced with respect to R, and equivalent to W
in the group G. If Z is the empty word, then by construction W is equivalent
to 1 in G. Conversely, if Z is not the empty word, then W cannot be equivalent
to 1 in G, since the existence of such a word Z would contradict Lemma 10.18.
2

One of the consequences of a decidable word problem is that the Cayley
graph of the group is effectively constructible.

Lemma 10.22 If G = 〈A|R〉 is a general small cancellation presentation with
3α + 2γ + δ ≤ 1

2 , then the Cayley graph C(G, A) is effectively constructible.

Proof: Since by Lemma 10.21 it is decidable whether any two words are equal,
it is possible to test all pairs of words of length less than n, and from this
information to construct the ball Ball(v0, n) in the Cayley graph. This can be
done successively for larger and larger n, to construct as much of the Cayley
graph as is desired. 2

Under a slightly stronger restriction on the choice of constants, the conjugacy
problem is also decidable.

Lemma 10.23 If G = 〈A|R〉 is a general small cancellation presentation with
4α + 2γ + δ ≤ 1

2 , then the group G has a decidable conjugacy problem. In
particular, this is true when α ≤ 1

8 and γ = δ = 0 or whenever α ≤ 1
10 .

Proof: Let X and Y be words, and by Lemma 10.5 assume without loss of
generality that the cycles of X and Y are Dehn-reduced. A word is conjugate
to 1 in G iff it is equivalent to 1 iff its Dehn reduction is the empty word by
Lemma 10.18 and Lemma 10.5. Thus it is decidable whether a word is conjugate
to 1 in G. If neither word is conjugate to 1 but they are conjugate to each other
then there exists an R-diagram ∆ which satisfies the conclusion of Lemma 10.19.
The crux of the problem is to decide in a finite amount of time whether such a
diagram ∆ exists.

First, start with the Dehn-reduced abstract loop X , and find all subwords U
in X and general relators R with |U | ≤ |X |, U readable in R, and dR(U) ≥ α.
Since by Axiom 4 |X | ≥ |U | ≥ (α− δ)|R| > 0, there is an a priori bound on the
length of the relator R. By Lemma 9.11 this in turn shows that only a finite
number of possible general relators need to be considered in the search for an
R-diagram having the properties of ∆. Also, since every cell in ∆ would have
to contain an edge of X , there is a bound on the number of cells of potential
diagrams. And from the bounds on the number of relators and their lengths
comes a bound on the number of edges in ∆ as well. At this point it is possible
simply to exhaustively search among the possible diagrams with the right struc-
ture; the outcome of the search decides the conjugacy problem for the words X
and Y . 2
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11 Gromov Hyperbolic Groups

This section derives a number of results on geodesic words which are then used
to demonstrate how close general small cancellation presentations are to hyper-
bolic groups in the sense of M. Gromov [7]. The main results are that finitely
presented general small cancellation groups are hyperbolic, and more generally,
general small cancellation groups are the direct limit of the hyperbolic groups
obtained by choosing finite subsets of the general relators.

11.1 Geodesics

Let G = 〈A|R〉 be a general small cancellation presentation. If Y is a geodesic in
the Cayley category of the presentation then Y is called a geodesic with respect
to R. If Y is a geodesic with respect to R which is equivalent to X in G, then Y
is called a geodesic of X in G. Let B be an R-category. Suppose that whenever
X is a path in B and Y is a geodesic of the word X in G, there is another path
in B reading Y which is homotopic to X relative to its endpoints. In this case B
is said to be geodesic-closed with respect to R. If G = 〈A|R〉 is a general small
cancellation presentation and B is an R-category, then under certain conditions
it is possible to show that every path in B is homotopic to a path which reads
a geodesic in G.

Lemma 11.1 Let G = 〈A|R〉 be a general small cancellation presentation, let
R′ be a subset of R, and let B be an R-category which is ( 1

2 − δ)-closed with
respect to R′. If X is a path in B, and Y is a Dehn reduction of X with respect
to R′, then there is a path reading Y in B between the same two vertices which
is homotopic to X relative to its endpoints. Similarly, if X is a loop in B, and
Y is a Dehn reduction of X with respect to R′, then there is a loop reading Y
in B which is homotopic to the loop X. These results are true in particular
whenever B is α-closed with respect to R′.

Proof: Let Z be a word or cycle obtained from X by a single Dehn reduction.
In particular, suppose that there exist words U and V and a general relator R
such that UV −1 is a representative of R, U is a subword of X , |V | < |U |, and Z is
the result of replacing the subword U in X with V . Since 2|U | > |U |+|V | ≥ |UV |
and since |UV | ≥ |R| by the definition of |R|, it follows that |U | > 1

2 |R|. Thus
by Axiom 4, dR(U) > 1

2 − δ. Because B is ( 1
2 − δ)-closed, there is a functor

from R to B which sends the reading of U in R to the reading of U in B. In
particular this shows that the word V is readable in B between the same two
vertices. Thus Z is readable in B, and in the case where X and Z are words
they have the same endpoints. Moreover, since R is contractible, the readings
of U and V are homotopic in R relative to their endpoints, and the homotopy
thus constructed is sent under the functor into B to a homotopy between the
readings of U and V in B relative to their endpoints. And finally, this shows
that X and Z are homotopic in B. If X and Z are words, then the homotopy
can be performed relative to the endpoints of X . Since Y is obtained from X
by a finite sequence of such reductions, the results follow. 2
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Notice that Y in the statement of the lemma is a Dehn reduction of X and not
an arbitrary Dehn-reduced word equivalent to X in G. There is no guarantee,
and in fact it is not true, that arbitrary Dehn-reduced equivalent words can
always be obtained from a given word by a sequence of Dehn reductions. The
next two lemmas address the existence of such paths. The inclusion of such
paths in an arbitrary category B requires a strong hypothesis, such as that B
is α-closed, not merely that it is ( 1

2 − δ)-closed.

Lemma 11.2 Let G = 〈A|R〉 be a general small cancellation presentation. If
XUY V is a representative of a general relator R ∈ R and X is (1 − 3α)-free,
while U and V are short with respect to R, then dR(Y ) > α. As a consequence,
if α ≤ 1

8 and X is Dehn-reduced then Y is long.

Proof: Since U and V are short, dR(U) < α, and dR(V ) < α. Combin-
ing these inequalities with the properties defining relator metrics yields 1 ≤
dR(XUY V ) ≤ dR(X) + dR(U) + dR(Y ) + dR(V ) < dR(Y ) + 1 − α. Thus
dR(Y ) > α. Finally, if X is Dehn-reduced with respect to R and α ≤ 1

8 , then
by Lemma 10.3, dR(X) < 1

2 + α ≤ 1 − 3α. 2

Lemma 11.3 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

8 , let R′ be a subset of R, and let B be an R-category which is collapsed
and α-closed with respect to R′. If X is a path in B and Y is a word which
is 3α-complement-free with respect to R′ and equivalent to X in G′ = 〈A|R′〉,
then there is a path reading Y in B which is homotopic to the path X relative
to its endpoints. Similarly, if X is a loop in B and Y is a cycle which is 3α-
complement-free with respect to R′ and conjugate to X in G′, then there is a
loop reading Y in B which is homotopic to the loop X.

Proof: By Lemma 11.1 it is enough to show the result when X is Dehn-
reduced. In this case Lemma 10.20 and Lemma 10.19 construct R-diagrams
which have very particular structures. Because each cell in the diagram has a
boundary arc in Y which is 3α-complement-free and rungs which are short, it
follows immediately that the boundary arc in X has length at least α relative
to the relator metric of the general relator which the cell represents. Since B
is α-closed, the entire boundary of the cell is readable in B as a loop extending
the reading of the portion of the boundary in the path X . Next since B is
collapsed, the labeling of the 1-skeleton is deterministic so that the word or
cycle Y is readable as a path or loop in B. Clearly it is homotopic to the path
or loop X . In the case where X and Y are words, the path Y is read between
the same vertices as X , and the homotopy can be performed relative to the
endpoints of X . 2

Lemma 11.4 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

8 , let R′ be a subset of R, and let B be an R-category which is collapsed
and α-closed with respect to R′. If Xn is a loop in B and Y is a cycle which is
3α-complement-free with respect to R′ and conjugate to X in G′, then there is
a loop reading Y n in B which is homotopic to the loop Xn. In particular, if Xn

110



is a loop in a general relator R ∈ Rk, and Y is a cycle which is 3α-complement-
free with respect to R(k − 1) and conjugate to X in G(k − 1), then there is a
loop reading Y n in R which is homotopic to the loop Xn.

Proof: The proof is nearly identical to the proof of Lemma 11.3 except that
after creating a conjugacy diagram between the cycles X and Y it is the n-fold
cover of this diagram which is used to create the loop Y n in B. By Lemma 9.8,
the above reasoning is applicable to the situation mentioned in the final sentence.
2

Lemma 11.5 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

8 , and let R′ be a subset of R. If B is an R-category which is collapsed
and α-closed with respect to R′, then B is geodesic-closed with respect to R′.

Proof: Since words which are geodesic with respect to R′ are clearly Dehn-
reduced with respect to R′, by Lemma 10.3 they are also ( 1

2 + α)-free with
respect to R′. Because α ≤ 1

8 , they are also (1 − 3α)-free with respect to R′,
and the result follows from Lemma 11.3. 2

11.2 Hyperbolic Groups

Let XY Z be a geodesic triangle in the Cayley graph of a group G. If every
vertex in Z is within τ units of a vertex of either X or Y as measured by
the graph metric, then it is called τ -thin with respect to the side Z. If it is
τ -thin with respect to each of the three sides then the triangle itself is said
to be τ -thin. If all geodesic triangles in the Cayley graph of G are τ -thin for
some fixed non-negative real constant τ then the group is called τ -hyperbolic,
and a group which is τ -hyperbolic for some non-negative τ is simply called a
hyperbolic group, or sometimes a Gromov hyperbolic group. The next several
lemmas show that subject to certain restrictions on the constants, general small
cancellation presentations satisfy a variety of the thin triangle condition.

Lemma 11.6 Let G = 〈A|R〉 be a general small cancellation presentation, and
let C be its Cayley category. If X, Y , and Z are paths such that the cycle XY Z
is readable as a loop in C, then there exist words U , V , and W , such that UV −1,
V W−1, and WU−1 are 2

3 -reduced and are equivalent to X, Y and Z respectively.
In addition, U , V , and W can be chosen so that |X | + |Y | ≥ |U | + |V | + |W |.

Proof: Start with any set of words U , V , W , such that UV −1, V W−1, and
WU−1 are equivalent to X , Y , and Z, such as U = X , W = Y −1, and V = ∅.
The word WU−1 = Y −1X−1 is equivalent to Z in G because XY Z is equivalent
to 1 in G by Lemma 8.11. To complete the proof, the words U , V , and W will
be altered so that the sum |U | + |V | + |W |, will always be decreasing.

First, replace U , V , and W with words which are geodesic in R. Next, if the
word, say UV −1, contains more than two-thirds of a representative, then since U
and V are geodesics, the subword must contain the vertex between U and V −1.
Let U = U1U2 and V = V1V2 so that U2V

−1
2 is the subword in question. The
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Figure 29: An illustration of Lemma 11.6

remaining portion of the representative must be a word P from the initial vertex
of U2 to the initial vertex of V2, and it must be strictly shorter than either U2

or V2. Without loss of generality, assume it is shorter than U2. Then U2 can be
replaced with P and the words U , V , and W relabeled accordingly. Specifically,
the new U is U1P , the new V is V1, and the new W is WV −1

2 . Notice that the
sum |U | + |V | + |W | strictly decreases under this procedure. Since the sum is
a positive integer, this process can be carried out only a finite number of times
before it ceases to be possible. When the process stops, the words U , V , and
W satisfy the conditions of the lemma. The final statement follows from the
observations that |X | + |Y | is the initial value of the sum |U | + |V | + |W |, and
that this sum only decreases throughout the procedure. 2

Lemma 11.7 Let G = 〈A|R〉 be a general small cancellation presentation with
3α + δ ≤ 1

3 , and let C be its Cayley category. If X, Y , and Z are (1− 4α)-free
paths in C which form a triangle, then every vertex v in Z is connected to a
vertex in either X or Y by a path PQ where P and Q are each readable in some
general relator in R.

Proof: Let U , V , and W be the paths created by Lemma 11.6, and let ∆ be a
connected and simply connected R-diagram with boundary cycle XV U−1. By
Lemma 10.15 ∆ can be assumed to have only short internal arcs. Suppose there
is an exposed cell D with i(D) ≤ 3, which represents a general relator R, and
whose boundary arc is contained in the subword V U−1. Then by Axiom 4, the
geodesic connecting the adjoining internal arcs of D has a length of less than
(3α + δ)|R|. Since by assumption this is less than 1

3 |R|, then the word read
by the boundary arc must be more than two-thirds of a representative of R,
contradicting the choice of U , V , and W . Thus ∆ has no such exposed cells.
On the other hand, since X is (1 − 4α)-free, ∆ satisfies all of the conditions
necessary to apply Lemma 10.20. And as a consequence, every vertex of X is
joined to a vertex in UV −1 by a path which is readable in a general relator in
R, and vice versa. The same is true of Y and Z as well. Thus every vertex in
Z is connected to a vertex in either U or W by a path Q which is readable in
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Figure 30: An illustration of Lemma 11.8

some general relator in R. If the vertex is in U then this vertex is connected to
a vertex in X by a path readable in a general relator, and if the vertex is in W ,
then it is connected to a vertex in Y by a path readable in a general relator. 2

Lemma 11.8 Let G = 〈A|R〉 be a general small cancellation presentation with
3α + δ ≤ 1

3 and α ≤ 1
10 , and let X, Y , and Z be (1 − 4α)-free paths in its

Cayley category which form a triangle. If B and C are α-closed categories in
the Cayley category which contain the paths X and Y respectively, then there
exist words Z1, Z2 and P such that Z1P is read in B between the same vertices
as X, P−1Z2 is read in C between the same vertices as Y , and Z1Z2 = Z. In
particular Z is contained in the union of B and C.

Proof: By Lemma 11.6 there exist words U , V and W satisfying the conditions
of that lemma. Since UV −1 is equivalent to X in G and (1 − 3α)-free, by
Lemma 11.3 it is contained in B. Similarly, there is a path reading V W−1

in C between the same vertices as the path Y . Since the Cayley category is
deterministic, the reading of V in both instances is the same. Thus the vertex
v which is the terminal vertex of V is contained in both B and C. Let ∆ be
an R-diagram with no long internal arcs, which shows that WU−1 is equivalent
to Z in G. Since Z is (1 − 4α)-free, by Lemma 11.2 every cell in ∆ is long in
WU−1. If it is long in U then since U is contained in B, the entire general
relator represented by the cell is contained in B. Similarly, if the cell is long in
W then since W is contained in C the entire general relator represented by the
cell is contained in C. The only cell in question is the cell D which contains the
vertex v in its boundary. Since α ≤ 1

10 , 1
2 − 3α is at least 2α. Thus either the

boundary of D in U is long or the boundary of D in W is long. In either case,
Z is contained in the union of B and C and if P is a path in ∆ to the crossover
point, then Z is divided into Z1 and Z2 which satisfies the lemma. 2

Lemma 11.9 If G = 〈A|R〉 is a finitely presented general small cancellation
presentation with 3α+δ ≤ 1

3 and α ≤ 1
10 , then the group G is Gromov-hyperbolic.

In particular, the result is true when α = 1
10 and γ = δ = 0, or whenever α ≤ 1

12 .
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Proof: Since R is finite, there is a finite bound on the diameters of all of
the general relators in R. Call this bound τ . By Lemma 11.7 every geodesic
triangle in the Cayley graph is 2τ -thin. Since the choice of τ is independent
of the triangle involved, the group G is 2τ -hyperbolic, and G is therefore a
hyperbolic group. 2

Since every finitely presented general small cancellation group is hyperbolic,
the results of this well-developed theory are available for application. In the
other direction, the axioms of general small cancellation theory provide an ef-
ficient way to construct examples which are necessarily hyperbolic. Potential
applications of hyperbolic group theory to specific presentations hinge on the
ability to show that the presentation is indeed hyperbolic, using one of the many
equivalent definitions of hyperbolicity such as the thin triangle condition. It is
precisely at this point where most of the practical difficulties arise and where
general small cancellation theory is of the most use. General small cancellation
groups provide an array of accessible examples of hyperbolic groups, and the
hyperbolicity in this instance is easy to check since all that is needed is to check
the axioms of general small cancellation theory.

Lemma 11.10 If G = 〈A|R〉 is a finitely generated general small cancellation
presentation with 3α+ δ ≤ 1

3 and α ≤ 1
10 , then the group G is the direct limit of

hyperbolic groups. In particular, the result is true when α = 1
10 and γ = δ = 0,

or whenever α ≤ 1
12 .

Proof: Recall that by definition general small cancellation groups are finitely
generated. Since A is finite, the number of relators must be countable. Using
the previous lemma, add the relators in one at a time, together with any others
which need to be added in order to add in that particular relator. The number
of relators so far will always be finite, so that by Lemma 11.9 the group defined
so far will always be hyperbolic. Also, since the relators were arranged so that
all of them are used in the limit, the direct limit of the groups must satisfy all
of these relators. Finally, since the group itself satisfies no other relations, the
group G must be equal to the limit. 2

Since it is known that the Burnside groups are not automatic and thus not
hyperbolic (see [5]), one application of Lemma 11.9 is that the Burnside groups
cannot be finitely presented using general small cancellation theory. It will
be shown that the Burnside groups of sufficiently large exponent do, however,
possess a general small cancellation presentation. It follows by Lemma 11.10
that the Burnside groups of sufficiently large exponent are the limit of hyperbolic
groups.
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Part V

Consequences

Part V is devoted to proving various consequences of the axioms for general
small cancellation presentations. Section 12 shows that the Cayley category of
a general small cancellation presentation is contractible. Section 13 represents
a detour into an area which is useful in the construction of general relators
and general small cancellation presentations. In this section it is shown that
a given R-category which is (1 − 3α − 2ε)-closed can be embedded in another
R-category which is α-closed in a unique and minimal way. Finally, in Section
14 the finite subgroups of a general small cancellation presentation are shown
to be contained within the automorphism groups of the general relators.

12 Cayley Categories Revisited

In this section the Cayley category of a general small cancellation is shown to
be proper and contractible. Then using these results the torsion elements in the
group are shown to occur only as automorphisms of general relators. At the end
of the section the conditions under which the Poincaré construction of a general
small cancellation presentation is an Eilenberg-MacLane space are described.

12.1 Cayley Categories are Proper

The next several lemmas show that Cayley categories are proper, and they
provide conditions under which R-categories can be embedded into Cayley cat-
egories.

Lemma 12.1 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

8 , and let C be its Cayley category. If B is an R-category which is con-
nected, collapsed and (1 − 3α)-closed with respect to R, and f : B → C is an
R-functor, then f is an embedding of B in C and B is simply connected.

Proof: Let W be a path in B between vertices u and v. The restriction on α
guarantees that 1− 3α ≥ 1

2 + α. Since B is (1− 3α)-closed, by Lemma 10.4 W
can be assumed to be (1−3α)-free. If u and v are sent to the same vertex in C,
then by Lemma 8.11 W is equivalent to 1 in G. Since W is also (1 − 3α)-free,
by Lemma 10.18 W is the empty word and u and v are identical in B. Thus f
is injective on vertices, and by Lemma 6.5, it is an embedding.

Since by Lemma 4.7 every topological loop based at a vertex is homotopic
to a loop in the 1-skeleton, to show B is simply connected it is sufficient to show
that each loop in the 1-skeleton of B is contractible to a point. Let W be a
loop in B based at v. Since B is embedded in C, W is a loop in C, and by
Lemma 8.11 it is equivalent to 1. Thus by Lemma 10.4 and Lemma 10.18, the
loop W is homotopic in B to the empty loop based at v. This shows that B is
simply connected. 2
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Lemma 12.2 Let G = 〈A|R〉 be a general presentation, and let C be its Cayley
category. If B is a connected, collapsed R-category which is (1−3α)-closed with
respect to R, then the universal cover of B can be embedded in C. As a special
case, note that when W is a word which is (1− 3α)-free with respect to R, then
it is read in C as a simple path.

Proof: Let B′ be the universal cover of B. Since B′ is an R-category, by
Lemma 6.8 there is a functor from B′ to the Poincaré construction of the pre-
sentation, and since by definition it is simply connected, this functor lifts to a
functor f : B′ → C by Lemma 1.13. Since B′ is connected, simply connected,
collapsed, and (1 − 3α)-closed, by Lemma 12.1 the functor f is an embedding.
The final statement is immediate. 2

Lemma 12.3 Let G = 〈A|R〉 be a general small cancellation presentation. The
Cayley category of the presentation is proper, meaning that the underlying cir-
cular category is also a circular complex.

Proof: To prove that the Cayley category is proper, it is sufficient to show that
every characteristic functor is injective on vertices by Lemma 3.1. Let C/c be
a particular closed cone of C which is isomorphic with a general relator R ∈ R,
and let φc : C/c → C be its characteristic functor. Notice that C/c is collapsed,
connected and α-closed by Lemma 9.8, by the definition of circular cones, and
by Axiom 1, respectively. Since α < 1 − 3α for all general small cancellation
presentations, Lemma 12.1 is applicable, and it shows that φc is an embedding
and is consequently injective on vertices. 2

12.2 Torsion Elements

The next several lemmas show that torsion elements correspond to automor-
phisms of general relators.

Lemma 12.4 If G = 〈A|R〉 is a general small cancellation presentation and
a general relator R ∈ R has a non-trivial automorphism, then G contains a
torsion element.

Proof: Suppose R is a general relator which has a non-trivial automorphism
f : R → R. If u is a vertex in R and f(u) = v, then u and v must be distinct by
Lemma 6.3. Let W be a path in R from u to v. Since f is an automorphism, W i

is readable in R starting at u for all natural numbers i. Since R is finite, there
is an n such that W n is a loop in R. Using an attaching functor for R, W n is
also a loop in the Cayley category of the presentation, and thus by Lemma 8.10
and Lemma 4.5 it must be equivalent to 1 in G. However, since the Cayley
category is proper by Lemma 12.3, W itself is not a loop, and by Lemma 8.10
and Lemma 4.5 again, W is not equivalent to 1. Thus W is a torsion element
of G. 2

Lemma 12.5 Let G = 〈A|R〉 be a general small cancellation presentation. If
Xn is readable as a loop with non-trivial winding number in a general relator
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R ∈ R for some n > 1, but X itself is not readable as a loop in R, then the path
X induces a non-trivial automorphism of R.

Proof: Since Xn is a loop with non-trivial winding number, by one of the
defining properties of a relator metric, dR(Xn) ≥ 1 ≥ α. Thus by Axiom 1 and
Lemma 2.1 there is an automorphism of R which sends the initial vertex of the
path X to its terminal vertex. 2

If X is a path in R such as is described in the statement of the lemma, then
X is called a rotation of R, and the automorphism represented by X is said to
rotate R.

Lemma 12.6 Let G = 〈A|R〉 be a general small cancellation presentation. If
Y is a word of order n, 1 < n < ∞ in G, which is cyclically reduced in the
free group and whose cycle is (1 − 4α)-free with respect to R, then there exists
a general relator R ∈ R which is rotated by Y .

Proof: Since Y n = 1 in G and cyclically reduced, by Lemma 10.15 there exists
a connected and simply connected R-diagram ∆ with boundary cycle Y n over
a C(6)-map. Let ∆ be chosen so that it is a diagram of minimal rank having
these properties. By Lemma 10.17 ∆ contains an exposed 2-cell D representing
a general relator R with internal degree at most 3. Let U be the path which
reads the unique boundary arc of D. Since each of the internal arcs has length
less than α, dR(U) > 1−3α by Lemma 5.18. Because the cycle of Y is (1−4α)-
free by assumption, |U | > |Y |. Let U = U1U2 where U1 is the initial segment of
U of length |Y |. Since dR(U) ≤ dR(U1)+dR(U2) by the definition of the relator
metric dR, and since dR(U1) < 1 − 4α by assumption, it must be the case that
dR(U2) > α.

If U is viewed as a path in the loop Y n, then U2 can be viewed as the overlap
between this path and another path reading U obtained by shifting the start
vertex of the path |Y | edges. Since each path individually is readable in R and
the overlap U2 has dR(U2) > α, by Axiom 1 and Lemma 2.1 the union of the
two paths is readable in R. When the path is shifted |Y | more edges, the overlap
is again long relative to R, and the reading of the word Y n can be continued.
In this way an arbitrarily long word periodic in Y can be read in the relator R.
Since R is finite, Y i must be a loop for some integer i, and in particular, since R
embeds into the Cayley category of the presentation by Lemma 12.3, Y n must
be a loop in R. If the winding number of Y n is 0 then by Lemma 7.12 there
is a connected and simply connected R-diagram with boundary Y n of rank less
than the rank of R, contradicting the choice of ∆. Thus the winding number of
Y n is non-zero. 2

Lemma 12.7 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

10 . If X is a word of order n, 1 < n < ∞, then X is conjugate in G to
a word Y such that a power of Y , namely Y n, is readable as a loop with non-
zero winding number in one of the general relators R ∈ R, and such that Y is
cyclically reduced in the free group and the cycle of Y is ( 1

2 +α)-free with respect
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to R. Moreover, the general relator R is uniquely determined by the word X,
and the word Y represents a non-trivial automorphism of R.

Proof: By Lemma 10.5 the cycle X is conjugate in G to a cycle Y which is
cyclically reduced in the free group and ( 1

2 +α)-free with respect to R. Because
X and Y are conjugate in G, they have the same order. Also, since α ≤ 1

10 ,
the cycle Y is also (1 − 4α)-free. Lemma 12.6 can now be applied to show that
Y n is readable as a loop with non-zero winding number in a general relator R.
Next, by Lemma 9.11, the general relator R for which this is true is unique.
And finally, by Lemma 12.5, Y represents a non-trivial automorphism of R. 2

Since Lemma 12.7 guarantees that the general relator rotated by an element
of G is unique, any rank function which turns G = 〈A|R〉 into a graded pre-
sentation also provides a rank function which assigns a finite number to every
automorphism of finite order based on the rank of the general relator which it
rotates.

Lemma 12.8 If G = 〈A|R〉 is a general small cancellation presentation with
α ≤ 1

10 , then G is torsion-free iff all of the general relators in R have no non-
trivial automorphisms.

Proof: The result is a combination of Lemma 12.4 and Lemma 12.7. 2

12.3 Cayley Categories are Contractible

The lemmas below show that the Cayley category of a general small cancellation
presentation is always contractible as a topological space. The heart of the proof
is contained in the rather long proof of Lemma 12.11. A quick sketch of the ar-
gument goes as follows. Given an arbitrary continuous function from a 2-sphere
to the geometric realization of an R-category C, the Simplicial Approximation
Theorem can be applied to a subdivision of C to yield a simplicial map. After
a sequence of technical intermediary steps, the focus devolves upon R-functors
from R-spheres to C, at which point it is possible to use general small cancel-
lation theory to show that this continuous map is contractible to a point, the
original map is contractible to a point, and thus the second homotopy group of
C is trivial. Lemma 12.10 establishes this important special case. More gener-
ally, the same results hold when the Cayley category is replaced by an arbitrary
connected and simply connected subcategory of the Cayley category.

Lemma 12.9 Let G = 〈A|R〉 be a general small cancellation presentation, and
let ∆ be an R-sphere. If the boundary cycle of each 2-cell in ∆ is cyclically
reduced, then ∆ must contain an arc which is long with respect to one of the
2-cells which it borders.

Proof: Let D be one of the 2-cells in ∆. When the interior of D is removed the
result is a planar, connected and simply connected R-diagram. If this planar
diagram is a C(7)-map then by Lemma 10.17 it contains an exposed cell D′
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whose unique boundary arc measures more than 1− 3α in its relator metric. In
the latter case, the unique boundary arc of D′ forms a long arc between D and
D′ in the original R-sphere. If, on the other hand, it is not a C(7)-map, then
since the boundary cycles of the 2-cells are cyclically reduced, by Lemma 7.4
there must be an internal arc which is long relative to one of the 2-cells which
it borders. 2

Lemma 12.10 Let G = 〈A|R〉 be a general small cancellation presentation,
let C be the Cayley category, let ∆ be an R-sphere, and let f be a continuous
function from ∆ to C. If f is a label-preserving map when restricted to the 1-
skeleton of the R-sphere, and f sends every 2-cell into an instance of the general
relator which the cell represents, then f is homotopic to a constant map.

Proof: Suppose that a subword of the form aa−1 can be read in the boundary
of some 2-cell D in ∆. If the vertex in the middle of the subword has degree 2 in
∆ then the entire subword can be identified to a point in ∆. If the vertex in the
middle has a degree greater than 2 and the start and end vertices of the subword
are distinct in ∆ then the two edges can be identified so that only the boundary
cycle of D is altered. If the vertex in the middle of the subword has a degree
greater than 2 and the start and end vertices of the subword are not distinct
then the identification of the two edges creates two spheres which are identified
along an edge. Up to homotopy type this can be modified so that the spheres
are identified at a point. In all three cases the result is a modification of the
original R-sphere and of the original map f . In addition, it is clear that the new
map is homotopic to a constant map iff the old map is homotopic to a constant
map. Since the new configuration also has a lower type, these operations can
be repeated until no such subwords occur. Thus the boundary cycles of the
2-cells in ∆ can be assumed to be cyclically reduced without loss of generality.
Lemma 12.9 can now be applied to show that there exists a 2-cell D in ∆ which
must contain a long arc.

The remainder of the proof is by induction on the type of ∆. To begin,
consider a sphere with at most two 2-cells. Since the cases of spheres with only
one 2-cell, or two 2-cells with different ranks, are easily seen to be impossible,
assume that ∆ contains two 2-cells representing relators of the same rank. Since
the ranks are the same, they form a cancellable pair and they represent the
same general relator R. In this case, the assumptions about f guarantee that
the image of ∆ is contained in an instance of R in C. The general relator R is
embedded in C by Lemma 12.3. Since R is contractible, the result follows.

Next suppose that the lemma has been shown for all R-spheres of strictly
lower type, and that ∆ contains at least three 2-cells. In this case, there must
be a 2-cell in ∆ which does not border the long arc. If the interior of this 2-cell
is removed then the remainder of the sphere can be viewed as a connected and
simply connected R-diagram in the plane. The modifications used in Section 10
to remove long interior arcs can then be mimicked in the R-sphere ∆. When the
arc in question is negative relative to the boundary cycle of D, for example, then
the process described for removing it in Lemma 10.11 was divided into three
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separate cases. The first two cases create new R-sphere structures of strictly
lower type. In the third case a one-point product of two lower-type R-spheres
is created. In each case it is easy to see how to create modified functions to go
with the modified configurations, so that the new functions are homotopic to a
constant map iff the old function is homotopic to a constant map as well.

If the long arc is between two 2-cells of different ranks, then the arc can
simply be erased. This creates a new R-sphere structure of strictly lower type,
but without changing the function f . If the long arc is between two 2-cells of
the same rank then these form a cancellable pair in ∆. The removal of the
cancellable pair creates a one-point product of R-spheres of lower type. Once
again it is easy to see how to create modified functions to go with the modified
configurations, so that the new functions are homotopic to a constant map iff
the old function is homotopic to a constant map as well.

Finally, if the long arc borders D in two distinct ways, then because both
instances are sent by f to the same path in the general relator which D rep-
resents, the orientations of the two instances must be opposite with respect to
the boundary of D. In particular, this shows that no long arcs bordering the
same cell in two distinct ways with both orientations positive can occur in this
context. Thus, a long arc which borders the same cell in two distinct ways can
always be dealt with by focusing on the long negative arc. Since all four types
of long arcs lead to modifications which result in configurations of strictly lower
type, the inductive step completes the proof. 2

Lemma 12.11 If G = 〈A|R〉 is a general small cancellation presentation and
C is its Cayley category, then π2(C) = 0.

Proof: To show that π2(C) = 0 it is enough to show that all maps from the
unit 2-sphere are homotopic to constant maps. Due to its length the proof will
be divided into steps.

Step 1: Let f1 : S2 → C be an arbitrary continuous function from the unit 2-
sphere to the Cayley category C. Since by Lemma 9.8 the general relators in R
are thin, there is a set R′ of standard representatives for R by Lemma 5.19. Then
by Lemma 6.14 there is a deformation retraction of C onto a 2-dimensional R′-
category C ′ such that the 1-skeleton remains fixed throughout. The deformation
retraction creates a homotopy of f1 with a map f2 from the unit 2-sphere whose
image is in C ′.

Step 2: Since C is a circular complex, by Lemma 12.3, and the 1-skeletons
of C and C ′ are the same, C ′ has a simplicial graph as a 1-skeleton. Moreover,
because of the procedure used in Lemma 6.14 there is a 1 to 1 correspondence
between the 2-cells in C ′ and the circular cones of height at least 2 in C. In
particular, if D1 and D2 are 2-cells in C ′ with the same boundary, then the
corresponding closed circular cones C/c1 and C/c2 in C share a representative.
By Lemma 9.11, Axiom 1, and the fact that C is collapsed, c1 = c2 and D1 = D2.
Combined with the above, this shows that C ′ is a circular complex. Thus by
Lemma 2.9 Chain(C ′) is a simplicial complex.

Step 3: Using the Simplicial Approximation Theorem, there is a simplicial
subdivision ∆1 of S2 and a map g1 : ∆1 → Chain(C ′), such that f2 and g1 are
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homotopic maps, and g1 is simplicial in the broad sense. The map g1 cannot
yet be assumed to be simplicial in the strict sense adopted in this article since
g1 may be degenerate on simplices; g1 may send triangles to edges or vertices,
or send edges to vertices.

Step 4: Consider the largest connected subcomplex of ∆ which is sent to the
same point in Chain(C ′). If this subcomplex is all of ∆ then g1 factors through
a complex in which the entire sphere is identified to a point. If not, then each
of the components of the complement of this subcomplex are simply connected,
and g1 factors through a complex in which the boundary of the component has
been identified to a point. Lemma 7.5 can be used on the component, and on
∆ minus the component, to show that the result is homeomorphic to the one-
point product of spheres. This procedure need only be repeated a finite number
of times since the total number of simplices is strictly decreasing. When the
process stops a new structure ∆2 and a map g2 : ∆2 → Chain(C ′) have been
created, such that g2 is a simplicial map which is a factor of g1 and ∆2 is a
one-point product of spheres. In particular g2 is a factor of a map homotopic
with f1. As a result of the identifications, however, the structure ∆2 is not a
simplicial complex, because multiple edges can have the same endpoints and
distinct triangles can have the same boundaries. These multiplicities will be
considered one sphere at a time.

Step 5: Two distinct triangles with the same boundaries form a sphere which
is sent to a triangle in Chain(C ′). Thus the sphere in ∆2 can be collapsed to
a triangle and the map g2 factors through this new structure. Similarly, if
there are two edges with the same vertices, they are necessarily part of the
same sphere. If this sphere contains nothing else, then the entire sphere can be
collapsed to an edge, and the map g2 factors through this new structure. If one
of the disks bounded by the two edges contains no other vertices or edges, but
the other disk does, then this one side can be collapsed to an edge, leaving a
sphere formed by the other side. Finally, if both disks bounded by the edges
contain other vertices or edges then the identification of the edges creates two
spheres joined along an edge. Up to homotopy, these spheres can be moved so
that they are joined only at one of the endpoints of the edge. If these reductions
are carried out until no such situations exist, the result is a simplicial complex
∆3 and a simplicial map g3 such that ∆3 is the one point product of edges,
triangles, and simplicial spheres, and g3 is a factor of g2. In particular g3 is a
factor of a map homotopic to f1.

Step 6: Every vertex in ∆3 is sent by g3 to a vertex in Chain(C ′) which
corresponds to an object in C ′. If every vertex in ∆3 is labeled by the height
of the corresponding object in C ′, then all triangles in ∆3 contain vertices of
heights 0, 1, and 2 since they must be distinct, and these are the only three
heights of objects in C ′. By selecting a finite tree embedded in a sphere and
then peeling it off one edge at a time, it is possible to assume, up to homotopy,
that every sphere is attached to the other elements in the one-point product
at only one vertex, and that it is a vertex of height 0. Call this new one-point
product ∆4 and the corresponding map g4. By construction g4 is a factor of a
map homotopic to f1.
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Step 7: Let v be a vertex of height 1 in one of the simplicial spheres in ∆4,
and let E be the set of open edges connecting v to vertices of height 0 in the
same simplicial sphere. Since g4(v) is an element in Chain(C ′) of height 1, it
corresponds to an edge e in C ′. If the ends opposite v of the selected edges in E
all correspond to the same endpoint of the edge e in C ′, or if E contains more
than two edges, then cut the sphere from v along each of the edges in E, and fill
in the hole with a 2-cell whose boundary cycle has length at least 4. This can
be done up to homotopy by extending the map to the 2-cell by sending it all to
the simplicial subdivision of the edge e. Because an edge in a simplicial complex
is contractible, there is such an extension. Then repeat this process for every
vertex of height 1 in the simplicial sphere in ∆4 which satisfies the conditions.
The result is a sphere which is simplicial except for a number of 2-cells which
have been added. Moreover, if every edge in this sphere is considered labeled
by the edge in Chain(C ′) (as opposed to the edge in C ′) to which it is mapped,
then the boundary cycles of the 2-cells are Dyck words over this alphabet.

Step 8: Pick one of the new 2-cells, say D, to remove first. Since the or-
der in which the reducible subwords are removed plays no role in the proof of
Lemma 7.6, first identify those pairs of adjacent edges in ∂D where the vertex
between the edges has height 1. If the only region on the other side of the edges
is one of the new 2-cells then the identification creates a vertex of degree 1
which can be removed along with the edge to which it is attached. If one of the
edges borders a simplicial triangle then simply identify the edges. If both of the
edges border simplicial triangles then these triangles already shared the edge
formed by the vertices of height 1 and 2 by the construction so far. When the
edges formed by the vertices of height 0 and 1 are identified, the two triangles
share two edges and all three vertices. Up to homotopy, both triangles and their
common edges can be removed and the remaining edges identified.

Notice that once all of the identifications of this type have occurred the
subcomplex determined by the vertices of height 0 and 1 forms a simplicial
subdivision of a graph. As the added 2-cells are removed using the procedure
in Lemma 7.6, some care will be taken to preserve this property. In particular,
at this point the remaining boundary of the selected 2-cell can be viewed as a
simplicial subdivision of a cycle sent to the edge e in C ′. Thus the remaining
boundary is not only a Dyck word when edges are labeled by the edges in
Chain(C ′) to which they are sent, but it is also the simplicial subdivision of a
Dyck word labeled by edges of C ′. The rest of the identifications are done in
pairs according to the identifications which would take place when the boundary
is viewed as a Dyck word in this second sense. Because the identified boundary is
contractible, the 2-cell can be viewed as collapsing into the identified boundary.
When this procedure has been used to remove all of the new 2-cells, the result is
a simplicial complex ∆5 which is the one-point product of edges, triangles, and
simplicial spheres. In addition, each of the simplicial spheres is the simplicial
subdivision of a 2-dimensional cell category. There is also a simplicial map g5

which is a factor of a map homotopic to f1. Finally, by perhaps adding a finite
number of edges it is possible to assume that all of the one-point products in
∆5 involving spheres occur at vertices of height 0. In this case, the spheres
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can now be replaced with the 2-dimensional cell categories of which they are
subdivisions without affecting the fact that they are in a one-point product
attached at vertices.

Step 9: Consider one of the spheres in the domain of g5, viewed as a 2-
dimensional cell category. Let D be a cell in one of these spheres, and let v
be the unique vertex contained in the interior of D when the sphere is viewed
as a simplicial subdivision of this sphere. If R′ is the particular 2-cell in C ′

determined by g5(v) then the boundary of D is sent to a cycle in the boundary
of R′. Since there are no constraints on the winding numbers of the cycles, the
2-dimensional cell category is not necessarily an R′-sphere, but the boundary
cycle of D is at the least equivalent in the free group to an integral power of the
word read by the boundary of R′ . Alterations will now be made to ∆5 so that
the spheres remaining in the one-point product are all R′-spheres.

Let D and R′ be as above, and assume that the winding number n of the
image of ∂D in ∂R′ is not 1. Pick a representative U of R′ which is based at a
vertex in the image of ∂D. If the interior of D is removed then the remainder of
the sphere can be embedded in the plane so that the boundary of the connected
and simply connected map which results from this action is the same as the
original boundary of D. By attaching n copies of 2-cells labeled by U (or U−1)
to the appropriate vertex, the resulting planar diagram has a boundary cycle
U ′ which has winding number 0 when it is pushed into R′. In particular, the
resulting boundary is a Dyck word. By Lemma 7.6 the boundary edges can
be identified so that the result is a one-point product of spheres and edges.
Because R′ is contractible, it is clear that there is a continuous map from ∆5

to the resulting space (although the map is not cellular), and that there is a
cellular map from this space to C ′ which is a factor of a map homotopic to
f1. Since the net result of the process described above is to remove a 2-cell
whose boundary cycle has a winding number other than 1 without introducing
any other such cells, the process can be repeated a finite number of times to
produce a one-point product of edges, triangles, and R′-spheres called ∆6 for
which there is a map g6 such that g6 is a factor of a map homotopic to f1, and
such that g6 restricted to one of the R′-spheres is a cellular map.

Step 10: Finally, since the cycles in R′ are cyclically reduced by the defini-
tion of standard representatives, it follows that each of the R′-spheres mapped
into C ′ corresponds to an R-sphere mapped into C satisfying the hypothesis
of Lemma 12.10. Thus by Lemma 12.10 the R′-spheres mapped into C ′ are
homotopic to constant maps. And more broadly, since each of the elements in
the one-point product is homotopic to a constant map, so is g6, and as a result,
the same is true of f1. 2

Lemma 12.12 If G = 〈A|R〉 is a general small cancellation presentation, and
C is the Cayley category of the presentation, then C is contractible.

Proof: From the definition of a Cayley category of a general presentation it
is immediate that C is connected and simply connected. Thus π1(C) = 0,
and by Lemma 12.11, π2(C) = 0 as well. Using Hurewicz’s Theorem, which
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says that the first non-trivial homotopy group is isomorphic to the first non-
trivial homology group, these facts imply that Hi(C) = 0 for i = 1, 2. Since by
Lemma 6.15 Hi(C) = 0 for all i > 2, all of the homology groups are trivial. Using
Hurewicz’s Theorem in the other direction, all of the homotopy groups must also
be trivial, making C a weakly contractible space. Finally, by Lemma 1.7, C is
also contractible. 2

Lemma 12.13 Let G = 〈A|R〉 be a general small cancellation presentation,
and let C be the Cayley category of the presentation. If B is an arbitrary subcat-
egory of C then π2(B) = 0. If B is an arbitrary connected and simply connected
subcategory of C then B is contractible.

Proof: To prove the first statement it only needs to be noted that the proofs
of Lemma 12.10 and Lemma 12.11 do not make use of the fact that C is the full
Cayley category of the general small cancellation group G. The second state-
ment follows from a similar observation about Lemma 12.12; the only properties
which are needed in its proof are that the subcategory under consideration be
connected and simply connected. 2

12.4 Eilenberg-MacLane Spaces

A topological space is called an Eilenberg-MacLane space iff it has exactly one
non-trivial homotopy group, say πn(C, v) = G 6= 1, in which case the space is
called a K(G, n)-space. It is known that with the restriction that G be abelian
if n is greater than 1, the space K(G, n) always exists and is unique up to
homotopy equivalence. It is also well-known that a polyhedron is a K(G, 1)-
space iff its fundamental group is G and its universal cover is contractible. The
next lemma will extend the results of Lemma 12.8 to include Eilenberg-MacLane
spaces. Notice that the group G is assumed to be finitely presented.

Lemma 12.14 If G = 〈A|R〉 is a finitely presented general small cancellation
presentation with α ≤ 1

10 , then the following five conditions are equivalent.
(1) the group G is torsion-free
(2) all of the general relators in R have no non-trivial automorphisms
(3) the universal cover of the Poincaré construction is collapsed
(4) the universal cover of the Poincaré construction is contractible
(5) the Poincaré construction is a K(G, 1)-space.

Proof: (1 ⇔ 2 ⇔ 3) The first three conditions are equivalent by Lemma 12.8
and Corollary 8.6. (3 ⇒ 4) The third condition implies that the universal cover
of the Poincaré construction is the same as the Cayley category of G. Thus
by Lemma 12.12 the fourth condition is also satisfied. (4 ⇔ 5) The last two
are equivalent, since the fundamental group of the Poincaré construction is the
group G by definition. (5 ⇒ 1) Finally, notice that the Poincaré construction
of the presentation can be subdivided to yield a finite-dimensional simplicial
complex. Since it is known that a finite-dimensional K(G, 1) space implies that
the cohomological dimension of G is finite, which in turn implies that G is
torsion-free (see [3]), the proof is complete. 2
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Lemma 12.14 is reminiscent of Lyndon’s Theorem which states that the
Poincaré construction of a 1-relator group is a K(G, 1)-space iff the relator is
simple. The above lemma verifies several cases of Lyndon’s Theorem and ex-
tends the result to the realm of general small cancellation theory. The fact
that finitely presented, automorphism-free general small cancellation presenta-
tions have finite and immediately constructible Eilenberg-MacLane spaces is also
worth emphasizing. The usual argument for the existence of Eilenberg-MacLane
spaces involves iteratively killing off the generators of higher and higher homo-
topy groups and it has a distinctly non-constructive flavor. One consequence of
the existence of these finite Eilenberg-MacLane spaces is that the groups con-
structed in this way have finite cohomological dimension, thus providing a rich
source of examples of such groups. In addition, these groups also provide an
illustration of a theorem of J. Cannon (see [4]). Cannon proved that a finitely
generated group G acts geometrically on some contractible geometry iff G has
a finite Eilenberg-MacLane space K(G, 1). In this instance, the contractible ge-
ometry alluded to is the Cayley category of the presentation under the natural
metric on its simplicial subdivision.

13 Closures of R-Categories

In the first half of this section one generic and two specific constructions are
introduced. The generic construction is the µ-closure of an R-category with
respect to a given set of general relators. The specific constructions are the
straightline construction and the circular construction. These constructions are
shown, under certain conditions, to exist, to be collapsed, and, most impor-
tantly, to be α-closed. The first half concludes with a few lemmas relating the
paths and cycles read in the specific constructions to the constructions them-
selves. The process described above uses an infinite series of local closures. In
the second half of the section the process is refined so that only a finite number
of local closures are needed in most cases. The main construction is contained
in Lemma 13.25.

13.1 Existence of Minimal Closures

Recall that an R-category C is called µ-closed if whenever a word U is read in
C by a functor g, and it is also read in a general relator R ∈ R by a functor
f with dR(U) ≥ µ, then there exists a functor h : R → C with hf = g. The
lemmas below show that every R-category B which is embedded in a µ-closed
R-category C is contained in a unique, minimal, µ-closed R-category in C. This
R-category will be called the µ-closure of B in C.

Lemma 13.1 Let R be a set of general relators, and let R′ be a subset of R.
If F is a non-empty collection of R-categories embedded in a fixed, collapsed
R-category C, and all of the categories in F are µ-closed with respect to R′

for some µ, then the intersection of the R-categories in F is also µ-closed with
respect to R′.
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Proof: Let R be a general relator in R′ and let U be a path in R with dR(U) >
µ. Suppose that U is also readable in an R-category B in F . Since B is µ-
closed with respect to R′, there is a characteristic functor from R to B such
that the reading of U in R is sent to the reading of U in B. In other words,
this characteristic functor on R is a closed cone of B. Since B is embedded in
C, there is also a characteristic functor from R to C, and since C is collapsed,
by Lemma 6.3 this is the only R-functor from R to C which sends the reading
of U in R to the reading of U in C. If U is read in the intersection of all of the
R-categories in F then this particular characteristic functor on R is a closed
cone in each of the R-categories, and thus it is a closed cone in the intersection.
This shows that the intersection is µ-closed with respect to R′. 2

Lemma 13.2 Let R be a set of general relators, and let R′ be a subset of R. If
B is an R-category which is embedded in an R-category C and C is µ-closed with
respect to R′ for some constant µ, then there is a unique minimum R-category
in C which contains B and is µ-closed with respect to R′.

Proof: Let F be the set of all R-categories in C which contain B and are
µ-closed with respect to R. Since C itself satisfies these conditions, F is non-
empty . Let B′ be the intersection of all of the categories in F . The intersection
is non-empty since it at least contains B, and by Lemma 13.1, the intersection
is also µ-closed with respect to R. Thus B′ is itself an element in the set, and
it is contained in every other R-category satisfying these conditions. 2

The R-category described in the lemma is called the µ-closure of B in C with
respect to R′. If C/c is a closed cone in C but not in B which is isomorphic
with R ∈ R′ and U is a path in the intersection of C/c and B with dR(U) ≥ µ,
then C/c is certainly a cone which must be included in any µ-closure of B with
respect to R′. Such a closed cone is called a cone which must be added to B
immediately. The union of B and all of the closed cones in C which must be
added to B immediately is called the local µ-closure of B in C with respect
to R′. The local µ-closure of B in C respect to R′ will be denoted L(B) with
µ, C, and R′ understood from context. This operation can be iterated. In
particular, let B = L0(B), let L(B) = L1(B), and let Lk+1(B) = L(Lk(B)) for
all k. Notice that clearly, Li(B) ⊂ Lj(B) ⊂ C for all integers i ≤ j. Finally,
let L∞(B) = ∪∞

i=0L
i(B). Again it is clear that L∞(B) ⊂ C. The next lemma

shows that L∞ is identical with the µ-closure of B in C with respect to R′.

Lemma 13.3 Let G = 〈A|R〉 be a general small cancellation presentation, let
B and C be R-categories, with B embedded in C, let R′ be a subset of R, and
let µ be a constant. If C is itself µ-closed with respect to R′, then L∞(B) is the
µ-closure of B in C with respect to R′.

Proof: First note that L∞(B) is itself µ-closed with respect to R′. To see this
let U be a path in L∞(B) which is also readable in a general relator R ∈ R′ with
dR(U) > µ. Since C is µ-closed there is an R-functor f : R → C which sends
the reading of U in R to the path U in L∞(B). Since every edge in the finite
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path U in L∞(B) is contained in one of the Lk(B), the Lk(B) with the largest
superscript contains the entire path U , and the closed cone which is the image
of R under f is included in Lk+1(B). Thus L∞(B) is µ-closed. If B′ denotes
the µ-closure of B in C with respect to R′, then by Lemma 13.1 the fact that
L∞(B) is µ-closed with respect to R′ implies that B′ ⊂ L∞(B). On the other,
by construction it is clear that Lk(B) must be contained in B′ for all k, so that
their union, L∞(B), is also contained in B′. Finally, since B′ ⊂ L∞(B) and
L∞(B) ⊂ B′, they must be identical. 2

Lemma 13.4 Let G = 〈A|R〉 be a general small cancellation presentation, let
R′ be a subset of R. For all R-categories B embedded in a Cayley category and
for all µ, there exists a µ-closure of B in C with respect to R′. Moreover, the
automorphism group of the µ-closure of B contains the automorphism group of
B itself.

Proof: Since B is embedded in the Cayley category, and the Cayley category
is 0-closed, and thus µ-closed, the result follows by Lemma 13.2. The second
statement follows from Lemma 13.3 and the obeservation that paths which show
that a closed cone must be added at one location are sent by automorphisms to
paths which show that corresponding closed cones must be added at all of the
corresponding locations. 2

Lemma 13.5 Let G = 〈A|R〉 be a general small cancellation presentation, let
R′ be a subset of R, and let B be a connected, collapsed R-category. If B is
(1−3α)-closed with respect to R′, then there is exists an R-category C in which
B is embedded, which is µ-closed with respect to R′, and which does not properly
contain any other R-category which satisfies these conditions. In addition, the
inclusion of B in C induces an isomorphism on their fundamental groups, and
both B and C are collapsed.

Proof: Let H be the fundamental group of B and let B′ be its universal
cover. By Lemma 12.2 B′ embeds in the Cayley category of the presentation,
by Lemma 1.15 the group of automorphisms of B′ contains a subgroup iso-
morphic to H , and by Lemma 13.4 it has a µ-closure in the Cayley category.
Next, by Lemma 13.3 the automorphism group of the µ-closure contains the
automorphism group of B′ and thus contains the subgroup isomorphic with H .
By Lemma 12.1 the µ-closure of B′ is simply connected. If the µ-closure of B′

is viewed as a separate R-category not embedded in the Cayley category, and
then quotiented by the action of the subgroup of the automorphism group iso-
morphic with H , then the result is an R-category which satisfies the statements
of the lemma. Finally, the fact that B and C are collapsed follows from the fact
that their universal covers embed in the Cayley category which is collapsed by
definition. 2

In the case where either B or its universal cover embeds in the Cayley cat-
egory of a general small cancellation presentation, it possible to speak unam-
biguously of the µ-closure of B with respect to R′. Although the above lemma

127



proves the existence of a canonical R-category containing B which is µ-closed
with respect to R′ it does not guarantee that the resulting R-category will be
finite. The proof that the µ-closure is finite will be postponed until after a more
detailed investigation of the structure of µ-closures.

13.2 Closures of Words and Cycles

The next few lemmas describe some of the functorial properties of α-closures,
and these are then used to create a well-defined α-closed R category associated
with every word and cycle.

Lemma 13.6 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If f : B → C is an R-functor between connected,
collapsed R-categories, B is (1 − 3α)-closed with respect to R′, and C is µ-
closed with respect to R, then a µ-closure of B with respect to R′ exists, and
there is a unique R-functor from the µ-closure of B to C which, when restricted
to B, is equal to f .

Proof: Let B′ be the µ-closure of B which exists by Lemma 13.5, and let B ′/b
be a closed cone in B′ which is isomorphic to a general relator R ∈ R′ but
which is not a closed cone in B. If U is a path in the intersection of B ′/b and B
with dR(U) > µ, then since C is µ-closed there is a unique R-functor from B ′/b
to C which sends the path U in B′/b to the image of the path U in B under
the functor f . Next, by Lemma 1.2 the obvious R-functor from the disjoint
union of B′/b and B to C factors through the quotient of the disjoint union
obtained by identifying the two paths reading U , which in turn factors through
the collapse of this R-category by Lemma 6.1. Repeating this procedure for all
of the closed cones which must be added immediately to B shows that there
exists a functor from L1(B) to C which extends the functor f . More repetitions
of the procedure show that there exists a functor from Lk(B) to C which extends
all of the previous functors. Finally, this shows that there is a functor from L∞

to C which extends f . By Lemma 6.3 such a functor is unique. 2

Lemma 13.7 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If B and B′ are (1 − 3α)-closed R-categories with B
embedded in B′, µ and µ′ are constants with 1 − 3α ≥ µ ≥ µ′, and R′ and R′′

are subsets of R with R′ ⊂ R′′, then the µ-closure of B with respect to R′ is
contained in the µ′-closure of B′ with respect to R′′.

Proof: Let f : B → B′ be the R-functor which embeds B in B′, and apply
Lemma 13.6. The conclusion is immediate. 2

Lemma 13.8 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If X and Y are words which are (1 − 3α)-free with
respect to R′ and equivalent to each other in the group G′ = 〈A|R′〉, then there
is an isomorphism from the α-closure of the abstract path X with respect to
R′ to the α-closure of the abstract path Y with respect to R′ which sends the
endpoints of X to the endpoints of Y .
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Proof: Let B and C be the α-closures of X and Y respectively, and notice
that both B and C are connected and collapsed. By Lemma 11.3, the path Y
is readable in B between the same vertices as X . By Lemma 13.6 this reading
of Y extends to a functor f : C → B. Similarly, there is a functor g : B → C
extending the reading of X in C between the same vertices as Y . Since fg
is a functor B to itself which fixes a vertex, by Lemma 6.3 it is the identity
functor, and similarly, gf is the identity functor on C. Thus, f is the desired
isomorphism. 2

Lemma 13.9 Let G = 〈A|R〉 be a general small cancellation presentation, and
let R′ be a subset of R. If X and Y are cycles which are (1 − 3α)-free with
respect to R′ and conjugate to each other in the group G′ = 〈A|R′〉, then there
is an isomorphism from the α-closure of the abstract loop X with respect to R′

to the α-closure of the abstract loop Y with respect to R′.

Proof: Let B and C be the α-closures of X and Y respectively, and let ∆
be an annular R′-diagram with no long internal arcs, which shows that X and
Y are conjugate in G′. By Lemma 11.3, the loop Y is readable in B, and by
Lemma 13.6 this reading of Y extends to a functor f : C → B. Similarly, there
is a functor g : B → C extending the reading of X in C. If the same diagram
∆ is used in both applications of Lemma 11.3 to create the readings of the loop
X in C and Y in B, then the functor fg will fix the loop X , and the functor gf
will fix the loop Y . Then by Lemma 6.3 fg is the identity functor on B, and
gf is the identity functor on C. Thus, f is the desired isomorphism. 2

Lemma 13.10 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 . If R′ is a subset of R and W is an arbitrary word or cycle, then
the α-closure of a Dehn reduction of W is a well-defined R′-category.

Proof: This follows immediately from Lemma 13.8 and Lemma 13.9. 2

The α-closure of a Dehn reduction of a word W with respect to R′ is called
the straightline construction on W with respect to R′ and it will be denoted
str(W,R′). Similarly, the α-closure of a Dehn reduction of a cycle W with
respect to R′ is called the circular construction on W with respect to R′ and it
will be denoted cir(W,R′). The 1-skeletons of str(W,R′) and cir(W,R′) can be
viewed as automata by specifying the initial and terminal vertices of the original
path W as the start and stop states of the automata. In addition an orientation
of cir(W,R) is induced by the orientation of the loop W .

The most important special cases are those in which R′ is compatible with
the grading of the general relators, and these cases merit an abbreviated no-
tation. In particular, the constructions str(W,R(k)) and cir(W,R(k)) will be
denoted as strk(W ) and cirk(W ) respectively, and str(W,R) and cir(W,R) as
str(W ) and cir(W ). Notice that since R1 = ∅, the definitions of str1(W ) and
cir1(W ) given here coincide with those given in Section 5.
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Lemma 13.11 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , and let R′ be a subset of R. If X is an arbitrary word and Y is an
arbitrary cycle which is not equivalent to 1 in G′ = 〈A|R′〉, then str(X,R′) is
simply connected while the fundamental group of cir(Y,R′) is Z.

Proof: Without loss of generality assume that X and Y are Dehn-reduced with
respect to R′. Then the abstract path X is simply connected, the abstract loop
Y has a fundamental group of Z, and by Lemma 13.5 the functor embedding
them into their α-closures with respect to R′ induces an isomorphism on the
fundamental groups. 2

Lemma 13.12 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , let C be its Cayley category, and let R′ be a subset of R. If X is
an arbitrary path in C, then there is a unique embedding of str(X,R′) into C
which sends the start and stop states of str(X,R′) to the start and end vertices
of the path X.

Proof: By Lemma 10.2 there exists a Dehn reduction of X with respect to
R′. Call this not necessarily unique reduction X ′. Since C is µ-closed for
all µ, by Lemma 10.4 X ′ is readable in C between the same vertices as X .
By construction str(X,R) = str(X ′,R), and it is a connected, collapsed, and
(1 − 3α)-closed R′-category. The latter is true since 1 − 3α ≥ α. Thus by
Lemma 12.2 and Lemma 13.11, str(X,R′) embeds in C. Since by definition the
automorphisms of a Cayley category act transitively on its vertices there is an
embedding of str(X,R′) which sends its start state to the start vertex of the
path X , and by Lemma 6.3 this embedding is unique. Finally, since str(X,R′)
can be constructed from X ′, X ′ is certainly accepted by str(X,R′) which shows
that the stop state of str(X,R′) has been sent to the end vertex of the path X ′,
which is also the end vertex of the path X . 2

Lemma 13.13 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , let C be its Cayley category, and let B be an arbitrary subcategory
of C which is α-closed with respect to R. If X is a path in B then the embedding
of str(X) into C is contained in B. As a consequence, if X is a path in str(Y ),
then there is an embedding of str(X) into str(Y ) which sends the start and stop
states of str(X) to the start and end vertices of the path X.

Proof: Let X ′ be a Dehn reduction of X . By Lemma 10.4, X ′ is readable
in B between the same endpoints. By Lemma 13.12, str(X) = str(X ′) can be
uniquely embedded in C so that it starts and ends at the same vertices as X
and X ′. If str(X) were not contained in B, the intersection of the two would
be an α-closed R-category containing X ′, which contradicts the definition of
str(X) as the minimum such R-category. Thus str(X) is contained in B. The
second assertion follows immediately from the first once str(Y ) is embedded in
C by Lemma 13.12. 2
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13.3 Decidability

A word is said to be accepted by str(W,R′) if it readable as a path in the
construction between the same vertices as the Dehn reduction of W with respect
to R′. By analogy, a cycle is said to be accepted by cir(W,R′) if it is readable
as a loop in the construction with a winding number of 1 and with the same
orientation as W .

Lemma 13.14 Let G = 〈A|R〉 be a general small cancellation presentation, let
R′ be a subset of R, and let X and Y be words which are (1 − 3α)-free with
respect to R′. The following statements are equivalent.

(1) X and Y are equivalent in G′ = 〈A|R′〉
(2) str(X,R′) and str(Y,R′) are isomorphic as automata
(3) Y is a word accepted by str(X,R′)
(4) X is a word accepted by str(Y,R′).

Proof: (1 ⇒ 2 ⇒ 3) By Lemma 13.8 the first condition implies the second,
and the second condition clearly implies the third. (3 ⇒ 1) Suppose that Y
is accepted by str(X,R′). By Lemma 13.12 str(X,R′) embeds in the Cayley
category of G′ = 〈A|R′〉. This shows that X and Y are readable in the Cayley
category between the same endpoints, and thus by Lemma 8.11 they are equiva-
lent. (1 ⇔ 4) Since the first three conditions have been shown to be equivalent,
and the first condition is symmetric with respect to X and Y , it follows that
the fourth condition is equivalent as well. 2

Lemma 13.15 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , and let R′ be a subset of R. Words X and Y are equivalent in
G′ = 〈A|R′〉 iff there is a start- and endpoint-preserving isomorphism between
str(X,R′) and str(Y,R′).

Proof: By Lemma 10.2 there exist Dehn reductions of X and Y with respect
to R′. Call these not necessarily unique reductions X ′ and Y ′, respectively. By
Lemma 10.3 they are ( 1

2 + α)-free and thus (1 − 3α)-free with respect to R′

since α ≤ 1
8 . Thus Lemma 13.14 shows that X ′ and Y ′ are equivalent in G′ iff

there is a start- and endpoint-preserving isomorphism between str(X ′,R′) and
str(Y ′,R′). Since X and X ′ are equivalent in G′, Y and Y ′ are equivalent in
G′, and by definition str(X,R′) = str(X ′,R′) and str(Y,R′) = str(Y ′,R′), the
proof is complete. 2

Lemma 13.16 Let G = 〈A|R〉 be a general small cancellation presentation, let
R′ be a subset of R, and let X and Y be cycles which are (1 − 3α)-free with
respect to R′. The following statements are equivalent.

(1) X and Y are conjugate in G′ = 〈A|R′〉
(2) cir(X,R′) and cir(Y,R′) are isomorphic as oriented R′-categories
(3) Y is a cycle accepted by cir(X,R′)
(4) X is a cycle accepted by cir(Y,R′).
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Proof: (1 ⇒ 2 ⇒ 3) By Lemma 13.9 the first condition implies the second,
and the second condition clearly implies the third. (3 ⇒ 1) Suppose that Y is
accepted by cir(X,R′). Since the abstract loop X is (1 − 3α)-free with respect
to R′, it is also (1 − 3α)-closed. And by Lemma 13.11 its fundamental group
is Z so that it is possible to speak of winding numbers. Let P be a path in
cir(X,R′) from the basepoint of the loop X to the basepoint of the loop Y .
Then PY P−1X−1 is a loop of winding number 0, and it lifts to a loop in the
universal cover of cir(X,R′). By Lemma 12.2, the universal cover of cir(X,R′)
embeds in the Cayley category of G′ so that PY P−1X−1 is readable as a loop
in the Cayley category. By Lemma 8.11, this word is equivalent to 1 in G′,
showing that X and Y are conjugate in G′. Thus the first three conditions are
equivalent. (1 ⇔ 4) Since both of the first two are symmetric with respect to X
and Y , it follows that the fourth condition is equivalent to the others as well. 2

Lemma 13.17 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , and let R′ be a subset of R. Cycles X and Y are conjugate in G′ =
〈A|R′〉 iff there is an orientation-preserving isomorphism between cir(X,R′)
and cir(Y,R′).

Proof: By Lemma 10.5 there exist Dehn reductions of X and Y with respect
to R′. Call these not necessarily unique reductions X ′ and Y ′, respectively.
Also by Lemma 10.5 they are ( 1

2 + α)-free and thus (1 − 3α)-free with respect
to R′ since α ≤ 1

8 . Thus Lemma 13.16 shows that X ′ and Y ′ are conjugate in
G′ iff there is an orientation-preserving isomorphism between cir(X ′,R′) and
cir(Y ′,R′). Since X and X ′ are conjugate in G′, Y and Y ′ are conjugate in
G′, and by definition cir(X,R′) = cir(X ′,R′) and cir(Y,R′) = cir(Y ′,R′), the
proof is complete. 2

13.4 Finite Closures

Let G = 〈A|R〉 be a general small cancellation presentation, and let R(k) be
the general relators in R of rank at most k. The efficient construction of the α-
closure of an R-category with respect to R(k) which is given below is reminiscent
of a construction of Zimin ([21]). For example, if B is an R-category which is
sufficiently closed to begin with and all of the general relators in B are in R(3),
then B can be made α-closed by a local closure in rank 1, then rank 2, then rank
1 again, then rank 3, then rank 1, then rank 2, then rank 1. The sequence of
ranks has the characteristic Zimin structure, so that like Zimin’s construction,
the process can be conceptualized as involving three steps. Of these, the first
and the third are identical and amount to inductively applying the procedure in
the previous rank. After the first step the construction is α-closed in all ranks
strictly less than k, but slightly less closed in rank k itself. The second step,
which is the only step involving relators of rank k, adds relators of rank k in
order to make the result µ-closed in rank k for some small constant µ. This
procedure, however, disrupts the closures in the lower ranks. Thus, the third
step is needed in which the procedure used to make the lower ranks α-closed is
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Rank Start After Step 1 After Step 2 After Step 3
1 1 − 3α − 2ε α 3α α
2 1 − 3α − 2ε α 3α α

. . . . . . . . . . . . . . .
k − 1 1 − 3α − 2ε α 3α α

k 1 − 3α − 2ε 1 − 3α α − 2ε α
(k + 1) (δ) (δ + 2ε)

Figure 31: Levels of completeness

applied again. The final result is a structure which is α-closed with respect to
all of the general relators in R(k). Because of the back-and-forth nature of the
levels of completeness, Figure 31 has been provided to illustrate the process.
The final row of the table shows the result of the study of Zimin-type words
in the next rank. Once this has been shown, then the entire three-step process
is ready to become the first step, or the third step, in the process in the next
larger rank.

Because of their connection with the above procedure, the following words
will be called Zimin-type words. A rank k Zimin-type word is a word W = XY Z
where X and Z are rank (k − 1) Zimin-type words and Y is a word readable in
a rank k relator. To start the definition, notice that a rank 1 Zimin-type word
must be the empty word, since no rank 1 general relators exist. For simplicity,
Zimin-type words will be referred to as Zimin words even though this designation
is usually reserved for words of a much more restricted form.

Lemma 13.18 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

12 . If XY Z is a path in a general relator R ∈ R with dR(XY Z) ≥ 1− 3α,
and X, Y and Z are ( 1

2 + α)-free words with respect to R then at least two of
the three words are long in R.

Proof: Suppose on the contrary that two of the words, say Y and Z, are short
in R. Then 1−3α ≤ dR(XY Z) ≤ dR(X)+dR(Y )+dR(Z) < dR(X)+2α. Thus
dR(X) > 1 − 5α ≥ 1

2 + α, since α ≤ 1
12 , contradiction. 2

Lemma 13.19 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

10 , let R′ be a subset of R, let C be a collapsed R-category and let S and T
be connected R-categories embedded in C which are each α-closed with respect
to R′. Suppose further that S and T intersect and that u and v are vertices
in S and T respectively. If X is the shortest path from u to the intersection of
S and T , and Y is the shortest path from the endpoint of X to v, then XY is
(1 − 3α)-free with respect to R′.

Proof: First, note that since S and T are α-closed with respect to R′, by
Lemma 11.5 they are geodesic-closed with respect to R′ as well, so that X is
contained in S, Y is contained in T , and both paths are geodesics with respect
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to R′. Because X and Y are geodesics with respect to R′, by Lemma 10.3 they
are ( 1

2 + α)-closed and thus (1 − 3α)-closed with respect to R′. Thus if XY is
not (1 − 3α)-closed with respect to R′ it is because there are non-empty words
X ′ and Y ′ and a general relator R ∈ R′ such that X ′ is a final segment of X ,
Y ′ is an initial segment of Y , X ′Y ′ is readable in R and dR(X ′Y ′) > 1 − 3α.
Since none of the edges of X are in T , dR(Y ′) < α, because otherwise R would
be included in T and X ′ would consist of edges in T , contradiction. By one
of the properties of relator metrics, dR(X ′) > 1 − 4α. But since α ≤ 1

10 ,
1
2 + α ≤ 1 − 4α, so that by Lemma 10.3, X ′ is not a geodesic, contradiction.
Therefore the assumption that XY is not (1 − 3α)-free is false. 2

If U is a subword of a word X and UV −1 is a representative of a general
relator R, then replacing U with V in X is called a simple substitution.

Lemma 13.20 Let X be readable in a general relator R and let Y be a word
obtained from X by simple substitutions which shorten the length of the word.
If none of the simple substitutions involve a representative of R, then dR(X) =
dR(Y ).

Proof: Assume that Y is obtained from X by a single simple substitution of
V for a subword U in X , and that S is the general relator of which UV −1 is a
representative. Since the substitution shortens the length, 2|U | > |U |+|V | ≥ |S|
so that |U | > 1

2 |S| and by Axiom 4 and Axiom 7, dS(U) > 1
2 − δ > α. Thus by

Axiom 1, there is a functor from S to R which extends the reading of U in R.
Since by assumption none of the simple substitutions involve a representative
of R, it must be that the image of S is contained in ∂R by Lemma 2.1. This
shows that V is readable in R between the same vertices as U , and that the
new path Y is homotopic to X in ∂R relative to their endpoints. Thus, by one
of the properties of relator metrics dR(X) = dR(Y ). In the general case, Y is
formed by a finite number of iterations of this procedure. 2

Lemma 13.21 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

8 , let C be a collapsed R-category and let F be a family of connected
R-categories embedded in C which are each α-closed with respect to R(k) and
whose union is C. If U is a path in C then there exists a path V in C with
|V | ≤ |U | which is homotopic to U relative to its endpoints, and such that for all
B ∈ F , the connected components of V ∩ B are geodesics with respect to R(k).
In addition, if the original path U is readable in a general relator R, then V is
also readable in R between the same vertices.

Proof: If B is a member of F and U ′ is a subpath of U in B which is not a
geodesic with respect to R(k), then pick V ′ to be such a geodesic. Since B is
geodesic-closed with respect to R(k) by Lemma 11.5, there is a path reading
V ′ in B homotopic to U ′ relative to its endpoints. If U is also read in a general
relator R, then since by Lemma 9.8 and Axiom 1, R is collapsed and α-closed, it
follows from Lemma 11.5 that the same replacement of U ′ with V ′ is permissible
in R. After repeating this procedure a finite number of times, the process must
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stop, since the length of the path is strictly decreasing. The final path which
results necessarily satisfies the statement of the lemma. 2

Let G = 〈A|R〉 be a general small cancellation presentation with α ≥ 3β+2ε
and α ≤ 1

12 , let B be an R-category which is α-closed with respect to R(k − 1)
and (1− 3α)-closed with respect to Rk, let C be the local (α− 2β − 2ε)-closure
of B, and let F be the set consisting of B and each of the closed cones of
rank k in C which have been added to B to form C. Since C is contained in
the full (α − 2β − 2ε)-closure of B with respect to Rk , and by Lemma 13.5,
B is embedded in that R-category, it follows that B is also embedded in C.
Clearly each of the elements of F are embedded in C, they are all connected
R-categories which are α-closed with respect to R(k − 1), and their union is C.
Thus Lemma 13.21 can be applied to C and F as follows.

Lemma 13.22 Let G, B, C and F be as described above. If R, S, and T are
distinct elements in F other than B, and X is a path in S which starts in R∩S,
ends in S∩T and is a geodesic with respect to R(k), then there is a path Y with
the same endpoints as X which is contained in the intersection of R ∪ B ∪ T
with the α-closure of X in S with respect to R(k).

Proof: Case 1: If R and T intersect, let v be a vertex in the intersection, let P
be the shortest path from the initial vertex of X to v, and let Q be the shortest
path from v to the terminal vertex of X . Since R, S, and T are geodesic-closed
by Lemma 11.5, P is contained in R ∩ S, and Q is contained in S ∩ T . Since P
and Q are in the intersection of two distinct closed cones of the same rank in
a collapsed R-category, by Axiom 2 dS(P ) < β and dS(Q) < β. If the winding
number of the loop PQX−1 in S is n, then n ≤ dS(PQX−1) < dS(X) + 2β.
If n is not 0 then dS(X) > 1 − 2β > 1

2 + α and X could not be a geodesic in
S by Lemma 10.3. Thus the winding number is 0, and by Lemma 7.12 there
is a proof that PQX−1 is equivalent to 1 in G(k − 1). Since P , Q, and X are
(1 − 4α)-free paths with respect to R(k − 1) and they form a triangle in the
Cayley graph of G(k − 1), by Lemma 11.8 the path X itself is contained in the
R ∪ T .

Case 2: If R and T do not intersect, then let P be the shortest path from the
initial vertex of X to a point in S ∩B, let Q be the shortest path from a vertex
in S ∩ B to the terminal vertex of X , and let Y be the shortest path from the
terminal vertex of P to the initial vertex of Q. By Lemma 13.19 both PY and
Y Q are (1−3α)-free with respect to R(k−1). If PY Q is not (1−3α)-free with
respect to R(k − 1) then there is a subword of PY Q containing a non-empty
portion of P , all of Y and a non-empty portion of Q which has a length longer
than 1 − 3α when measured by the relator metric of some general relator in
R(k − 1). By Lemma 13.18 this would mean that either the portion in P or
the portion in Q is long in the general relator. If without loss of generality it is
assumed that the portion in P is long in the relator, then, since R is α-closed
with respect to R(k−1), the entire relator is contained in R, and R and T would
intersect, contradicting the initial assumption. Thus PY Q is (1− 3α)-free with
respect to R(k − 1).
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By Axiom 2, dS(P ) < β, and dS(Q) < β. Since Y is a geodesic by
Lemma 10.3, dS(Y ) < 1

2 +α ≤ 1− 3α since α ≤ 1
12 . If the loop PY QX−1 has a

non-zero winding number in S then 1 ≤ dS(PY QX−1) ≤ dS(X)+1−3α+2β ≤
dS(X) + 1 − α, by the properties of relator metrics and the constraints of the
constants listed in Axiom 7. Thus dS(X) > α, and the α-closure of X in S
with respect to R(k) is S itself and thus includes the path PY Q. On the other
hand, if PY QX−1 has winding number 0, then by Lemma 7.12 and Lemma 8.8
it is a loop in the Cayley category of G(k − 1) and thus by Lemma 8.11, X
and PY Q are equivalent in G(k − 1). By Lemma 11.3 it follows that PY Q is
contained in the α-closure of X with respect to R(k − 1) and thus also clearly
in the α-closure of X with respect to R(k). 2

Lemma 13.23 Let G, B, C, and F be as described above, and let X be a path
in C. If S and T are elements of F which contain the initial and terminal
vertices of X respectively, then there is a path with the same endpoints as X
which is contained in the intersection of S ∪ B ∪ T with the α-closure of X
with respect to R(k). In particular, if S and T do not intersect, then the path
mentioned above can be chosen to be of the form PY Q where P is the shortest
path from the initial vertex of X to a vertex in the intersection of S and B, Q
is the shortest path from a vertex in the intersection of B and T to the terminal
vertex of X, and Y is the shortest path between the terminal vertex of P and
the initial vertex of Q. If S and T do intersect, then the path can be chosen to
be of the form PQ, where P is the shortest path from the initial vertex of X
to a point in the intersection of S and T , and Q is the shortest path from the
terminal vertex of P to the terminal vertex of X.

Proof: Let F ′ be the smallest finite subset of F such that F ′ contains S, B,
and T , and such that the union of the elements in F ′ contains a path X ′ which is
accepted by the α-closure of X with respect to R(k). By applying Lemma 13.21
and using Lemma 13.6 it is possible to assume that X ′ satisfies the conclusion of
Lemma 13.21. If F ′ contains an element other than S, B, and T , then applying
Lemma 13.22 and Lemma 13.6 to the portion of the path X ′ which reads this
element shows that F ′ is in fact not minimal, contradiction. Thus F ′ contains
only S, B, and T . The properties of the particular paths then follow from the
proof of Lemma 13.22. 2

Lemma 13.24 If G, B, C, and F are as described above, then C is 3α-closed
with respect to R(k − 1) and (α − 2ε)-closed with respect to Rk.

Proof: Let X be a path readable in C and also in a general relator R ∈ R(k)
and let S and T be elements in F which contain the initial and terminal vertices
of the path X in C respectively. If there does not exist a functor from R to C
which extends the reading of X in C, then the path Y in S∪B∪T and readable
in R guaranteed by Lemma 13.23 must satisfy dR(X) = dR(Y ) by Lemma 13.20.
Let Y = Y1Y2Y3 be a partitioning of Y so that Y1 lies in S, Y2 lies in B, and
Y3 lies in T . If S and T intersect so that Y never includes an edge in B, then
consider Y2 = ∅ and dR(Y2) = 0. If R is in Rk then dR(Y1) < β, and dR(Y3) < β
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by Axiom 2. If dR(Y ) ≥ α − 2ε then dR(Y2) < α − 2β − 2ε and R is already
included in the construction C. Thus C is (α − 2ε)-closed with respect to Rk.
If R is in R(k − 1) then either dR(Y1) < α, dR(Y2) < α, and dR(Y3) < α, or R
is already included in S, B, or T since each of these constructions is α-closed
with respect to R(k−1). Thus C is 3α-closed with respect to R(k−1). Finally,
notice that by construction, every general relator in F other than B shares a
path with B which measures at least α − 2β − 2ε in the relator metric of the
general relator. 2

Lemma 13.25 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

12 and 3β + 2ε ≤ α, and let ε be a constant which satisfies Axiom 5.
Suppose that ε is also an upper bound on the length of a rank i Zimin word,
i ≤ k, which is read in any general relator R having a rank strictly greater
than i, as measured by the relator metric of R. If B is an R-category which
is (1 − 3α − 2ε)-closed with respect to R(k), then there is an R-category C
containing B which is α-closed with respect to R(k), and such that every vertex
in C is connected to a vertex in B by a path reading a rank k Zimin word. In
addition, if B is µ-closed with respect to Rj with j > k, then C is (µ+2ε)-closed
with respect to Rj .

Proof: If k = 1 then the result follows immediately from Lemma 13.24, so
suppose that the lemma is true for all ranks strictly less than k, and k > 1.
By applying the lemma in the previous rank, there is a finite R-category B1

containing B which is α-closed with respect to R(k − 1) and (1 − 3α)-closed
with respect to Rk. Then by applying Lemma 13.24 there is an R-category B2

containing B1 such that B2 is 3α-closed with respect to R(k − 1) and (α− 2ε)-
closed with respect to Rk . Finally, by applying this lemma again in the previous
rank, there is an R-category C containing B2 such that C is α-closed with
respect to R(k). By induction every vertex in C is connected to a vertex in
B2 by a rank (k − 1) Zimin word. The fact that B2 is obtained from B1 by
attaching rank k relators to B1 shows that every vertex in B2 is connected to a
vertex in B1 by a path readable in a rank k relator. Then, by induction again,
every vertex in B1 is connected to a vertex in B by a rank (k − 1) Zimin word.
Combining these facts shows that every vertex in C is connected to a vertex in
B by a rank k Zimin word.

Finally, let X be a path readable in C and also in a general relator R ∈ Rj ,
j > k, such that there does not exist a functor from R to C which extends
the reading of X in C. By repeatedly using Lemma 13.23 applied to each of
the local closures, there is a word PY Q readable in both C and R where both
paths are homotopic to X relative to its endpoints, and such that P and Q
are rank k Zimin words and Y is a possibly empty path in the R-category B.
Moreover, by Lemma 13.20 and the fact that R is not included in C at this point,
dR(X) = dR(PY Q). By the assumptions stated in the lemma, dR(P ) < ε and
dR(Q) < ε. Also, since R is not attached to C and B is µ-closed, dR(Y ) < µ.
Using the properties of relator metrics, the combination of these bounds shows
that dR(X) = dR(PY Q) < µ + 2ε. Thus C is (µ + 2ε)-closed with respect to
Rj . 2
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Under minor restrictions it is possible to prove that the µ-closure of a finite
R-category with respect to R(k) is still finite. The existence of a finite µ-closure
follows from the construction of a single finite µ-closed R-category containing
the original category. The first lemma shows that if this is the case, the µ-closure
is also effectively constructible.

Lemma 13.26 If B and C are finite R-categories such that B is embedded in
C, and C is µ-closed with respect to R(k), then the unique µ-closure of B in C
with respect to R(k) is effectively constructible.

Proof: Because of the existence of the R-category C, the finiteness of the
µ-closure is immediate. Also, a straightforward but inefficient procedure to
find the unique minimum µ-closure of B is to list all of the R-categories in C
containing B and then to test to see which of them are µ-closed with respect to
R(k). 2

Lemma 13.27 Let G = 〈A|R〉 be a general small cancellation presentation
with α ≤ 1

12 , and 3β + 2ε ≤ α. In addition let ε be a constant which satisfies
Axiom 5 and also such that ε is an upper bound on the length of a rank i Zimin
word, i ≤ k, which is read in any general relator R having a rank strictly greater
than i, as measured by the relator metric of R. If B is a finite R-category which
is (1−3α−2ε)-closed with respect to R(k), C is the α-closure of B with respect
to R(k), and there is a bound on the diameters of the closed cones which are in
C but not in B, then C is finite and effectively constructible.

Proof: The bound on the diameters shows that there is also a bound on the
length of rank j Zimin words, j ≤ k, if each of the component pieces which
are readable in a general relator of the appropriate rank is a geodesic in that
relator. As shown in the proof of Lemma 13.25, every vertex in C differs from
a vertex in B by a path of this type. Since C is collapsed, and the alphabet A
is finite, this shows that the number of vertices in C is also finite. Finally, the
fact that C is collapsed means that the category C is also finite. 2

Lemma 13.28 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

12 , and 3β + 2ε ≤ α and 2β + δ + 2ε < α. In addition let ε be a constant
which satisfies Axiom 5 and also such that ε is an upper bound on the length
of a rank i Zimin word, i ≤ k, which is read in any general relator R having a
rank strictly greater than i, as measured by the relator metric of R. If X is a
word which is (1− 3α− 2ε)-free with respect to R(k) then strk(X) is finite and
effectively constructible. As a consequence, when 1 − 3α − 2ε ≥ 1

2 + α, strk(X)
is finite and effectively constructible for all words X.

Proof: The abstract path X is an R-category which satisfies Lemma 13.27.
The condition of the bounds of the diameters is satisfied because the final result
is contained in the R-category produced by a finite number of local closures. In
each local closure the added closed cones have paths measuring α − 2β − 2ε in
the relator metric. Without loss of generality the path can be assumed to be
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a geodesic and thus by Axiom 4 it has a length of at least α − 2β − 2ε − δ of
the length of the relator. Since the construction so far is simply connected and
finite, there is a bound on the length of possible geodesics, which when divided
by α − 2β − 2ε − δ > 0 gives a bound on the length of the newly attached
closed cones, and this in turn leads to a finite bound on the diameters of these
closed cones. The induction through the local closures shows that the final
result has a bound on the diameters of the closed cones in C which are not in
B. Lemma 13.27 completes the proof. Finally, in general strk(X) is created
using a Dehn reduction of the word X , and the inequality listed guarantees that
the prior reasoning can be applied to the Dehn reduction. 2

14 Finite Subgroups

The strong connection between torsion elements in G and automorphisms of
general relators in R, which was examined in Section 12, foreshadows an even
stronger connection between the finite subgroups of G and the automorphism
groups of the general relators in R, when G is a general small cancellation
group. In particular, under relatively mild conditions, every finite subgroup
of the group is contained in the automorphism group of some general relator.
The converse, that every subgroup of an automorphism group occurs as a finite
subgroup, is an easy consequence of the fact that the Cayley category is proper.
At the conclusion of the section Theorem A is shown.

14.1 Equivalent Conditions on Finite Subgroups

Lemma 14.4 establishes a set of four equivalent conditions on finite subgroups of
general small cancellation groups. Eventually (Lemma 14.17) it will be shown
that all of the finite subgroups satisfy these conditions, but for the moment, it
will merely be shown that the conditions are equivalent. One of the implications
in the proof is proved using a well-known fixed-point lemma for finite groups
acting simplicially on finite contractible simplicial complexes, which is given
below.

Lemma 14.1 Let H be a finite group which acts simplicially on a finite con-
tractible simplicial complex B. Then the action of H on B must have a global
fixed point iff H is a finite group which is a q-group extended by a cyclic group
extended by a p-group, where p and q are primes.

Proof: See [14]. 2

The following technical lemma will be needed:

Lemma 14.2 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with α ≤ 1

12 , and let R be a general relator in R. If X is a path in
R such that dR(X) ≥ 1

2 + δ, then either there exists an initial segment U of X
such that all paths V in R with the same endpoints as U satisfy dR(V ) ≥ 3α,
or else every edge in R is long.

139



Proof: Since dR(X) ≥ 1
2 + δ, by Axiom 4 |X |R ≥ 1

2 . Since geodesic distance
changes at most 1 unit when a word is shortened by a single letter, there must
be an initial segment U of X such that |U |R is at most 1

2|R| from 1
2 . Thus

1
2 − 1

2|R| ≤ |U |R ≤ 1
2 + 1

2|R| . Given any other path V in R between the same

endpoints, UV −1 forms a loop. If the winding number of this loop is 0, then
U and V are homotopic in ∂R and consequently |V |R ≥ |U |R by definition. If,
on the other hand, the winding number is k ≥ 1, then |U |R + |V |R ≥ k ≥ 1.
In either case |V |R ≥ 1

2 − 1
2|R| . If |R| ≥ 3, then this implies that |V |R ≥ 1

3 ,

and that dR(V ) ≥ 1
3 − δ ≥ 3α by Axiom 4 and by assumption. If, on the other

hand, |R| < 3, then let V be a single edge. By the definition of the normalized
graph metric, |V |R ≥ 1

|R| ≥
1
3 , so that dR(V ) ≥ 1

3 − δ ≥ 3α by Axiom 4 and by

assumption. This shows that every edge in R is long. 2

Lemma 14.3 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with α ≤ 1

12 for which str(W ) is finite and effectively constructible
for all words W ∈ A∗. In addition, let H be a finite subgroup of G, let C be the
Cayley category of G, and let B be a finite subcategory of C. If the natural action
of H on C restricts to an action of H on B, then there is a finite, contractible,
and effectively constructible subcategory B ′ containing B on which H acts.

Proof: If B is not connected then the finite number of components can be
connected with a finite number of simplicial paths in the 1-skeleton. In order
to extend the action of the group H to the resulting R-category, let B1 be the
union of B and the finite number of images of each of the connecting paths
under the automorphisms of H . Next, consider all pairs of vertices u, v ∈ B1.
If u and v are viewed as vertices in C then there is a geodesic path X from u
to v. By assumption str(X) exists, it is finite, and it is effectively constructible.
Moreover, str(X) can be viewed as the α-closure of X in C with respect to R,
and by Lemma 13.12 there is a unique embedding of str(X) which sends the
startpoint to u and the endpoint to v. The uniqueness of str(X) guarantees
that the image of str(X) under h ∈ H is the α-closure of the image of X with
respect to R as well. Let B2 be a subcategory of C obtained by adding to B1

such a straightline construction for every pair of vertices u and v in B1. Since a
str(X) construction is added between u and v iff it is also added between h(u)
and h(v) for all h ∈ H , the action of the group H on B1 extends to B2.

The key step in the proof involves showing the B2 is (1 − 3α)-closed with
respect to R. Consider a path V in B2 which is readable in a general relator T
with dT (V ) ≥ 1−3α. By Lemma 14.2 there is a subword U such that every path
in T between the same endpoints as U measures at least 3α. Let u and v be the
startpoint and endpoint of U respectively. Since u is in B2 there must be a path
X in B2 which starts and ends in B1 such that u is contained in the embedding
of str(X) determined by the endpoints of X . Similarly, there must be a path Y
in B2 which starts and ends in B1 such that v is contained in the embedding
of str(Y ) determined by the endpoints of Y . Let u′ be one of the endpoints
of X and let v′ be one of the endpoints of Y . Since str(X) is connected and
α-closed with respect to R, there is a geodesic X ′ in str(X) from u to u′. In
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particular, by Lemma 13.13 str(X ′) embeds in str(X) and thus is contained in
B2. Similarly, since str(Y ) is connected and α-closed with respect to R, there
is a geodesic Y ′ in str(Y ) from v′ to v. In particular, by Lemma 13.13 str(Y ′)
embeds in str(Y ) and thus is contained in B2. Next, notice that u′ and v′ are
in B1 so that if Z is a geodesic from u′ to v′, str(Z) is contained in B2 as well.
Since the paths X and Y will no longer be needed, relabel X ′ and Y ′ as X and
Y . The construction so far has produced a path XZY from u to v such that
str(X), str(Z) and str(Y ) are contained in B2.

If XZ is not a geodesic in C, then there is a path W between the same
endpoints of strictly shorter length. But then by Lemma 11.8, W is contained
in the union of str(X) and str(Z) and W can be split into X ′ and Z ′ such
that X ′ is readable in str(X) and Z ′ is readable in str(Z ′). By Lemma 13.13,
str(X ′) and str(Z ′) are embedded in str(X) and str(Z) and thus in B2. This
produces a strictly shorter word X ′Z ′Y from u to v such that str(X ′), str(Z ′)
and str(Y ) are in B2. After this process is repeated at most a finite number
of times (on XZ and on ZY alternately), and after suitable relabeling, a path
XZY is obtained with str(X), str(Z), and str(Y ) contained in B2, and with the
additional property that XZ and ZY are geodesics in C.

If XZY is (1 − 3α)-free then by Lemma 11.3 it is readable in T , and by
Lemma 14.2 dT (XY Z) ≥ 3α. Thus one of the three subpaths, say X , is long
in T and since str(X) is α-closed, T is contained in str(X) and thus in B2. If,
however, XZY is not (1 − 3α)-free, then there exists a general relator R and
a path P in XZY with dR(P ) ≥ 1 − 3α. Since XZ and ZY are geodesics and
thus ( 1

2 + α)-free, it follows that P contains a portion of X and Y . Thus let
P = X1ZY1. Since α ≤ 1

12 , dR(X1) ≥ 2α, and dR(Y1) ≥ 2α. In particular R is
contained both in str(X) and in str(Y ). This in turn implies that the path XZ
lies completely in str(X). If XZ is relabeled as X , then XY is a path from u
to v such that str(X) and str(Y ) are contained in B2, and both X and Y are
geodesics. Applying the reduction argument described above to the path XY
shows that without loss of generality, we can assume that XY is a geodesic in
C. At this point, by Lemma 11.3 XY is readable in T , and by Lemma 14.2
dT (XY ) ≥ 3α. Thus one of the two subpaths, say X , is long in T and since
str(X) is α-closed, T is contained in str(X) and thus in B2. In either case T
must be contained in B2, so that B2 is (1 − 3α)-closed with respect to R.

At this point it has been shown that B2 is connected and that it is (1− 3α)-
closed with respect to R. Since B2 is a subcategory of C, it is also col-
lapsed. From Lemma 12.1, it follows that B2 is simply connected, and then
by Lemma 12.13, B2 is contractible. Thus B2 satisfies the conditions stated in
the lemma. 2

Lemma 14.4 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with α ≤ 1

12 in which str(W ) is finite and effectively constructible
for all words W ∈ A∗, and let C be the Cayley category of the presentation. In
addition suppose that all general relators in R contain at least one crucial cone.
If H is a finite subgroup of G then the following conditions are equivalent:

(1) the natural action of H on C has a global fixed point
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(2) H is isomorphic to a subgroup of the automorphism group of some general
relator R ∈ R, or the automorphism group of a labeled edge

(3) H is isomorphic to a finite group which is either a cyclic or a dihedral
group extended by a 2-group

(4) H is isomorphic to a subgroup of a finite group which is a q-group ex-
tended by a cyclic group extended by a p-group, where p and q are primes.

Proof: (1 ⇒ 2) Let C ′ = Chain(C) be the simplicial subdivision of C. The
action of H on C can then be viewed as a simplicial action of H on C ′ which
preserves the heights of the vertices in C ′. If the action of H on C ′ has a global
fixed point, then that point must occur in the interior of a unique simplex.
Since the vertices of the simplex are ordered by their height, the elements of H
cannot permute them. Thus the entire simplex is fixed by H and without loss
of generality the global fixed point of H can be chosen to be a vertex of C ′.
Call this vertex c and consider the slice category C/c. Since the action of H on
C preserves height, H must act on the image of the slice category in C and by
Lemma 12.3 H acts on C/c itself. Notice that if c has height 0 then H must be
trivial, if c has height 1 then C/c is a labeled edge, and if c has a height at least
2 then C/c is a general relator in R. In all three cases, the second condition is
satisfied.

(2 ⇒ 3) This follows immediately from Lemma 5.26, and the fact that the
automorphism group of a labeled edge is at most cyclic order 2. (3 ⇒ 4) Since a
dihedral group can be viewed as a group of order 2 extended by a cyclic group,
this step also follows immediately. (4 ⇒ 1) By Lemma 14.3, H acts on a finite
contractible subcategory B of C. Thus, by Lemma 14.1 the action of H on B
has a global fixed point. Since this global fixed point is also a global fixed point
of the action of H on C, the proof is complete. 2

Lemma 14.5 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with α ≤ 1

12 in which str(W ) is finite and effectively constructible
for all words W ∈ A∗, and let H be a finite subgroup of G. In addition suppose
that all general relators in R contain at least one crucial cone. If H is a p-
group for some prime p, then H satisfies all of the equivalent conditions listed
in Lemma 14.4. In particular this is true when H is a 2-group.

Proof: The result is immediate since by assumption H satisfies condition (4)
of Lemma 14.4. 2

Another easy application of Lemma 14.4 uses the solvability of groups of odd
order to show that all odd-order subgroups of finitely presented general small
cancellation groups are cyclic. Later in this section a more detailed examination
of the finite subgroups of general small cancellation groups will provide another
proof of this fact, so that the results collected in Theorem A remain independent
of the Odd Order Theorem.

Lemma 14.6 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with α ≤ 1

12 in which str(W ) is finite and effectively constructible
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for all words W ∈ A∗, and let H be a finite subgroup of G. In addition suppose
that all general relators in R contain at least one crucial cone. If H is a finite
subgroup of G of odd order then the group H is cyclic.

Proof: By the Odd Order Theorem, H is a solvable group and thus has a
composition series whose factors are cyclic groups of prime order. The proof
proceeds by induction on the length of the composition series. If the composition
series has length 1 then H is cyclic and there is nothing to prove. Next, assume
that the result has been shown for all finite subgroups with composition series
of length k and let H have a composition series of length k + 1. By induction,
H has a cyclic normal subgroup of prime index. Since H satisfies condition (4)
of Lemma 14.4, H is also isomorphic to a subgroup of a finite group which is a
dihedral extended by a 2-group. In particular, there is a group homomorphism
from H to a dihedral whose kernel is a 2-group. But since H has odd order, the
kernel of the map is trivial and H is isomorphic to a subgroup of the dihedral
group. Moreover, the absence of elements of order 2 shows that H injects into
the cyclic subgroup of the dihedral and H itself is thus cyclic. This completes
the induction and the proof. 2

14.2 Inequalities and Estimates

The following lemmas are a collection of inequalities and estimates which will
be needed in the proof of Lemma 14.12.

Lemma 14.7 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

10 and let R be a general relator in Rk. If U and V are words which are
conjugate in G(k− 1) and Un and V n are both readable in R as loops with non-
zero winding numbers, then |dR(U) − dR(V )| ≤ 2γ + 2δ < 2α. In particular,
if U and V are arbitrary representative cycles of R then |dR(U) − dR(V )| ≤
2γ + 2δ ≤ α.

Proof: Without loss of generality, assume that U is a geodesic in R and let
W be a cycle conjugate to U in G(k − 1) and of minimal length subject to this
restriction. First of all, it is clear that |U | ≥ |W | and that the cycle of W is
( 1
2 + α)-free with respect to R(k − 1), for otherwise Lemma 10.3 would yield

a contradiction to the minimality of W . Next, by Lemma 11.4 W k is readable
as a loop in R with the same winding number as Uk. Finally, notice that the
automorphism of R induced by sending the initial vertex of one of the paths U
to its endpoint will also send the initial vertex of each of the vertices of each of
these paths W to their endpoints.

By the definition of ωR, there is a path of length at most ωR from the initial
vertex of one of the paths U to a point in the loop W k. Without loss of generality
let W be the conjugate of W determined by the endpoint of this path. The image
of this path under the automorphism determined by U sends it to another path
between Uk and W k. Since U is a geodesic it is clear that |U | ≤ |W | + 2ωR.
Combining these inequalities shows that |U | is within ωR of |W | + ωR. Since
the word V must also satisfy these restrictions, the length of U and the length
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of V differ by at most 2ωR, and consequently, ||U |R − |V |R| ≤ 2γ by Axiom 3.
Using Axiom 4 and Axiom 7, |dR(U) − dR(V )| ≤ 2γ + 2δ < 2α. Finally,
let U and V be representative cycles and let P be a path in R between their
basepoints. Depending on the relative orientations of U and V either PUP−1V
or PUP−1V −1 is a loop of winding number 0 and thus by Lemma 7.12 U is
conjugate to either V or its inverse. The situation thereby reduces to the one
described above. 2

Lemma 14.8 Let G = 〈A|R〉 be a general small cancellation presentation with
α ≤ 1

12 . If g is a non-trivial torsion element in G then there exist a word U
and a general relator R ∈ Rk such that 2α ≤ 1

3 − 2γ − 2δ ≤ dR(U) ≤ 1
2 + α, the

cycle of U is (1 − 4α)-free with respect to R, U represents a power of g as an
automorphism of the Cayley category obtained from repeatedly squaring g, and a
power of U is a non-trivial loop in R. In addition, all (1−4α)-free words which
are conjugate to U in G(k − 1) and readable in R satisfy the same inequalities
as U .

Proof: Let n > 1 be the order of g in G. If u and v are vertices of the Cayley
category of G such that the automorphism g sends u to v, then by Lemma 6.3
u and v must be distinct. Let X be a path from u to v. Since g has order n,
Xn is readable as a loop in the Cayley category. Next, by Lemma 12.7 there
is a word Y and a general relator R such that Y n is readable in R as a loop
with non-zero winding number, with Y cyclically reduced in the free group and
( 1
2 + α)-free with respect to R. In particular, dR(Y ) ≤ 1

2 + α ≤ 2
3 , since α ≤ 1

6 .
On the other hand, since Y n has a non-zero winding number by the properties
of relator metrics dR(Y n) ≥ 1, and dR(Y ni) ≥ i. Then by properties 4 and 5,
ndR(Y i) ≥ i. This shows that by choosing i large enough, it is possible to make
dR(Y i) as large as desired. In particular, there is an i so that dR(Y i) ≥ 1

3 . Let
j be the smallest non-negative integer such that dR(Y i) ≥ 1

3 where i = 2j . If
dR(Y ) ≥ 1

3 then j = 0. If j is positive, then i = 2l and by the properties of
relator metrics dR(Y i) ≤ dR(Y l) + dR(Y l) ≤ 2

3 . The two instances of a path
reading Y l must have the same measure by property 6, in so far as they measure
at least 1

6 ≥ α and thus differ by an automorphism of the general relator R.
Let V be the geodesic in R between the endpoints of Y i. It will be shown

that a power of V is readable in R as a loop with a non-zero winding number.
If Y iV −1 is a loop in ∂R of winding number 0, then dR(V ) = dR(Y i) by the
properties of relator metrics and it is clear that a power of V is readable in R as
a loop with non-zero winding number. On the other hand, if dR(V ) 6= dR(Y i)
then the winding number of Y iV −1 must be at least 1. If it is more than 1 then
dR(V ) is at least 4

3 and |V | ≥ ( 4
3 − δ)|R| > ( 2

3 + δ)|R| ≥ |Y 2i

| by Axiom 4.
Since this implies that V is not a geodesic, it must be the case that Y iV −1 has
winding number exactly 1. Next, let m be the winding number of Y ni. Since
dR(Y ni) ≤ ndR(Y i) ≤ n 2

3 < n, it follows by property 5 of relator metrics that
m < n. Moreover, by successively removing Y iV −1 it is clear that the winding
number of Y ni(V −1)n is n once it is noted that each of these Y iV −1 loops must
be similarly oriented. The reason for this is that if successive copies of Y i have
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opposite orientations then the symmetry of the situation would require that the
winding number of Y ni be 0, contradiction. Finally, since the winding number
Y ni(V −1)n is n and the winding number of Y ni is m < n, the winding number
of V n is n − m 6= 0, which was to be shown.

Since V is a geodesic in R, by Lemma 10.3 dR(V ) < 1
2 + α, and by con-

struction dR(V ) ≥ 1
3 either because dR(V ) = dR(Y i) ≥ 1

3 or because dR(V ) ≥
1 − dR(Y i) ≥ 1 − 2

3 . Let R be a general relator in Rk. By Lemma 10.5, V is
conjugate to a word U whose cycle is ( 1

2 + α)-free with respect to R(k − 1) and
with |V | ≥ |U |. By Lemma 11.4, Un is readable as a loop in ∂R and it is homo-
topic to the loop V n. In particular it has the same non-trivial winding number.
Finally, by Lemma 14.7, 1

3 − 2α ≤ dR(U) ≤ 1
2 + 3α. If dR(U) is greater than

1
2 + α then U can be replaced by a geodesic in R between the same endpoints
and the arguments of the last two paragraphs can be repeated. Since the lengths
of the words under consideration are constantly shortening, a finite number of
iterations yields a word U with α ≤ 1

3 − 2α ≤ dR(U) ≤ 1
2 + α which satisfies

the requirements of the lemma. The final statement of the lemma follows from
the fact that the other words conjugate to U in G(k − 1) and readable in R are
conjugate to Y i as well, so that the above argument can be repeated for these
words. 2

Lemma 14.9 Let G = 〈A|R〉 be a general small cancellation presentation and
suppose that W = UV is a representative of a general relator R in R. If U is
long, negatively oriented with respect to W , and a geodesic path in its homotopy
class in ∂R, then |V | ≥ |U | + (1 − 2γ)|R| and dR(V ) ≥ dR(U) + 1 − 2γ − 2δ.

Proof: Lift the word UV to R∞, the universal cover of the boundary of R.
Since U is long and negative, the ball of radius ωR centered at the start vertex
of U is strictly between the balls of radius ωR centered at the end of U (which
equals the start of V ) and at the end of V . Since by the definition of ωR these
balls disconnect R∞, the path V must contain a vertex within ωR units of the
start of U . Let P be the path from the start of U to such a vertex and let
V = V ′V ′′ be a split of V determined by this point. Without loss of generality,
assume that U is a geodesic in R∞. Thus |V ′| + |P | ≥ |U |. On the other
hand, since PV ′′ is a representative of R when it is read in ∂R, it follows that
|V ′′|+ |P | ≥ |R|. Thus |V |+2|P | > |U |+ |R|, and since |P | < γ|R| by Axiom 3,
|V | > |U | + (1 − 2γ)|R|. Using Axiom 4, dR(V ) > dR(U) + 1 − 2γ − 2δ. 2

Lemma 14.10 Let G = 〈A|R〉 be a general small cancellation presentation and
suppose that W = U1V1U2V2 is a representative of a general relator R in R.
If Ui is long, negatively oriented with respect to W , and a geodesic path in its
homotopy class in ∂R for i = 1, 2, then |V1| + |V2| ≥ |U1| + |U2| + (1 − 4γ)|R|
and dR(V1) + dR(V2) ≥ dR(U1) + dR(U2) + 1 − 4γ − 4δ.

Proof: Let X and Y be the paths of shortest length in the homotopy classes
of U1V1 and U2V2 in ∂R, respectively. Without loss of generality, assume that
dR(X) ≥ dR(Y ). Since XY is a representative, 2dR(X) ≥ dR(X) + dR(Y ) ≥ 1,
so that dR(X) ≥ 1

2 > α, and X is long. Thus by Lemma 9.9 X is oriented. If
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X is negatively oriented with respect to XY , then by Lemma 14.9 |Y | − |X | ≥
(1 − 2γ)|R|. Since by assumption dR(X) ≥ dR(Y ), by Axiom 4 2δ|R| ≥ |Y | −
|X | ≥ (1 − 2γ)|R|, contradiction. Thus X is positively oriented as well as long.

Next, lift the path W to R∞, and let ui, vi be the starting vertex of Ui, Vi

respectively, for i = 1, 2. The fact that X is long and positively oriented while
U1 is long and negatively oriented with respect to the cycle W in R∞ implies
that the balls of radius ωR centered at v1, u1 and u2 (in R∞) are disjoint
and that they occur in that order. Specifically, since by the definition of ωR,
these balls disconnect R∞, the path V must pass through the ball centered
at u1. Thus there exists a path P from u1 to a point in V with |P | ≤ γ|R|.
Let V = V ′V ′′ be the partition of V determined by this endpoint. Since U1

is a geodesic in R∞, |P | + |V ′| ≥ |U1|. Also, since the image of U2V2PV ′′

in ∂R is a representative of R which satisfies the hypotheses of Lemma 14.9
with U2 playing the role of U , and V2PV ′′ playing the role of V , it follows that
|P |+|V ′′|+|V2| ≥ |U2|+(1−2γ)|R|. Combining these two inequalities and using
the fact that |P | ≤ γ|R| yields |V1| + |V2| ≥ |U1| + |U2| + (1 − 4γ)|R|. Finally,
applying Axiom 4 shows that dR(V1)+dR(V2) ≥ dR(U1)+dR(U2)+1−4γ−4δ.
2

Lemma 14.11 Let G = 〈A|R〉 be a general small cancellation presentation and
suppose that W = XUY U−1 is a representative of a general relator T in R. If
both instances of U are properly oriented with respect to W , dT (U) ≥ α, and
there exists a relator R in R, distinct from T , such that dR(X) ≥ α and Xn is
readable as a loop in R with a non-zero winding number, then there exists a word
Z such that the cycle XZX−1Z−1 is a representative of T and corresponding
to the two readings of the word X in this cycle there are two instances of the
relator R (say R1 and R2) contained in the boundary of T . Both instances of
the word X represent the same orientation-reversing automorphism of T which
fixes both R1 and R2. Moreover, the shortest path between these two instances
of R has a length of at least ( 1

2 − β − δ)|T | units.

Proof: First, by Axiom 6 there is a word V such that XV Y V −1 is readable as
a contractible loop in ∂T . Since the reading of XV Y V −1 can be chosen so that
it extends the reading of Y given by W (because the axiom is symmetric with
respect to X and Y ), there is another loop in ∂T which reads XUV −1X−1V U−1

which is a representative since it is a combination of a loop with winding number
1 and a contractible loop. Choosing Z = UV −1 completes the first proof. To
distinguish between the two copies of Z and X , let Z1 be the copy of Z which
starts and ends at the start of the readings of X , with Z2 being the other,
and let X1 be the reading of X which starts at the start of Z1, with X2 being
the other. Next, by Axiom 1 the readings of X1 and X2 can be extended to
embeddings of R in T , and since R and T are distinct, the copies of R must be
contained in ∂T . Moreover, the extension can be arranged so that the reading
of X in T is also in the loop Xn in R, simply by choosing this reading of X in
R for use in the application of Axiom 1. Let R1 and R2 be the instances of R
in T associated with X1 and X2 respectively.
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Using Axiom 2 and the properties of relator metrics, it is clear that dT (Xi) <
β for i = 1, 2 and that therefore dT (Zi) > 1

2 − β for either i = 1 or i = 2 and
thus for both i = 1 and i = 2 by another property of relator metrics and
the fact that 1

2 − β > α. As a technical aside, notice that the two instances
of X must have the same measure only because they are long in T . As a
consequence there is an automorphism g of T which sends Z1 to Z2, which is
also the automorphism induced by either X1 or X2. Clearly the paths X1 and
X2 cannot be loops themselves since this would mean that Z1 and Z2 correspond
to the same reading in T and that at least one of the X loops would have a non-
trivial winding number in T . This in turn, by a property of relator metrics and
Lemma 9.10, would imply the identity of R and T contrary to the hypothesis
in the statement of the lemma. Thus X1 and X2 are not loops and Lemma 12.5
can be applied to show that g is also an automorphism of both R1 and R2, so
that they remain fixed under the action of g.

To prove the final claim, let P be the shortest path from R1 to R2, let Q1

be a path from the start of P to the start of Z1, and let Q2 be a path from the
end of P to the end of Z1. Since R1 and R2 are stabilized by g, the image of
the loop Q−1

1 PQ2Z
−1
1 is a loop Q−1

1 PQ2Z
−1
2 where the new Q1 and the new

Q2 are read in R1 and R2 respectively. Combining these loops with the loop
X1Z2X

−1
2 Z−1

1 produces a loop Q1X1Q
−1
1 PQ2X

−1
2 Q−1

2 P−1 where QiXiQ
−1
i is

read in Ri, i = 1, 2. If this loop has a non-zero winding number then by the
same reasoning as above, dT (QiXiQ

−1
i ) < β for i = 1, 2 and consequently

dT (P ) > 1
2 − β. Thus by Axiom 4 |P | > ( 1

2 − β − δ)|T |. Therefore it only
remains to show that the winding number of this loop is non-zero.

Suppose that one of the readings of Z, say Z1, is negatively oriented with
respect to the loop X1Z2X

−1
2 Z−1

1 . Then by Lemma 14.9, dT (X1) + dT (Z2) +
dT (X2) ≥ 1 + dT (Z1) − 2γ − 2δ. Since by the properties of relator metrics
dT (Z1) = dT (Z2) and since dT (Xi) < β, i = 1, 2, it follows that 2β ≥ 1−2γ−2δ
which contradicts the constraints in Axiom 7. Thus both instances of Z must
be positively oriented with respect to the loop. Because Z1 and Z2 are facing
opposite directions within the loop itself, this means that the winding numbers
of the loops Q−1

1 PQ2Z
−1
1 and Q−1

1 PQ2Z
−1
2 will cancel each other out, so that

the loop Q1X1Q
−1
1 PQ2X

−1
2 Q−1

2 P−1 still has a winding number of 1. This
completes the proof. 2

14.3 Elements of Maximum Rank

The long proof which follows provides the key technical lemma needed to show
that all finite subgroups of a general small cancellation group are contained in
the automorphism group of some general relator in the presentation.

Lemma 14.12 Let G = 〈A|R〉 be a graded general small cancellation presen-
tation with 2β + 2γ + δ ≤ α ≤ 1

12 , let H be a finite subgroup of G, and let C
be the Cayley category of the presentation. If g ∈ H is an element of maximum
rank (rank(g) ≥ rank(h) for all h ∈ H), and g rotates a general relator R ∈ R,
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then for all h ∈ H there is an instance of R in C which is fixed by both g and
h.

Proof: Given non-identity elements g, h ∈ H of orders n and m respectively,
then by Lemma 10.5 there are words X and Y which are cyclically Dehn-reduced
with respect to R and which represent g and h respectively. By Lemma 12.7
the words Xn and Y m are readable as loops with non-zero winding numbers in
uniquely determined general relators R and S respectively. By assumption g
has been chosen so that the rank of its associated general relator R is maximal
among all of the general relators associated to the elements of H in this way.
The proof below will show that each of the elements of H stabilizes an instance
of R in the Cayley category which is stabilized by g. The action of g on the
Cayley category of G will stabilize some instances of the general relator R in
the Cayley category and possibly will not stabilize other instances. Let R1 be
an instance of R in C which is stabilized by g and let S1 be an instance of S in
C which is stabilized by h. The proof is divided into two stages. First it will
be shown that R1 and S1 can be chosen so that they have a vertex in common.
Next it will be shown that the action of h stabilizes the chosen R1.

Claim 1: R1 and S1 can be chosen so that R1 ∩ S1 6= ∅.

Let R1 and S1 be chosen so that they are as close to each other in the
graph metric as possible, and assume for the moment that R1 ∩ S1 = ∅, and
assume that P is the shortest possible path in the Cayley category connecting
a vertex u′ in R1 to a vertex v′ in S1. By assumption, P is non-empty. Next,
by Lemma 14.8 there are powers of g and h, say gi and hj , as well as words U
and V conjugate to X i and Y j respectively, such that these words satisfy the
conclusions of Lemma 14.8. In particular, powers of these words are readable
as loops in R and S with non-zero winding numbers. Let u and gi(u) be the
endpoints of a path reading U in R1, and let Q be a path from u to u′. Then
Q−1UQ is a path from u′ to gi(u′) in R1. Let U ′ be a geodesic path in the
boundary of R1 between u′ and gi(u′) which lies in the same homotopy class
as Q−1UQ. Thus together these paths form a loop in R1 of winding number 0,
so that by Lemma 7.12 and Lemma 7.9 U and U ′ are conjugate in G(k − 1).
Then, by Lemma 11.4 Un and (U ′)n are both readable in R1 as loops with the
same non-zero winding number, and by Lemma 14.8 U ′ also satisfies the same
conditions as U . Similarly choose V ′ as a geodesic path in the boundary of
S1 between v′ and hj(v′). By the same reasoning V m and (V ′)m are readable
in S1 as loops with the same non-zero winding number, and V ′ satisfies the
conclusions of Lemma 14.8. Thus for convenience U ′ and V ′ can be relabeled as
U and V since they satisfy the same conditions and the original U and V will
no longer be needed in the proof.

Let U , V and the two paths labeled P be called the sides of the cycle
UPV −1P−1. The first task will be to show that this cycle is 3α-complement-
free with respect to R. If this were not true then there would be a word W , a
word Z, and a general relator T such that W is a subword of a cyclic conjugate
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of UPV −1P−1, WZ is a representative of T , and dT (Z) < 3α. A case-by-case
analysis will show that no such words W and Z can exist. The cases will be
divided by the number of sides needed to contain the word W .

Case 1: First of all, the subword W cannot be completely contained in one of
the sides labeled P since P is a geodesic in the Cayley category, 1−3α > 1

2 +α,
and by Lemma 10.3, geodesics are ( 1

2 + α)-free with respect to R. Similarly
the subword W cannot be completely contained within a side labeled U or V
since this would imply that the general relator T is contained in either R or S
respectively, and a similar contradiction arises due to the fact that U and V are
geodesics in the boundaries of R and S.

Case 2: Next, suppose that W is a subword of two consecutive sides in the
cycle UPV −1P−1. Without loss of generality assume that W is a subword of
UP since the other possibilities can be handled analogously. Let W = W1W2

where W1 is the portion of W in U and W2 is the portion in P . If dT (W1) ≥ α
then by Axiom 1 the instance of the general relator T which contains the path
W is contained in the instance of R containing the path U . In particular, this
would mean that the path P between S1 and R1 would not be disjoint from
R1 except at its endpoint, contradiction. If, on the other hand, dT (W1) < α
then by the properties of relator metrics, dT (W2) > 1 − 4α ≥ 1

2 + α, and this
contradicts the assumption that P is a geodesic.

Case 3A: Suppose that W is a subword of three consecutive sides. If the
middle of these three sides is labeled P , then without loss of generality assume
that W is a subword of UPV −1 and write W = W1PW2 in the obvious way. If
either dT (W1) ≥ α or dT (W2) ≥ α then a contradiction to the disjointness of P
from S1 and R1 is obtained as above. If on the other hand both measures are
less than α, then dT (P ) > 1−5α ≥ 1

2 +α and P is not a geodesic in the Cayley
category.

Case 3B: If the middle of the three sides is labeled either U or V then
without loss of generality assume that W is a subword of P−1UP and write
W = W1UW2 in the obvious way. Since W contains all of U and dR(U) ≥ 2α,
it follows from Axiom 1, Lemma 2.1, and Axiom 2 that R is contained in T ,
that the rank of R as a cone complex is less than that of T (since equality
leads to a contradiction of the disjointness of P and R1), and that dT (U) < β.
If either dT (W1) < α or dT (W2) < α then the measure of the other is more
than 1 − 4α − β and this contradicts the fact that P is a geodesic. So assume
that both ends measure at least α with respect to the general relator T . If
W1 is negatively oriented with respect to the loop W1UW2Z, then, by applying
Lemma 14.9 to this loop, dT (U) + dT (W2) + dT (Z) ≥ 1 + dT (W1) − 2γ − 2δ.
Since dT (U) < β, dT (Z) < 3α, and dT (W1) ≥ α, it follows that dT (W2) >
1− 2α− β − 2γ − 2δ ≥ 1− 4α > 1

2 + α, which contradicts the fact that P , and
hence W2, is a geodesic. Thus W1 can be assumed to be positively oriented with
respect to the loop W1UW2Z. An analogous argument shows that W2 must also
be positively oriented with respect to the loop. Again without loss of generality
assume that |W1| ≤ |W2|, so that W2 = W−1

1 W3 for some possibly empty word
W3. Lemma 14.11 can then be applied to the representative WZ with W−1

1

playing the role of U , and U and W3Z standing in for X and Y respectively.
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Figure 32: An illustration of Case 3B

Thus there exists another instance of R, called R2, in T which is fixed by g and
which is at least ( 1

2 − β − δ)|T | units away from R1.
Let u be the start vertex of one of the paths U in the loop Un in R2. Since

WZ is a representative of T , by Axiom 3 there is a path from u to WZ whose
length is at most γ|T |. Let Q be one such path. If the endpoint of Q lies is W
then it must fall within either W1 or W2 and at least ( 1

2 − β − γ − δ)|T | > γ|T |
away from U . This shows that S1 is closer to R2 than to R1. Even if the
endpoint of Q lies in Z, the length of Z is at most (3α + δ)|T | by Axiom 4
so that this endpoint lies at most ( 3

2α + 1
2δ + γ)|T | ≤ 2α|T | from a point in

one of the instances of P . By Lemma 14.11, this point in P must be at least
( 1
2 −2α−β− δ)|T | ≥ 2α|T | so that S1 is closer to R2 than to R1, contradiction.

Notice that if the middle of the three sides covered by W had been labeled V
instead of U , then W would have been a subword of P−1UP , and the conclusion
would have been that there is an instance S2 of S which is stabilized by h and
R1 is closer to S2 than to S1.

Case 4: The next possibility is that W is a subword of four consecutive
sides. Without loss of generality, assume that W is a subword of P−1UPV −1

and write W = W1UPW2 in the obvious way. Repeating the arguments given
above shows that the only possibility which avoids immediate contradictions
is the one where dT (U) < β and dT (W2) < α. If in addition dT (W1) < α
then dT (P ) > 1 − 5α − β ≥ 1

2 + 2γ + δ which contradicts the fact that P is a
geodesic. Therefore assume that dT (W1) ≥ α. On the other hand, since there
is an initial segment of P which reads W−1

1 , let P = W−1
1 W3 for some possibly

empty word W3. By property 6 of relator metrics and Axiom 1, this second
instance of W1 is also long in T . If either W1 is negatively oriented with respect
to the loop representing T , then by applying Lemma 14.9 to this loop together
with the inequalities listed above, it follows that dT (W3) + dT (W1) + α + 3α >
1 + dT (W1) − δ − 2γ. Thus dT (W3) > 1 − 4α − β − 2γ − δ ≥ 1

2 + α by the
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Figure 33: An illustration of Case 4

restrictions assumed on the constants, which contradicts the assumption that P
is a geodesic. Both instances of W1 are thus long and positively oriented with
respect to the loop representing T . Lemma 14.11 can now be applied to this
situation with W−1

1 playing the role of U , and U and W3W2Z standing in for
X and Y respectively. Thus there exists another instance of R, called R2, in T
which is fixed by g and which is at least ( 1

2 − β − δ)|T | units away from R1.
Let u be the start vertex of one of the paths U in the loop Un in R2.

Since WZ is a representative of T , by Axiom 3 there is a path from u to
WZ whose length is at most γ|T |. Let Q be one such path. All possibilities
for the endpoint of Q in WZ imply that u lies within 2α|T | of W2 or within
2α|T | of one of the instances of P . To see this notice that the endpoint of
Q cannot be in U (since by Lemma 14.11 the two instances of R lie at least
( 1
2 − β − δ)|T | apart), that if the endpoint of Q lies in W1, W2, or P then

the statement is immediate, and that if the endpoint of Q lies in Z then since
|Z| ≤ (3α + δ)|T |, it follows that u is at most ( 3

2α + 1
2δ + γ)|T | ≤ 2α|T | from

either W2 or W1. Suppose u lies within 2α|T | of W2. From the estimates on
the measures of the sides given above, dT (P ) + dT (W1) ≥ 1 − 4α − β. Thus
2|P | ≥ |P |+ |W1| ≥ (1−4α−β−2δ)|T | ≥ 6α|T |, or |P | ≥ 3α|T |. In either case
R2 is stabilized by g and S1 is closer to R2 than to R1. If on the other hand
u lies within 2α|T | of a point v in one of the instances of P , then since u is at
least ( 1

2 − β − δ)|T | from U , it follows that the portion of P between U and v
has a length of at least ( 1

2 − 2α − β − δ)|T | > 2α|T |. Thus R2 is stabilized by
g and S1 is closer to R2 than to R1. If the four sides covered by W had been
arranged differently, the conclusion would have been that there is an instance
S2 of S which is stabilized by h and R1 is closer to S2 than to S1.

Case 5A: Suppose that W is a subword of five consecutive sides. This is
possible because W might begin and end on the same side without overlapping.
If the word W begins and ends on a side labeled U or V then without loss
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Figure 34: An illustration of Case 5A

of generality assume that W is a subword of V −1P−1UPV −1 and write W =
W1P

−1UPW2 in the obvious way. As usual it follows fairly immediately that
dT (W1) < α, that dT (U) < β, and that dT (W2) < α. Thus at least one of
the instances of P has dT (P ) ≥ 1

2 (1 − 5α − β) > α. Consequently at least
one of the instances of P is long, and by a property of relator metrics, both
instances of P are long and have the same measure. If one of the instances
is negatively oriented with respect to the loop W1P

−1UPW2Z then dT (P ) ≥
1+dT (P )−4α−β−2γ−2δ, or 0 ≥ 1−4α−β−2γ−2δ, contradiction. Thus both
instances of P are positively oriented with respect to the loop W1P

−1UPW2Z.
Lemma 14.11 can now be applied to this situation with P playing the role of
U , and U and W2ZW1 standing in for X and Y respectively. Thus there exists
another instance of R, called R2, in T which is fixed by g and which is at least
( 1
2 − β − δ)|T | units away from R1.

As in the earlier cases, let u be the start vertex of one of the paths U in the
loop Un in R2. There must exist a path from u to WZ whose length is at most
γ|T |. Let Q be one such path. All possibilities for the endpoint of Q in WZ
imply that u lies within 2α|T | of V or within γ|T | of one of the instances of P .
To see this notice that the endpoint of Q cannot be in U (since by Lemma 14.11
the two instances of R lie at least ( 1

2 − β − δ)|T | apart), that if the endpoint of
Q lies in W1, W2 or one of the instances of P then the statement is immediate,
and that if the endpoint of Q lies in Z then since |Z| ≤ (3α + δ)|T |, it follows
that u is at most ( 3

2α + 1
2δ + γ)|T | ≤ 2α|T | from either W2 or W1. Suppose u

lies within 2α|T | of W2. From the estimates on the measures of the sides given
above, dT (P ) + dT (P ) ≥ 1− 5α−β. Thus 2|P | ≥ (1− 5α−β − 2δ)|T | ≥ 5α|T |,
or |P | > 2α|T |. Thus R2 is stabilized by g and S1 is closer to R2 than to R1.
If, on the other hand, u lies within 2α|T | of a point v in one of the instances of
P , then since u is at least ( 1

2 − β − δ)|T | from U , it follows that the portion of
P between U and v has a length of at least ( 1

2 − 2α− β − δ)|T | > 2α|T |. Thus
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Figure 35: An illustration of Case 5B

in either case R2 is stabilized by g and S1 is closer to R2 than to R1. If the five
sides covered by W had been arranged differently, the conclusion would have
been that there is an instance S2 of S which is stabilized by h and R1 is closer
to S2 than to S1.

Case 5B: Suppose that W is a subword of five consecutive sides and that W
begins and ends on one of the sides labeled P . Then, without loss of generality,
assume that W is a subword of P−1UPV −1P−1 and write W = W1UPV −1W2

in the obvious way. Moreover, let P−1 = W2W3W1 for some possibly empty
word W3. Since R1 and S1 are chosen to be as close as possible, it follows
that |Z| ≥ |W3|, and consequently dT (W3) ≤ dT (Z) + 2δ ≤ 3α + 2δ. From the
usual argument it can be assumed that dT (U) < β and that dT (V ) < β. Thus
dT (P ) + dT (W1) + dT (W2) ≥ 1 − 3α − 2β, and dT (W1) + dT (W1) + dT (W2) +
dT (W2) ≥ 1 − 6α − 2β − 2δ ≥ 4α. Consequently at least one instance of either
W1 or W2 is long relative to T . By Axiom 1 and a property of relator metrics it
follows that the other instance is also long. Without loss of generality, assume
that both instances of W1 are long relative to T .

If one of the instances of W1 is negatively oriented with respect to the loop
WZ then by Lemma 14.9 dT (W1) + dT (W2W3) + dT (W2) ≥ 1 + dT (W1)− 3α−
2β − 2γ − 2δ and dT (W2) + dT (W2) ≥ 1 − 6α − 2β − 2γ − 4δ ≥ 2α so that one
(and thus both) of the two instances of W2 are long as well. If both instances
of W1 and W2 are long and at least one instance of W1 and one instance of W2

are negatively oriented, then by Lemma 14.10, dT (W1) + dT (W2) + dT (W3) ≥
dT (W1) + dT (W2) + 1 − 3α − 2γ − 2δ. Thus dT (W3) ≥ 1 − 3α − 2γ − 2δ ≥
1 − 5α ≥ 1

2 + α, which contradicts the assumption that P , and thus W3, is a
geodesic. Consequently at least one pair of the long Wi are positively oriented.
Without loss of generality, assume that the two instances of W1 are long and
positively oriented with respect to WZ. Lemma 14.11 can now be applied to
this situation with W−1

1 playing the role of U , and U and W−1
3 W−1

2 V −1W2Z
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standing in for X and Y respectively. Thus there exists another instance of R,
called R2, in T which is fixed by g and which is at least ( 1

2 − β − δ)|T | units
away from R1.

As above, let u be the start vertex of one of the paths U in the loop Un in
R2. There must exist a path from u to WZ whose length is at most γ|T |. Let
Q be one such path. All possibilities for the endpoint of Q in WZ imply that u
lies either within γ|T | of V or within 2α|T | of one of the instances of P . To see
this notice that the endpoint of Q cannot be in U (since by Lemma 14.11 the
two instances of R lie at least ( 1

2 −β−δ)|T | apart), that if the endpoint of Q lies
in W1, W2, V , or the intact instance of P then the statement is immediate, and
that if the endpoint of Q lies in Z then since |Z| ≤ (3α + δ)|T |, it follows that
u is at most ( 3

2α + 1
2δ + γ)|T | ≤ 2α|T | from either W2 or W1. Suppose u lies

within γ|T | of V . Then since |P | ≥ |W1| ≥ (α−δ)|T | > γ|T |, R2 is stabilized by
g and S1 is closer to R2 than to R1. If, on the other hand, u lies within 2α|T |
of a point v in one of the instances of P , then since u is at least ( 1

2 − β − δ)|T |
from U , it follows that the portion of P between U and v has a length of at
least ( 1

2 − 2α− β − δ)|T | > 2α|T |. Thus in either case R2 is stabilized by g and
S1 is closer to R2 than to R1. If the five sides covered by W had been arranged
differently, the conclusion would have been that there is an instance S2 of S
which is stabilized by h and R1 is closer to S2 than to S1.

Since these six cases exhaust all of the possibilities, the cycle UPV −1P−1

must be 3α-complement-free with respect to R. Let Z be a Dehn-reduced cycle
which is conjugate to UPV −1P−1 in G. Such a cycle exists by Lemma 10.5.
Then by Lemma 7.10, there is a connected R-diagram ∆ whose boundary cycles
are Z−1 and UPV −1P−1. Since the cycle Z is Dehn-reduced it follows that it
is 4α-complement-free with respect to R. Thus Zp is readable as a loop with
a non-trivial winding number in a general relator T . The importance of the
word Z is that it is a word which represents the automorphism gi followed by
h−j , so that T is the unique general relator associated to and stabilized by the
automorphism gih−j . Moreover, since the cycle UPV −1P−1 is 3α-complement-
free with respect to R, by Lemma 11.4 it follows that a power of this cycle is
readable as a loop in T . Since dR(U) ≥ 2α, by Axiom 1 there is an R-functor
from R to T . Thus the rank of T is at least as great as the rank of R. The rank
of T cannot be strictly greater than that of R since this would contradict the
initial choice of the automorphism g. The only possibility is for the ranks to be
equal, which forces T and R to be identical by Lemma 2.1, and this in turns
shows that S1 and R1 have a point in common, as was to be shown.

Claim 2: h fixes the instance of R which satisfies Claim 1.

This portion of the proof will be divided into two cases depending on whether
the image of R1 (chosen in Claim 1) under the automorphism h intersects with
R1 or not.

Case 1: Assume for the moment that R1 ∩ h(R1) = ∅. This implies, in
particular, that S1 ∩ R1 and S1 ∩ h(R1) are disjoint. Let u be a vertex in
S1 ∩R1, let U be a path in R1 from g−i(u) to u, and let V be a path in S1 from
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u to h(u). The path X = UV thus represents the automorphism hgi. Notice
that since hgi is in H and a word representing it is read in an instance of R
followed by an instance of S, there is a power of X , say Xn, which is read as a
loop in C in an alternating succession of instances of R and S.

If the cycle of X is not 3α-complement-free with respect to R, then there
exist a word W , a word Z, and a general relator T ∈ R, such that WZ is a
representative of T , dT (Z) ≤ 3α and W is a subword of a cyclic conjugate of X .
If W , when read in Xn, is not contained in a single selected instance of either R
or S, then it is still contained in at most three instances since W is a subword of
a cyclic conjugate of UV . However, since dT (W ) ≥ 1− 3α > 3α, the portion of
W in one of these instances is at least α. Thus by Axiom 1, all of T is contained
in this instance, but this contradicts the assumption that W is not contained
in a single instance of either R or S. If W , when read in Xn, is contained in a
single selected instance of R or S, then all of T is contained in the instance by
Axiom 1, and thus Z−1 can be substituted for W in a conjugate of X to create
a shorter word which represents the same automorphism, and whose n-th power
is still readable in the same sequence of instances of R and S. In addition, the
new cycle X ′ has a cyclic conjugate U ′V ′ where U ′V ′ is readable as a path in
R1 ∪ S1 where U ′ is a word in R1 from R1 ∩ g−i(S1) to R1 ∩ S1, and V ′ is a
word in S1 from R1 ∩ S1 to h(R1) ∩ S1. Since the length of the representative
strictly decreases, such a substitution can occur only a finite number of times
before the process stops.

When the process stops, consider the relationship between the words U
and U ′. Both U and U ′ are readable as paths in R1 from R1 ∩ g−i(S1) to
R1 ∩ S1. Since R and S are α-closed, so are R1 ∩ g−i(S1) and R1 ∩ S1 by
Lemma 13.1. Thus by Lemma 11.3 a path between the startpoint of U and
that of U ′ in R1 (which exists since R1 is connected), is equivalent to a path
in R1 ∩ g−i(S1). Similarly there is a path in R1 ∩ S1 from the endpoint of U
to that of U ′. Call these paths P and Q respectively. By Axiom 2, dR(P ) and
dR(Q) are at most β. If the winding number of PU ′Q−1U−1 is zero, then by the
properties of relator metrics, dR(U ′)+dR(P )+dR(Q) ≥ dR(PU ′Q−1) = dR(U),
and by Lemma 14.8, dR(U ′) ≥ 1

3 − 2β − 2γ − 2δ which is at least α by the
restrictions assumed on the constants. If on the other hand the winding number
of PU ′Q−1U−1 is not zero, then the properties of relator metrics show that
dR(U ′) + dR(P ) + dR(Q) + dR(U) ≥ 1, which by Lemma 14.8 implies that
dR(U ′) ≥ 1

2 − α − 2β which is also greater than α. In either case dR(U ′) ≥ α.
For convenience relabel the word X ′ as X . At this point the cycle X is

3α-complement-free with respect to R. Let Z be a Dehn-reduced cycle which is
conjugate to X in G. Such a cycle exists by Lemma 10.5. Then by Lemma 7.10,
there is a connected R-diagram ∆ whose boundary cycles are Z−1 and X . Since
the cycle Z is Dehn-reduced it follows that it is 4α-complement-free with respect
to R. Thus Zp is readable as a loop with a non-trivial winding number in a
general relator T . The importance of the word Z is that it is a word which
represents the automorphism gih (in the sense that it is a word which connects
some vertex to its image under the automorphism), so that T is the unique
general relator associated to and stabilized by the automorphism gih. Moreover,
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since the cycle X is 3α-complement-free with respect to R, by Lemma 11.4 it
follows that a power of this cycle is readable as a loop in T .

Since the subword U ′ of Xn which is contained in the original R1 and since
the measure of U ′ is at least α, there exists an R-functor from R to T by
Axiom 1. Thus the rank of T is at least as great as the rank of R. The rank
of T cannot be strictly greater than that of R since this would contradict the
initial choice of the automorphism g. The only possibility is for the ranks to
be equal, which forces T and R to be identical by Lemma 2.1 and this in turns
shows that hgi(R1) = h(R1) = R1, as was to be shown.

Case 2: Assume that R1 ∩ h(R1) 6= ∅. The structure of the proof is nearly
identical to that of Case 1 with only minor modifications. Let u be a vertex in
R1 ∩ h(R1), let U be a path in R1 from g−i(u) to u, and let V be a path in
h(R1) from u to h(u). The path X = UV thus represents the automorphism
hgi. Notice that since hgi is in H and a word representing it is read in an
instance of R, there is a power of X , say Xn, which is read as a loop in C in an
succession of instances of R.

If the cycle of X is not 3α-complement-free with respect to R, then there
exist a word W , a word Z, and a general relator T ∈ R such that WZ is a
representative of T , dT (Z) ≤ 3α and W is a subword of a cyclic conjugate of X .
If W , when read in Xn, is not contained in a single selected instance of either
R, then it is still contained in at most three instances since W is a subword of
a cyclic conjugate of UV . However, since dT (W ) ≥ 1− 3α > 3α, the portion of
W in one of these instances is at least α. Thus by Axiom 1, all of T is contained
in this instance, which contradicts the assumption that W is not contained in
a single instance of R. If W , when read in Xn, is contained a single selected
instance of R, then all of T is contained in the instance by Axiom 1, and thus
Z−1 can be substituted for W in a conjugate of X to create a shorter word which
represents the same automorphism, and whose n-th power is still readable in
the same sequence of instances of R1. In addition, the new cycle X ′ has a cyclic
conjugate U ′V ′ where U ′V ′ is readable as a path in R1 ∪ h(R1) with U ′ a word
in R1 from R1 ∩ g−ih(R1) to R1 ∩ h(R1). Since the length of the representative
strictly decreases, such a substitution can occur only a finite number of times
before the process stops.

When the process stops, consider the relationship between the words U and
U ′. Both U and U ′ are readable as paths in R1 from R1∩g−ih(R1) to R1∩h(R1).
Since R is α-closed, so are R1 ∩g−ih(R1) and R1 ∩h(R1) by Lemma 13.1. Thus
by Lemma 11.3 a path between the startpoint of U and that of U ′ in R1 (which
exists since R1 is connected) is equivalent to a path in R1 ∩ g−ih(R1). Similarly
there is a path in R1 ∩ h(R1) from the endpoint of U to that of U ′. Call these
paths P and Q respectively. The rest of the proof of this case is word for word
the same as in case 1. Thus in either case 1 or case 2, h(R1) = R1 and the proof
is complete. 2

Lemma 14.13 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with 2β + 2γ + δ ≤ α ≤ 1

12 , let C be the Cayley category of the
presentation, let H be a finite subgroup of G, and suppose that all general relators
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in R have at least one crucial cone in their boundary. If g ∈ H has maximum
rank, g rotates a general relator R ∈ R, and the order of g is not a power of
2, then any instance R1 of R in C which is fixed by g is also fixed by all of the
other h ∈ H.

Proof: In the proof of Lemma 14.12 the instances of R and S were chosen to
be as close to each other as possible. The only places in the proof where the
fact that R1 is as close as possible to S1 was used were in the later cases of
Claim 1. Moreover, each invocation of this condition followed an application of
Lemma 14.11. This lemma requires that g2i

be an orientation-reversing auto-
morphism of the higher-rank general relator T . But by Lemma 5.26 this would
imply that the order g2i

is a power of 2, and this contradicts the additional
assumptions made in the statement of this lemma. Lemma 14.11, therefore,
cannot be used under these circumstances, and the fact that R1 is as close as
possible to S1 is never needed in the proof. Thus the instance of R stabilized
by g can be chosen first (and arbitrarily) and then the instance of S stabilized
by h can be chosen so that it is as close as possible to this fixed R1. The proof
of Lemma 14.12 then proceeds with the minor alteration described above. As
a result, every element h ∈ H must fix this arbitrarily chosen instance of R
stabilized by g. 2

Lemma 14.14 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with 2β + 2γ + δ ≤ α ≤ 1

12 , let H be a finite subgroup of G, and
suppose that all general relators in R have at least one crucial cone in their
boundary. If the order of g ∈ H is not a power of 2, then g has maximum rank
in H.

Proof: By Lemma 14.12, g fixes the relator of maximum order, but by the
structure of automorphism groups of relators (Lemma 5.26), g must be a rotation
of this general relator. Thus g itself is an element of maximum rank. 2

Lemma 14.15 Let G = 〈A|R〉 be a finitely presented general small cancellation
presentation with 2β + 2γ + δ ≤ α ≤ 1

12 , let H be a finite subgroup of G, and
suppose that all general relators in R have at least one crucial cone in their
boundary. If the order of H is not a power of 2, then H is isomorphic to a
subgroup of an automorphism group of a general relator in R.

Proof: Pick an element g ∈ H whose order is not a power of 2, let R be
the unique general relator rotated by g, and let R1 be an instance of R1 in
C which is fixed by g. By Lemma 14.14, g is an element of maximum rank,
and by Lemma 14.13 all of the h ∈ H stabilize R1. Thus H is a subgroup of
Aut(R1) = Aut(R). 2

14.4 Finite Subgroups

The lemmas below complete the task of showing that all of the finite subgroups
of a general small cancellation group are contained in the automorphism group
of some general relator.
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Lemma 14.16 Let G = 〈A|R〉 be a general small cancellation presentation and
let C be the Cayley category of G. If H is a finite subgroup of G, then there is
a finite set of general relators R′ in R such that H is also a finite subgroup of
the finitely presented general small cancellation presentation G′ = 〈A|R′〉.

Proof: Since the general relators in R are thin by Lemma 9.8, it follows from
Lemma 5.19 that there exists a set of standard representatives for the set R.
Once G is given a standard presentation, it is a standard exercise in combinato-
rial group theory to show that there exists a finitely presented subpresentation
which also contains the subgroup H . The replacement of the standard represen-
tatives by the general relators R ∈ R which they represent yields a finite set of
general relators R′ which, when closed under subcones, satisfy the requirements
of the lemma. 2

Lemma 14.17 If G = 〈A|R〉 is a general small cancellation presentation with
2β + 2γ + δ ≤ α ≤ 1

12 in which str(W ) is finite and effectively constructible for
all words W ∈ A∗, and such that all general relators in R have at least one
crucial cone in their boundary, then every finite subgroup of G is a subgroup of
the automorphism group of some general relator in R.

Proof: Let H be a finite subgroup G. By Lemma 14.16 there is a finite subset
R′ of R which is closed under subcones and which also contains the subgroup
H . By Lemma 14.5, the lemma is satisfied whenever H is a 2-group, and since
by Lemma 13.6, str(W,R′) is finite and effectively constructible, Lemma 14.15
shows that it is satisfied whenever H is not a 2-group. 2

14.5 Proof of Theorem A

At this point all of the pieces needed to show Theorem A have been shown
separately, so it is merely a matter of collecting the references and of showing
that the assumptions listed are enough to satisfy the hypotheses of each of the
quoted lemmas.

Theorem A If G = 〈A|R〉 is a general small cancellation presentation with
α ≤ 1

12 , then the word and conjugacy problems for G are decidable, the Cayley
graph is constructible, the Cayley category of the presentation is contractible,
and G is the direct limit of hyperbolic groups. If, in addition, the presentation
satisfies the hypotheses of Lemma 14.17, then every finite subgroup of G is a
subgroup of the automorphism group of some general relator in R.

Proof: The conclusions follow from Lemma 10.21, Lemma 10.23, Lemma 10.22,
Lemma 12.12, Lemma 11.10, and Lemma 14.17, respectively. Any inequality
required by one of these lemmas but not listed in the statement above follows
immediately from a combination of α ≤ 1

12 and Axiom 7. 2
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