Constructing non-positively curved spaces and groups

Day 1: The basics

Jon McCammond
U.C. Santa Barbara
Outline

I. CAT(κ) and δ-hyperbolic

II. Curvature conjecture

III. Decidability issues

IV. Length spectrum
I. CAT(0) spaces

Def: A geodesic metric space X is called (globally) CAT(0) if

- \forall points $x, y, z \in X$
- \forall geodesics connecting x, y, z
- \forall points p in the geodesic connecting x to y

\[d(p, z) \leq d(p', z') \]

in the corresponding configuration in \mathbb{E}^2.

Rem: CAT(1) and CAT(−1) are defined similarly using \mathbb{S}^2 and \mathbb{H}^2 respectively - with restrictions on x, y, z in the spherical case, since not all spherical comparison triangles are constructible.
\(\delta \)-hyperbolic spaces

Def: A geodesic metric space \(X \) is \(\delta \)-hyperbolic if

- \(\forall \) points \(x, y, z \in X \)
- \(\forall \) geodesics connecting \(x, y, \) and \(z \)
- \(\forall \) points \(p \) in the geodesic connecting \(x \) to \(y \)
- the distance from \(p \) to the union of the other two geodesics is at most \(\delta \).

Rem: Hyperbolic \(n \)-space, \(\mathbb{H}^n \) is both \(\delta \)-hyperbolic and \(\text{CAT}(-1) \).
Local curvature

δ-hyperbolic only implies the large scale curvature is negative. We get no information about local structure.

CAT(0) and CAT(-1) imply good local curvature conditions.

Lem: X is CAT(0) [CAT(-1)] \iff X is locally CAT(0) [CAT(-1)] and $\pi_1X = 1$ (needs completeness)

Def: A locally CAT(0) [CAT(-1)] space is called *non-positively [negatively] curved*.
CAT(−1) vs. CAT(0) vs. \(\delta \)-hyperbolic

Thm: \(\text{CAT}(\kappa) \Rightarrow \text{CAT}(\kappa') \) when \(\kappa \leq \kappa' \). In particular, \(\text{CAT}(-1) \Rightarrow \text{CAT}(0) \).

Def: A flat is an isometric embedding of a Euclidean space \(\mathbb{E}^n, n > 1 \).

Thm: \(\text{CAT}(-1) \Rightarrow \text{CAT}(0) \meetsplus \text{no flats} \)

Thm: \(\text{CAT}(-1) \Rightarrow \delta \)-hyperbolic

In fact, when \(X \) is \(\text{CAT}(0) \) and has a proper, cocompact group action by isometries, \(X \) is \(\delta \)-hyperbolic \(\iff \) \(X \) has no flats. (Flat Plane Thm)
CAT(0) groups and hyperbolic groups

Def: A group G is *hyperbolic* if for some δ it acts properly and cocompactly by isometries on some δ-hyperbolic space.

Lem: G is is hyperbolic if for some finite generating set A and for some δ, its Cayley graph w.r.t. A is δ-hyperbolic.

Def: A group G is **CAT(0)** if it acts properly and cocompactly by isometries on some CAT(0) space.

Rem: Unlike hyperbolicity, showing a group is CAT(0) requires the construction of a CAT(0) space.
CAT(−1) vs. CAT(0) vs. word-hyperbolic

\[
\begin{align*}
\text{CAT}(−1) & \\
\Downarrow & \\
\text{CAT}(0) + \text{no flats} & \implies \text{word-hyperbolic} \\
\Downarrow & \\
\text{CAT}(0) + \text{no } \mathbb{Z} \times \mathbb{Z} &
\end{align*}
\]

Flat Torus Thm: \(\mathbb{Z} \times \mathbb{Z} \) in \(G \) \(\Rightarrow \) \(\exists \) a flat in \(X \).

Problem: Flat in \(X \) \(\Leftrightarrow \) \(\mathbb{Z} \times \mathbb{Z} \) in \(G \)?

Thm(Wise) \(\exists \) aperiodic flats in CAT(0) spaces which are not limits of periodic flats.

Rem: This is not even known for VH CAT(0) squared complexes.
Constant curvature complexes

Constant curvature models: \mathbb{S}^n, \mathbb{E}^n, and \mathbb{H}^n.

Def: A *piecewise spherical / euclidean / hyperbolic complex* X is a polyhedral complex in which each polytope is given a metric with constant curvature 1 / 0 / -1 and the induced metrics agree on overlaps. In the spherical case, the cells must be convex polyhedral cells in \mathbb{S}^n. The generic term is M_κ-complex, where κ is the curvature.

Thm(Bridson) Compact M_κ complexes are geodesic metric spaces.

Exercise: What restrictions on edge lengths are necessary in order for a PS/PE/PH n-simplex to be buildable?
II. Curvature conjecture

\[
\begin{align*}
\text{PH CAT}(-1) & \Rightarrow \text{CAT}(-1) \\
(?)(?) & \downarrow \\
\text{PE CAT}(0) & \Rightarrow \text{CAT}(0) \\
\text{no flats} & \downarrow \\
\text{PE CAT}(0) & \Rightarrow \text{CAT}(0) \\
\text{no } \mathbb{Z} \times \mathbb{Z} & \Rightarrow \text{no } \mathbb{Z} \times \mathbb{Z}
\end{align*}
\]

Conj: These seven classes of groups are equal.

Rem 1: Analogue of Thurston’s hyperbolization conjecture.

Rem 2: If Geometrization (Perleman) holds then this is true for 3-manifold groups.
PH CAT(−1) vs. PE CAT(0)

Thm(Charney-Davis-Moussong) If M is a compact hyperbolic n-manifold, then M also carries a PE CAT(0) structure.

Rem: This is open even for compact (variably) negatively-curved n-manifolds.

Thm(N. Brady-Crisp) There is a group which acts nicely on a 3-dim PH CAT(−1) structure, and on a 2-dim PE CAT(0) structure, but not on any 2-dim PH CAT(−1) structure.

Moral: Higher dimensions are sometimes necessary to flatten things out.
Rips Complex

If our goal is to create complexes with good local curvature for an arbitrary word-hyperbolic group, the obvious candidate is the Rips complex (or some variant).

Def: Let $P_d(G, A)$ be the flag complex on the graph whose vertices are labeled by G and which has an edge connecting g and h iff gh^{-1} is represented by a word of length at most d over the alphabet A.

Thm: If G is word-hyperbolic and d is large relative to δ, the complex $P_d(G, A)$ is contractible (and finite dimensional).
Adding a metric to the Rips complex

Let G be a word-hyperbolic group.

Q: Suppose we carefully pick a generating set A and pick a d very large and declare each simplex in $P_d(G, A)$ to be a regular Euclidean simplex with edge length 1. Is the result a CAT(0) space?

Exercise: Is this true when G is free and A is a basis?
Adding a metric to the Rips complex

Let G be a word-hyperbolic group.

Q: Suppose we carefully pick a generating set A and pick a d very large and declare each simplex in $P_d(G, A)$ to be a regular Euclidean simplex with edge length 1. Is the result a CAT(0) space?

Exercise: Is this true when G is free and A is a basis?

A: No one knows!

Moral: Our ability to test whether compact constant curvature metric space is CAT(0) or CAT(-1) is very primitive.
III. Decidability

Thm(Elder-M) Given a compact M_{κ}-complex, there is an “algorithm” which decides whether it is locally $\text{CAT}(\kappa)$.

Proof sketch:
- reduce to galleries in PS complexes
- convert to real semi-algebraic sets
- apply Tarski’s “algorithm”
Galleries

A 2-complex, a linear gallery, its interior and its boundary.
Reduction to geodesics in PS complexes

Rem: The link of a point in an M_κ-complex is an PS complex.

Thm: An M_κ-complex is locally $\text{CAT}(\kappa)$
\iff the link of each vertex is globally $\text{CAT}(1)$
\iff the link of each cell is an PS complex which contains no closed geodesic loop of length less than 2π.

Moral: Showing that PE complexes are non-positively curved or PH complexes are negatively curved hinges on showing that PS complexes have no short geodesic loops.
Geodesics

Def: A *local geodesic* in a M_k-complex is a concatenation of paths such that
1) each path is a geodesic in a simplex, and
2) at the transitions, the “angles are large” meaning that the distance between the “in” direction and the “out” direction is at least π in the link.

Rem: Notice that there is an induction involved in the check for short geodesics. To test whether a particular curve is a short geodesic, you need to check whether it is short and whether it is a geodesic, but the latter involves checking geodesic distances in a lower dimensional PS complex, but this involves checking geodesic distances in a lower dimensional PS complex...
Unshrinkable geodesics

In practice, we will often restrict our search to unshrinkable geodesics.

Def: A geodesic is *unshrinkable* if there does not exist a non-increasing homotopy through rectifiable curves to a curve of strictly shorter length.

Thm(Bowditch) It is sufficient to search for unshrinkable geodesics.

Cor: In a PS complex it is sufficient to search for a geodesic which can neither be shrunk nor homotoped till it meets the boundary of its gallery without increasing length.
Converting to Polynomial Equations, I

Spaces and maps:

\[
\begin{array}{c}
\{x_i\} \rightarrow S^1 \subset \mathbb{R}^2 \\
\downarrow \\
K \leftarrow G \rightarrow S^n \subset \mathbb{R}^{n+1}
\end{array}
\]

For each 0-cell \(v \) in \(G \)
- create a vector \(\vec{u}_v \) in \(\mathbb{R}^{n+1} \)

For each \(x_i \)
- create a vector \(\vec{y}_i \) in \(\mathbb{R}^{n+1} \)
- a vector \(\vec{z}_i \) in \(\mathbb{R}^2 \).

Add equations which stipulate
- they are unit vectors,
- the edge lengths are right,
- \(\vec{y}_i \) is a positive linear comb. of certain \(\vec{u}_v \),
- the \(\vec{z}_i \) march counterclockwise around \(S^1 \) starting at \((1,0)\).
Converting to Polynomial Equations, II

A 1-complex, a gallery and its model space.
Real semi-algebraic sets

Def: A *real semi-algebraic set* is a boolean combination (∪, ∩ and complement) of real algebraic varieties.

Inducting through dimensions, it is possible to show that there is a real semi-algebraic set in which the points are in one-to-one correspondence with the closed geodesics in the circular gallery G.

Punchline: Tarski’s theorem about the decidability of the reals implies that there is an algorithm which decides whether a real semi-algebraic set is empty or not.

Rem: It is still not known whether there is an algorithm to decide whether a particular complex supports a CAT(0) metric.
Why is this so hard?

Problems with high codimension (≥ 2) can often be quite hard.

Q: What is the unit volume 3-polytope with the smallest 1-skeleton (measured by adding up the edge lengths)?
Why is this so hard?

Problems with high codimension (≥ 2) can often be quite hard.

Q: What is the unit volume 3-polytope with the smallest 1-skeleton (measured by adding up the edge lengths)?

A: No one knows, but the best guess is a triangular prism.
IV. Length spectra

Def: The lengths of open geodesics from x to y is the *length spectrum from x to $y*."

Thm (Bridson-Haefliger) The length spectrum from x to y in a compact M_κ-complex is discrete.

Def: The lengths of closed geodesics in a space is simply called its *length spectrum*.

Thm (N. Brady-M) The length spectrum of a compact M_κ-complex is discrete.

Proof sketch:
- Suppose not and reduce to a single gallery.
- Closed geodesics are critical points of d.
- d is real analytic on a compact set containing the tail of the sequence.
- d extends to real analytic function on a larger open set.
- \therefore only finitely many critical values.
Totally geodesic surfaces

Def: A surface $f : D \to X$ is *totally geodesic* if $\forall d \in D$, $\text{Lk}(d)$ is sent to a local geodesic in $\text{Lk}(f(d))$.

Cor: If D is a totally geodesic surface in a NPC PE complex then the points in the interior of D with negative curvature have curvatures bounded away from 0.

Rem: In a 2-dimensional NPC PE complex, every null-homotopic curve bounds a totally geodesic surface. This fails in dimension 3 and higher, and is one of the key reasons why theorems in dimension 2 fail to generalize easily to higher dimensions.