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Symmetric Spaces

Def: A Riemannian manifold is called a symmetric space if at
each point p there exists an isometry fixing p and reversing the
direction of every geodesic through p. It is homogeneous if its
isometry group acts transitively on points.

Prop: Every symmetric space is homogeneous.

Proof:
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Symmetric Spaces: First Examples

Ex: Sn, Rn, and Hn are symmetric spaces.

Def: The projective space KPn is defined as (Kn+1 − {~0})/K∗.

Ex: n-dimensional real, complex, quarternionic, and, for n ≤ 2,

octonionic projective spaces are symmetric.

Rem: RPn and CPn are straightforward since R and C are

fields. The quarternionic version needs more care (due to non-

commutativity) and the octonionic version only works in low

dimensions (due to non-associativity).

Rem: The isometries of a symmetric space form a Lie group.
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Lie Groups

Def: A Lie group is a (smooth) manifold with a compatible

group structure.

Ex: Both S1 ∼= the unit complex numbers and S3 ∼= the unit

quaternions are (compact) Lie groups.

It is easy to see that S1 is a group under rotation. The multipli-

cation on S3 is also easy to define: Once we pick an orientation

for S3 there is a unique isometry of S3 sending x to y (x 6= −y)

that rotates the great circle C containing x and y and rotates

the circle orthogonal to C by the same amount in the direction

determined by the orientation.
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Lie Groups and Coxeter Groups: a quick rough sketch

Continuity forces the product of points near the identity in a Lie

group to be sent to points near the identity, which in the limit

gives a Lie algebra structure on the tangent space at 1.

An analysis of the resulting linear algebra shows that there is

an associated discrete affine reflection group and these affine

reflection groups have finite reflection groups inside them.

The classifcation of finite reflection groups can then be used to

classify affine reflection groups, Lie algebras and Lie groups.
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Lie Groups and Symmetric Spaces

Rem: The isometry group of a symmetric space X is Lie group G

and the stabilizer of a point is a compact subgroup K. Moreover,

the points in X can be identified with the cosets of K in G.

Thm: Every symmetric space arises in this way and the classifi-

cation of Lie groups quickly leads to a classification of symmetric

spaces.

Ex: Isom(OP2) = Lie group F4  
Lie algebra F4  affine reflection group F4  
finite reflection group F4 = Isom(24-cell).

These are usually distinguished via fonts and other markings.
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Finite Projective Planes

The construction of KP2 still works perfectly well when K is
a finite field instead of R or C. Lines through the origin in
the vector space K3 become (projective) points in KP2, planes
through the origin in K3 become (projective) lines in KP2.

If the field K has q elements, then KP2 has
• q2 + q + 1 points and
• q2 + q + 1 lines.

Moreover, there is the usual duality between points and lines.

Rem: Finite projective spaces can be viewed as discrete analogs
of symmetric spaces and their automorphism groups as discrete
analogs of Lie groups.
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A Sample Finite Projective Plane

The finite projective plane over F3 with its 9+3+1 = 13 points
and 13 lines can be visualized using a cube.
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Incidence Graphs

Let Inc(KP2) denote the incidence graph of KP2: draw a red dot
for every projective point in KP2, a blue dot for every projective
line and connect a red dot to a blue one iff the point lies on the
line. Inc(F3P2) is shown.
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Buildings

The incidence graphs of finite projective planes are highly sym-
metric and examples of buildings. They have diameter 3, girth
6, distance transitive, and every pair of points lies on an embed-
ded hexagon. Their automorphism groups are very large.
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Coxeter presentations

Def: A Coxeter presentation is a finite presentation 〈S | R〉
with only two types of relations:
• a relation s2 for each s ∈ S, and
• at most one relation (st)m for each pair of distinct s, t ∈ S. A
group defined by such a presentation is called a Coxeter group.

Ex: 〈a, b, c | a2, b2, c2, (ab)2, (ac)3〉

Thm: Every finite reflection group has a Coxeter presentation
that can be read off of its Dynkin diagram.

Proof: If W is the isometry group of a regular polytope then
the fact that this is a presentation of W following from the fact
that the 2-skeleton of the dual of the subdivided polytope is
simply-connected. The general proof is similar.
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Small Type Coxeter Groups

Def: A Coxeter group W = 〈S | R〉 is small type if for every
pair of distinct s, t ∈ S, either (st)2 or (st)3 is a relation in R.

Rem: Dynkin diagrams of small type Coxeter groups correspond
to arbitrary simplicial graphs, so graphs such as Inc(F3P2) can
be used to define (very large) Coxeter groups.
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The Bilinear Form

The normal vectors {~ni} arising from the basic reflections of

a finite reflection group determine a matrix M = [~ni · ~nj](i,j)
where the dot products are 1 along the diagonal and cos(π−π/n)

otherwise (where n is label on the edge connecting vi and vj or

n = 3 when there is no label, or n = 2 when there is no edge).

The formula can be followed blindly for any Dynkin diagram.

The resulting real symmetric matrix M is called the Coxeter

matrix for the corresponding Coxeter group.

Define a bilinear form on V = Rn by setting B(~x, ~y) = ~x M ~y T .
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Linear Representations

Let V = Rn, let Γ be a Dynkin diagram and let W be the Coxeter
group it defines. Using the bilinear form B we can define a
(linear) representation of W . For each generator si define a
reflection ρi : V → V by setting

ρi(~v) = ~v − 2B(~ei,~v)
B(~ei,~ei)

~ei

This mimics the usual formula for a reflection.

α

β
H

sα(β)

projα(β) = 〈α,β〉
〈α,α〉α
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Generalized Orthogonal Groups

For any bilinear form B, let O(V, B) denote the set of invertible

linear transformations T of the n-dimensional vector space V that

preserve this bilinear form: B(T~x, T~y) = B(~x, ~y).

Rem: O(V, B) is a subset of GL(V ) and it inherits a Lie group

structure.

Thm: The homomorphism W → O(V, B) is an embedding.

Rem: The orbit of a (non-isotropic) vector in V under the action

of O(V, B) sweeps out a symmetric space.

Ex: Hyperboloid model.
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Types of Coxeter Groups

Let W be a Coxeter group and let B be its matrix. If B has

• no non-positive eigenvalues, then W is spherical.

• one non-positive eigenvalue and it is = 0, then W is affine.

• one non-positive eigenvalue and it is < 0, then W is hyperbolic.

• more than one non-positive eigenvalue then W is higher rank.

Ex: The Coxeter group defined by:

• a hexagon is affine,

Spectrum = [41 32 12 01]

• Inc(F3P2) is hyperbolic,

Spectrum = [61 (2 +
√

3)12 (2−
√

3)12 (−2)1]

•the 1-skeleton of the 4-cube is higher rank.

Spectrum = [61 44 24 04 (−2)1]
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Coxeter Groups and Symmetric Spaces

Thm: Every Coxeter group acts faithfully on some symmetric

space with the generators acting by reflection. This action is

proper and discontinuous but only rarely cocompact.

Rem: The type of the Coxeter group indicates the type of sym-

metric space it acts on. Spherical ones act on Sn, affine ones on

Rn, hyperbolic ones on Hn and the ones of higher rank on one

of the more unusal symmetric spaces.

Ex: The small type Coxeter group W defined by the graph

Inc(F3P2) acts on 25-dimensional hyperbolic space H25.
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Coxeter Elements

Def: A Coxeter element in a Coxeter group is the product or

its standard generating set in some order.

Thm: If the Dynkin diagram has no loops then all of its Coxeter

elements are conjugate. In particular, Coxeter elements in finite

Coxeter groups are well-defined up to conjugacy.

Rem: Coxeter elements are in bijection with acyclic orienta-

tions of the Dynkin diagram, and conjugacy classes of Coxeter

elements are in bijection with equivalence classes of such orien-

tations where the equivalence relation is generated by “reflection

functors”. (Closely related to quivers in representation theory)
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Distinct Coxeter Elements

Ex: Consider the small type Coxeter group defined by a hexagon.

• there are 6! = 720 orderings of the generators,

• but only 26 − 2 = 62 different group elements,

• that fall into 5 distinct conjugacy clases.

Representatives are the 2 cyclically ordered Coxeter elements, the

bipartite Coxeter element, and the 2 antipodal Coxeter elements.
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Classification of Finite Simple Groups

Recall the classification theorem for finite simple groups.

Thm: Every finite simple groups is either

1. Cyclic (Zp, p prime),

2. Alternating (Altn, n ≥ 5),

3. A finite group of Lie type,

4. One of 26 sporadic exceptions.

20



Finite Groups of Lie Type

The finite groups of Lie type are 16 infinite families of finite

groups all of the form Xn(q) where Xn is a Cartan-Killing type

and q is a power of a prime. The Xn indicates the bilinear form

and dictates the construction, and q is order of the finite field

over which the construction is carried out.

An(q), Bn(q), Cn(q), Dn(q), E8(q), E7(q), E6(q), F4(q), G2(q).

Type An(q) comes from the automorphism groups of finite pro-

jective spaces over Fq. In addition to these 9, diagram symme-

tries lead to twisted versions (2An(q), 2Dn(q), 3D4(q),
2E6(q))

including some (2B2(q),
2G2(q),

2F4(q)) whose construction is

characteristic dependent.
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A Mnemonic for the Classification
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The Sporadic Finite Simple Groups
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A line means that one is an image of a subgroup in the other.
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The Monster Finite Simple Group

The Monster finite simple group M is the largest of the sporadic

finite simple groups with order

246.320.59.76.112.133.17.19.23.29.31.41.47.59.71

(which is 808 017 424 794 512 875 886 459 904 961 710 757

005 754 368 000 000 000, or ∼ 1054)

The Bimonster, M o Z2, is a related group of size ∼ 10108.
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A One-relator Coxeter Presentation of the Bimonster

Thm: If W is the small type Coxeter group defined by Inc(F3P2),

and u ∈ W is the fourth power of the antipodal Coxeter element

of a hexagonal subgraph in Inc(F3P2), then W/〈u〉 ∼= M o Z2.
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