
Points in the plane and loops in space
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I. Points in the Plane
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Geometric group theory

Geometric group theorists like it when groups act on metric

spaces because, so long as the action is “nice”, the geometry of

the space tells you a lot about the group.

Nice usually means, by isometries, with a compact quotient, and

the action should be free or proper or, at the very least, have

understandable stabilizers.

A classic example is the fundamental group of a compact metric

space acting freely on its universal cover by isometries.
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The symmetric group

Here is a simple example of a group acting on a space. For any

field K, the symmetric group Symn acts on the vector space Kn

by permuting coordinates.

The action is not free since vectors with repeated coordinates

are fixed by non-trivial permutations, but it is free on the com-

plement of the
(
n
2

)
hyperplanes defined by the equations xi = xj.

This is called the braid arrangement.
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The real braid arrangement

The real braid arrangement is the space of all n-tuples of distinct
real numbers (x1, x2, . . . , xn).
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In R3 it consists of 6 connected pieces separated by the planes
x = y, x = z and y = z. In Rn it has n! connected pieces
separated by the hyperplanes {xi = xj}. The convex hull of the
orbit of a point is the permutahedron.
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The complex braid arrangement

The complex braid arrangement is the space of all n-tuples of

distinct complex numbers (z1, z2, . . . , zn). There is a trick that

enables us to visualize this space. The point (z1, z2, z3, z4) =

(1 + 3i,3− 2i,0,−2− i) is encoded in the figure.
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The braid group

Moving around in the complex braid arrangement corresponds

to moving the labeled points in C without letting them collide.

Tracing out what happens over time produces braided strings.
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The fundamental group of the complex
braid arrangement is the pure braid group.
The fundamental group of the quotient by
the Symn action is the (full) braid group.
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The Salvetti complex

Neither quotient is compact, but they deformation retract onto
compact subspaces that can be given cell structures. The Sal-
vetti complex for the braid group Braidn is obtained from a
permutahedron with an edge orientation induced from a Morse
function and an edge coloring invariant under reflections orthog-
onal to edges. Glue faces with matching labels and orientations.
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The dual Garside structure

Alternatively, here is a very different construction. Minimally

factor an n-cycle in Symn into transpositions (closely related

to non-crossing partitions). Geometrically realize the resulting

poset. Finally, glue facets with matching labels and orientations.

1 2

34
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The upshot

These two rather different complexes are both Eilenberg-Maclane

spaces for the braid groups and either one can be used to calcu-

late the homology and cohomology of Braidn.

Geometrically, the braid group acts freely and cocompactly by

isometries on either universal cover with the permutahedron or

the order complex of the noncrossing partition lattice as a fun-

damental domain for the action.

As a result, there is a close connection between (co)homology

calculations for the braid groups, the combinatorics of the per-

mutahedron and/or the lattice of non-crossing partitions.
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II. Loops in Space
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Σn and PΣn

Our second example is the group of motions of the trivial n-link.
Σn is the group of motions of Ln in S3 and PΣn is the index n!
subgroup of motions where the n components of Ln return to
their original positions. (This is the pure motion group.)
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Motion groups

Let Ln be the trivial n-link in S3, let H(S3) be the space of

all self-homeomorphisms of the 3-sphere in the compact-open

topology, and let H(S3, Ln) be the subspace of homeomorphisms

with φ(Ln) = Ln (preserving circle orientations) for a fixed em-

bedding Ln ↪→ S3.

A motion of Ln is a path µ : [0,1] → H(S3) such that µ(0) =

the identity and µ(1) ∈ H(S3, Ln). Two motions µ and ν are

equivalent if µ−1ν is homotopic to a stationary motion, that is,

a motion contained in H(S3, Ln).

Introduced by Fox ⇒ Dahm ⇒ Goldsmith · · ·
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Representing PΣn

Thm(Goldsmith, Mich. Math. J. ‘81) There is a faithful

representation of PΣn into Aut (F(x1, . . . , xn)) induced by sending

the generators of PΣn to automorphisms

αij(xk) =

{
xk k 6= i

x−1
j xixj k = i

The image in Aut(Fn) is referred to as the group of pure sym-

metric automorphisms since it is the subgroup of automorphisms

where each generator is sent to a conjugate of itself.

Thinking of PΣn as a subgroup of Aut(Fn) we can form the

image of PΣn in Out(Fn), denoted OPΣn.
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A group by any other name...

Four papers, four names, same group.

• “The pure symmetric automorphisms of a free group
form a duality group” (with N. Brady, J. Meier, and A. Miller)
J. Algebra (2001)

• “The hypertree poset and the `2-Betti numbers of the motion
group of the trivial link” (with J. Meier) Math. Annalen (2004)

• “The integral cohomology of the group of loops” (with C.
Jensen and J. Meier) Geometry and Topology (2006)

• “The Euler characteristic of the Whitehead automorphism
group of a free product” (with C. Jensen and J. Meier) Trans.
AMS (2007)
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McCullough-Miller Complex

The computations in these papers are done via an action of

OPΣn on a contractible simplicial complex MMn, constructed

by McCullough and Miller (MAMS, ‘96).

The complex MMn is a space of Fn-actions on simplicial trees,

where the actions all take seriously the decomposition of Fn as

a free product Fn = Z ∗ · · · ∗ Z︸ ︷︷ ︸
n copies

.

Each action in this space can be described by a marked hypertree.
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Properties of MMn

The McCullough-Miller space, MMn, is the geometric realization
of a poset of marked hypertrees. The marking is similar (and
related) to the marked graph construction for outer space.

Some Useful Facts:

• MMn admits PΣn and OPΣn actions.

• The fundamental domain for either action is the same, it’s
finite and isomorphic to the order complex of HTn (also known
as the Whitehead poset).

• The isotropy groups for the OPΣn action are free abelian; the
isotropy groups are free-by-(free abelian) for the action of PΣn.
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Good News/Bad News

The cohomology and/or asymptotic topology of a group G is
same as that of the universal cover of a K(G,1).

Good News: We have a contractible, cocompact PΣn-complex.

Bad News: The action isn’t free or even proper.

Good News: The stabilizers are well understood.

Punch Line: The cohomology and/or asymptotic topology of
PΣn cannot be directly understood from the cohomology and/or
asymptotic topology of MMn because of the bad stabilizers.
Instead we plug the combinatorics of HTn and the isotropy
groups into arguments involving spectral sequences.
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Hypertrees

A hypertree is a connected hypergraph with no hypercycles. In

hypergraphs, the “edges” are subsets of the vertices, not just

pairs of vertices. The growth is quite dramatic: The number

of hypertrees on [n] (due to Smith and Warme,Kalikow), for

n ≥ 3 is = {4,29,311,4447,79745,1722681,43578820, . . .}. The

formula is |HTn| =
∑
k n

k−1S(n − 1, k) where S(n, k) are Stirling

numbers of the second kind.

1

2 3

4
A= 4

2

1
3B =

1 2 3 4
C =
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Exponential generating functions

Define the edge weight of a hypertree on [n] as uλ2
2 · · ·u

λn
n where

λi counts the number of edges of size i.

Let Tn be the sum of all the weights of hypertrees on [n].
Let Rn be the sum of all the weights of rooted hypertrees on [n].

Let T =
∑
n
Tn
tn

n!
and let R =

∑
n
Rn

tn

n!

T3 = u3 + 3u2
2 R3 = 3 · T3

T4 = u4 + 12u2u3 + 16u3
2 R4 = 4 · T4

Thm(Kalikow) R solves the functional equation R = tey where

y =
∑
j≥1

uj+1
Rj

j!
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Drawing conventions

Examples of [4]-labelled bipartite trees.

A =

1

2 3

4

C =
1 2 3 4

B =

1

2

3 4
D =

1

2
3

4

Examples of hypertrees on [4].
1

2 3

4
A=

1 2 3 4
C =

4

2

1
3B =

D = 4

1

3
2
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The hypertree poset

The hypertrees on [n] form a very nice poset, that is surprisingly
understudied in combinatorics. The elements of HTn are n-
vertex hypertrees with the vertices labelled by [n] = {1, . . . , n}.
The order relation is given by: τ < τ ′ ⇔ each hyperedge of τ ′

is contained in a hyperedge of τ . The hypertree with only one
edge is 0̂, also called the nuclear element. If one adds a formal
1̂ such that τ < 1̂ for all τ ∈ HTn, the resulting poset is ĤTn.
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First properties of HTn

The Hasse diagram of HT4 is

A

D D D D

Thm: ĤTn is a finite, graded, bounded lattice.

Pf: Finite, graded, and bounded are easy. Lattice is easy based
on the similarities between HTn and the partition lattice (and
is the key element in the McCullough-Miller proof that MMn is
contractible.)
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What we do

My co-authors and I:

• prove that ĤTn is Cohen-Macaulay, and use this to prove that
PΣn is a duality group.

• calculate the Möbius function of ĤTn and use this to calculate
the `2-betti numbers of PΣn.

• calculate Euler characteristics for large classes of groups by
deriving various hypertree identities, and we

• calculate the full integral cohomology of PΣn (including the
ring structure) using the hypertree poset structure to separate
the relevant spectral sequences into pieces we can analyze.
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Cohen-Macaulay

A poset is Cohen-Macaulay if its geometric realization is Cohen-

Macaulay in the sense that H̃i(lk(σ),Z) = 0 for all simplices σ

(including the empty simplex) and all i < dim(lk(σ)).

(When X is Cohen-Macaulay, this implies that X is homotopy

equivalent to a bouquet of spheres.)

We show HTn is Cohen-Macaulay by showing that ĤTn is shellable,

which we get by proving ĤTn admits a recursive atom ordering.
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The recursive atom ordering

Our recursive atom ordering roots the hypertrees at the vertex

1 and then orders by the depth of the vertices (details omitted).

Moving around the ordering involves dropping and lifting, and

splitting and merging.
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The Möbius function

Let µ be the Möbius function of ĤTn+1 and recall that µ(0̂, 1̂) =

χ̃(HT◦n+1) where the circle indicates that 0̂ and 1̂ are removed.

Using recursion formulas for Möbius functions, and Kalikow’s

functional equation, we show

Thm(M-Meier) µ(0̂, 1̂) = χ̃(HT◦n+1) = (−1)nnn−1 .

For example, χ̃(HT◦3) = 2, χ̃(HT◦4) = −9, χ̃(HT◦5) = 64.
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Rooted hypertree and planted hyperforests

A rooted hypertree on [12] is shown with its associated planted
hyperforest on [11]. One can pass from the hyperforest back to
the hypertree using the partition of {1,3,5,6,8} indicated by the
lightly colored boxes.
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A sample hypertree identity

Let the weight of a hyperedge be (e− 1)e−2 where e is its size.

Let the weight of vertex i be xval(i)−1
i where val(i) is its valence.

Let the weight of a hypertree be the product of its vertex and

edge weights.

Thm (Jensen-M-Meier)∑
τ∈HTn

Weight(τ) = (x1 + x2 + · · ·+ xn + n)n−1

This is proved starting with Abel’s identities and a tree result

from Stanley. We then prove several partition identities and

rooted tree and planted forest identities before reaching this one.
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III. Geometric Group Theory

(only if time permitting)
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Duality groups

Def: (Bieri-Eckmann, Invent. Math. ‘73) A group G, with a

finite K(G,1), X, is an n-dimensional duality group if ...

H∗c (X̃) = H∗(G,ZG) is torsion-free and concentrated in dim n.

m
There is a G-module D such that Hi(G,M) ' Hn−i(G,D ⊗M)

for all i and G-modules M .

m
The universal cover X̃ is (n−2)-acyclic at infinity. (Geoghegan-

Mihalik, JPAA ‘85)
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Acyclic at infinity

Let X be a finite K(π,1). Then X̃ is m-acyclic at infinity if given
any compact C ⊂ X̃, there is a compact D ⊃ C such that every
k-cycle supported in X̃ − D is the boundary of a (k + 1)-chain
supported in X̃ − C. (−1 ≤ k ≤ m)

Duality groups are groups which are as acyclic at infinity as they
can possibly be.
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Examples of (virtual) duality groups

• Groups like SLn(Z) and SLn(Z[1/p]). (Borel,CMH 1974, Serre,

Topology 1976)

• Mapping class groups of surfaces. (Harer, Invent. Math. 1986)

• Braid groups as well as all Artin groups of finite type. (Squier,

Math. Scand. 1995, or Bestvina, Geom. & Top. 1999)

• Out(Fn) and Aut(Fn). (Bestvina-Feighn, Invent. Math. 2000)

• PΣn and OPΣn (Brady-M-Meier-Miller, J. Algebra, 2001)
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Proving duality

You can prove that a group is a duality group by showing the
cohomology with group ring coefficients is trivial, except in top
dimension where it’s torsion-free.

The standard equivariant spectral sequence with ZG coefficients
for the action of OPΣn on MMn has a complicated first page
because the size of the isotropy groups for the action on the
poset corresponds with the corank of the elements. It does not
correspond well with the dimension of simplices in the geometric
realization.

On the other hand, the Brown-Meier spectral sequence filters by
the poset rank not dimension and collapses immediately when
the poset is Cohen-Macaulay. (Brown-Meier, CMH ‘00)
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`2-cohomology

For a group G (admitting a finite K(G,1)), let `2(G) be the
Hilbert space of square-summable functions. The classic cocycle
is:

1/2

1/4

1/4

1/4

1/4

1/8

1/8

1/8

1/81/8

1/8

1/8

1/8

In general, concrete computations are rare. One of the few is due
to Davis and Leary who compute the `2-cohomology of arbitrary
right-angled Artin groups (Proc. LMS).
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`2-betti numbers

We compute the `2-betti numbers of OPΣn+1 via its action on
MMn+1. In order to do this we have to switch to an alge-
braic standpoint, using group cohomology with coefficients in
the group von Neumann algebra N (G). We also are really com-
puting the equivariant `2-betti numbers of the action of OPΣn+1
on MMn+1. We can get away with this because

Lemma. The `2-cohomology of Zn is trivial.

Lemma. Let X be a contractible G-complex. Suppose that
each isotropy group Gσ is finite or satisfies b

(2)
p (Gσ) = 0 for

p ≥ 0. Then b
(2)
p (X,N (G)) = b

(2)
p (G) for p ≥ 0.

(cf. Lück’s L2-Invariants: Theory and Applications ...)
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Reduction to Euler characteristics

In looking at the resulting equivariant spectral sequence we find

we are really looking at the homology of

HT◦n+1 = HTn+1 − {the nuclear vertex}

(this is the singular set for the OPΣn+1 action.)

Since this poset is Cohen-Macaulay, all we really care about is

rank
(
Hn−2(HT◦n+1)

)
= |χ̃(HT◦n+1)|

and so computing the `2-betti numbers of the group OPΣn+1

has boiled down to computing the Euler characteristic of the

poset HT◦n+1.

37



Reduction to Möbius functions

To compute χ̃(HT◦n+1) we fill up chalk boards with Hasse dia-
grams and compute ...

χ(HT◦3) = 3 = 3
χ(HT◦4) = 28− 36 = −8

χ(HT◦5) = 310− 855 + 610 = 65, etc.

Luckily, Euler characteristics are well studied in enumerative
combinatorics. In particular we can get to the Euler charac-
teristic of HT◦n+1 by studying the Möbius function µ of ĤTn+1.

Fact: If µ is the Möbius function of ĤTn+1 then µ(0̂, 1̂) =
χ̃(HT◦n+1)

In our case χ̃(HT◦3) = 2, χ̃(HT◦4) = −9, χ̃(HT◦5) = 64.

38



The Calculation and Its Corollaries

Using recursion formulas for Möbius functions, and Kalikow’s

functional equation, it only takes 3 or 4 pages to show:

Thm: χ̃(HT◦n+1) = (−1)nnn−1 .

Cor 1: The `2-Betti numbers of OPΣn+1 are trivial, except

b
(2)
n−1 = nn−1. It follows that b(2)

n−1(OΣn+1) = nn−1

(n+1)! .

Cor 2: The `2-Betti numbers of PΣn+1 are trivial, except b(2)
n =

nn. It follows that b(2)
n (Σn+1) = nn

(n+1)! .
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