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I. Coxeter groups and Artin groups

Let Γ be a finite graph with edges labeled by

integers greater than 1, and let (a, b)n be the

length n prefix of (ab)n.

Def: The Artin group AΓ is generated by its

vertices with a relation (a, b)n = (b, a)n when-

ever a and b are joined by an edge labeled n.

Def: The Coxeter group WΓ is the Artin group

AΓ modulo the relations a2 = 1 ∀a ∈ Vert(Γ).

Graph

a

b

c2

3 4

Artin presentation

〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉

Coxeter presentation〈
a, b, c|

aba = bab, ac = ca, bcbc = cbcb

a2 = b2 = c2 = 1

〉
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Coxeter groups are natural

Coxeter groups are a natural generalization of

finite reflection groups and they are amazingly

nice to work with.

1. They have a decidable word problem

2. They are virtually torsion-free

3. They have finite CAT(0) K(π,1)s

4. They are linear

5. They are automatic
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Artin groups are natural yet mysterious

Artin groups are “natural” in the sense that

they are closely tied to the complexified ver-

sion of the hyperplane arrangements for Cox-

eter groups.

But they are “mysterious” in the sense that it

is unknown if

1. They have a decidable word problem

2. They are (virtually) torsion-free

3. They have finite (dimensional) K(π,1)s

4. They are linear

5. The positive monoid injects into the group

Actually 5 was recently shown to be true by

Luis Paris, but the proof is still mysterious.
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II. Garside structures

A Garside structure on a group G is given by

a submonoid M and an element ∆ in M . The

necessary conditions are

1. M is an atomic monoid

2. M is the positive cone of a left-invariant

lattice order ≤ on G.

3. M is generated by x ∈ M with x ≤ ∆.

4. conjugation by ∆ respects the lattice order.
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Constructing Garside structures

One way to produce such a structure is to start

with a bounded, graded, atomic, consistently

edge-labeled lattice which is balanced.

Balanced means that the words readable start-

ing at the bottom are the words readable end-

ing at the top.

a

b

c

A Garside structure for Z3 is shown.
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Examples of Garside structures

Braid groups and other finite-type Artin groups

each have two Garside structures. For the 3-

string braid group the two posets are shown.

The second one is the dual of the first.

a

b

c
a

b

〈a, b|aba = bab〉 = 〈a, b, c|ab = bc = ca〉
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The A3 Poset and its dual

The standard Garside structure a braid group

is a height function applied to the 1-skeleton

of a permutahedron (which is the Cayley graph

of S4 with respect to the adjacent transposi-

tions).

The dual structure is what combinatorialists

call the “non-crossing partition lattice”.

1 2

34
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The dual D4 Poset
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The dual F4 Poset
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Why “dual”?

[Bessis - “The Dual Braid Monoid”]

S = standard generators

T = set of all “reflections”

c = a Coxeter element =
∏

s

w0 = the longest element in W

n = the rank (dimension) of W

N = # reflections = # of positive roots

h = Coxeter number = order of c

Classical
monoid

Dual
monoid

Set of atoms S T

Product of atoms c w0
Number of atoms n N
Regular degree h 2

∆ w0 c
Length of ∆ N n

Order of p(∆) 2 h
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Garside structures for non-finite type Artin

groups

S = standard generators

T = set of all “reflections”

c = a Coxeter element =
∏

s

w0 = the longest element in W

n = the rank (dimension) of W

N = # reflections = # of positive roots

h = Coxeter number = order of c

Extending the previous table we have:

Classical
monoid

Dual
monoid

Set of atoms S T

Product of atoms c NA
Number of atoms n NA
Regular degree ∞ NA

∆ NA c
Length of ∆ NA n

Order of p(∆) NA ∞

13



What Garside structures are good for

If G is a group with a Garside structure,

then it

1. has a presentation derived from the poset

2. is the group of fractions of this presentation

3. has a decidable word problem*

4. has a finite (dimensional) K(π,1)

5. is torsion-free.

Thus finding Garside structures for Artin groups

would be a very good thing. The hardest part

is almost always showing that the candidate

poset is a lattice.

*(in the appropriate sense)
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III. Garside structures for free groups

Let Fn be a free group with basis x1, x2, . . . , xn

and let ∆ = x1x2 · · ·xn. We can start build-

ing a Garside structure by continuing to add

paths (and generators) to create a bounded

graded, consistently edge-labeled poset which

is balanced.

a

b a

bc

d

. . . . . .

The construction in this case leads to a univer-

sal cover which is an infinitely branching tree

cross the reals with a free F2 action.

〈ai|aiai+1 = ajaj+1〉
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A more topological definition

Let D∗ denote the unit disc with n puntures
and 4 distinguished boundary points, N , S, E
and W .

Def: A cut-curve is an isotopy class (in D∗) of
a path from E to W (rel endpoints, of course).

S

N

EW

Notice that cut-curves divide D∗ into two pieces,
one containing S and the other containing N .
Its height is the number of puncture in the
lower piece.
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Poset of cut-curves

Let [c] and [c′] be cut-curves. We write

[c] < [c′] if there are representatives c and c′

which are disjoint (except at their endpoints)

and c is “below” c′.

S

N

EW

Notice that if representative c is given, then

we can tell whether [c] < [c′] by keeping c fixed

and isotoping c′ into a “minimal position” with

respect to c (i.e. no football shaped regions

with no punctures).
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Proving the lattice property

Lemma The poset of cut-curves is a lattice.
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Proof: Suppose [c] is above [c1] and [c2]. Place

representatives c1 and c2 in minimal position

with respect to each other (i.e. no football re-

gions) and then isotope c so that it is disjoint

from both. This c is above the dotted line.

Thus the dotted line represents a least upper

bound for [c1] and [c2].
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IV. Garside structures for Artin groups

For a general Artin group, we start with a

specific marking of D∗ (in the form of cuts)

and draw arcs connecting the punctures which

avoid the cuts.

S

N

EW

1

9

x1

From the graph Γ we define a subgroup H of

the braid group which is generated by powers

of half-twists along the arcs with the powers

determined by the labels on the edges.
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Topological Version of PΓ

Define a graded poset PTop
Γ as equivalence

classes of cut curves [c]H where two cut curves

are equivalent if they differ by an element of

H acting on the disc.

The ordering is [c]H < [c′]H iff there are repre-

sentatives which are disjoint.

When trying to convert this to a purely alge-

braic definition there is an issue of left vs. right

actions of the braid group on the disc.

20



Algebraic Version of PΓ

Let Γ be an ordered Dynkin diagram and let

H = HΓ be the twist subgroup of Bn.

Let B(i) be the subgroup of the braid group

Bn which never crosses the i and i +1 strands

(isomorphic to Bi × Bn−i).

Define a graded poset PAlg
Γ by using the double

cosets H\Bn/B(i) as the set of vertices at level

i. The ordering is given by

HαB(i) < HβB(j) (α, β ∈ Bn)

if and only if i < j and the double coset inter-

section is non-empty.
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Coxeter Version of PΓ

Define PCox
Γ be pushing the free group version

into the Coxeter group WΓ using the natural

map.

More specifically, the free group Garside struc-

ture can be viewed as “residing” in the Cayley

graph of the free group with respect to an in-

finite generating set C indexed by the braid

group.

The image of C in WΓ gives a generating set

CΓ and the poset PCox is determined by the

image of the free structure in Cayley(WΓ, CΓ).
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The PΓ Theorem

Thm(BCKM): ∀ ordered Dynkin diagrams Γ,

PTop
Γ

∼= PAlg
Γ ։ PCox

Γ

The edge-labeled poset PTop
Γ

∼= PAlg
Γ is called

PΓ.

Moreover, we can prove the following:

Thm(BCKM): ∀ ordered Dynkin diagrams Γ,

PTop
Γ

∼= PAlg
Γ

∼= PCox
Γ

The bars indicate a quotient which uses images

in AΓ.
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A space for AΓ

Using standard techniques from the theory of

Garside structures, we can turn PΓ into a topo-

logical space KΓ.

Thm(BCKM): ∀ ordered Dynkin diagrams Γ,

π1(KΓ, ∗) ∼= AΓ

Thus, we are presenting the right group. The

(currently missing) lattice is crucial to show-

ing that the universal cover of this space is

contractible.
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An idea in the air

Here are some partial results to date:

[BCKM] (October 03, Talks, Slides posted)

Free groups / 3-generator

[D. Bessis] (January 04, Preprint posted)

Free groups

[F. Digne] (February 04, Preprint posted)

Type Ãn
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