Constructing non-positively curved spaces and groups

placements

Day 1: The basics

Jon McCammond U.C. Santa Barbara

Outline

- I. $CAT(\kappa)$ and δ -hyperbolic
- II. Curvature conjecture
- III. Decidability issues
- IV. Length spectrum

I. CAT(0) spaces

Def: A geodesic metric space X is called (globally) CAT(0) if \forall points $x, y, z \in X$

placements connecting x, y, and z

 \forall points p in the geodesic connecting x to y

$$d(p,z) \leq d(p',z')$$

in the corresponding configuration in \mathbb{E}^2 .

Rem: CAT(1) and CAT(-1) are defined similarly using S^2 and \mathbb{H}^2 respectively – with restrictions on x, y, and z in the spherical case, since not all spherical comparison triangles are constructible.

δ -hyperbolic spaces

Def: A geodesic metric space X is δ -hyperbolic if

 \forall points $x, y, z \in X$

 \forall geodesics connecting x,y, and z

 \forall points p in the geodesic connecting x to y the distance from p to the union of the other two geodesics is at most δ .

Rem: Hyperbolic *n*-space, \mathbb{H}^n is both δ -hyperbolic and CAT(-1).

Local curvature

 δ -hyperbolic only implies the large scale curvature is negative. We get no information about local structure.

CAT(0) and CAT(-1) imply good local curvature conditions.

Lem: X is CAT(0) $[CAT(-1)] \Leftrightarrow$ X is locally CAT(0) [CAT(-1)] and $\pi_1 X = 1$ (needs completeness)

Def: A locally CAT(0) [CAT(-1)] space is called *non-positively* [*negatively*] *curved*.

CAT(-1) vs. CAT(0) vs. δ -hyperbolic

Thm: $CAT(\kappa) \Rightarrow CAT(\kappa')$ when $\kappa \leq \kappa'$. In particular, $CAT(-1) \Rightarrow CAT(0)$.

Def: A *flat* is an isometric embedding of a Euclidean space \mathbb{E}^n , n > 1.

Thm: $CAT(-1) \Rightarrow CAT(0) + no flats$

Thm: $CAT(-1) \Rightarrow \delta$ -hyperbolic

In fact, when X is CAT(0) and has a proper, cocompact group action by isometries, X is δ -hyperbolic \Leftrightarrow X has no flats. (Flat Plane Thm)

CAT(0) groups and hyperbolic groups

Def: A group G is hyperbolic if for some δ it acts properly and cocompactly by isometries on some δ -hyperbolic space.

Lem: G is is hyperbolic if for some finite generating set A and for some δ , its Cayley graph w.r.t. A is δ -hyperbolic.

Def: A group G is CAT(0) if it acts properly and cocompactly by isometries on some CAT(0) space.

Rem: Unlike hyperbolicity, showing a group is CAT(0) requires the construction of a CAT(0) space.

Flat Torus Thm: $\mathbb{Z} \times \mathbb{Z}$ in $G \Rightarrow \exists$ a flat in X.

Problem: Flat in $X \Leftrightarrow \mathbb{Z} \times \mathbb{Z}$ in G?

Thm(Wise) \exists aperiodic flats in CAT(0) spaces which are not limits of periodic flats.

Rem: This is not even known for VH CAT(0) squared complexes.

Constant curvature complexes

Constant curvature models: \mathbb{S}^n , \mathbb{E}^n , and \mathbb{H}^n .

Def: A piecewise spherical / euclidean / hyperbolic complex X is a polyhedral complex in which each polytope is given a metric with constant curvature 1 / 0 / -1 and the induced metrics agree on overlaps. In the spherical case, the cells must be convex polyhedral cells in \mathbb{S}^n . The generic term is M_{κ} -complex, where κ is the curvature.

Thm(Bridson) Compact M_{κ} complexes are geodesic metric spaces.

Exercise: What restrictions on edge lengths are necessary in order for a PS/PE/PH *n*-simplex to be buildable?

II. Curvature conjecture

Conj: These seven classes of groups are equal.

Rem 1: Analogue of Thurston's hyperbolization conjecture.

Rem 2: If Geometrization (Perleman) holds then this is true for 3-manifold groups.

PH CAT(-1) vs. PE CAT(0)

Thm(Charney-Davis-Moussong) If M is a compact hyperbolic *n*-manifold, then M also carries a PE CAT(0) structure.

Rem: This is open even for compact (variably) negatively-curved *n*-manifolds.

Thm(N.Brady-Crisp) There is a group which acts nicely on a 3-dim PH CAT(-1) structure, and on a 2-dim PE CAT(0) structure, but not on any 2-dim PH CAT(-1) structure.

Moral: Higher dimensions are sometimes necessary to flatten things out.

Rips Complex

If our goal is to create complexes with good local curvature for an arbitrary word-hyperbolic group, the obvious candidate is the Rips complex (or some variant).

Def: Let $P_d(G, A)$ be the flag complex on the graph whose vertices are labeled by G and which has an edge connecting g and h iff gh^{-1} is represented by a word of length at most dover the alphabet A.

Thm: If G is word-hyperbolic and d is large relative to δ , the complex $P_d(G, A)$ is contractible (and finite dimensional).

Adding a metric to the Rips complex

Let G be a word-hyperbolic group.

Q: Suppose we carefully pick a generating set A and pick a d very large and declare each simplex in $P_d(G, A)$ to be a regular Euclidean simplex with edge length 1. Is the result a CAT(0) space?

Exercise: Is this true when G is free and A is a basis?

Adding a metric to the Rips complex

Let G be a word-hyperbolic group.

Q: Suppose we carefully pick a generating set A and pick a d very large and declare each simplex in $P_d(G, A)$ to be a regular Euclidean simplex with edge length 1. Is the result a CAT(0) space?

Exercise: Is this true when G is free and A is a basis?

A: No one knows!

Moral: Our ability to test whether compact constant curvature metric space is CAT(0) or CAT(-1) is *very* primitive.

III. Decidability

Thm(Elder-M) Given a compact M_{κ} -complex, there is an "algorithm" which decides whether it is locally CAT(κ).

Proof sketch:

- reduce to galleries in PS complexes
- convert to real semi-algebraic sets
- apply Tarski's "algorithm"

Galleries

A 2-complex, a linear gallery, its interior and its boundary.

Reduction to geodesics in PS complexes

Rem: The link of a point in an M_{κ} -complex is an PS complex.

Thm: An M_{κ} -complex is locally CAT(κ) \Leftrightarrow the link of each vertex is globally CAT(1) \Leftrightarrow the link of each cell is an PS complex which contains no closed geodesic loop of length less than 2π .

Moral: Showing that PE complexes are nonpositively curved or PH complexes are negatively curved hinges on showing that PS complexes have no short geodesic loops.

Geodesics

Def: A *local geodesic* in a M_{κ} -complex is a concatenation of paths such that 1) each path is a geodesic in a simplex, and 2) at the transitions, the "angles are large" meaning that the distance between the "in" direction and the "out" direction is at least π in the link.

Rem: Notice that there is an induction involved in the check for short geodesics. To test whether a particular curve is a short geodesic, you need to check whether it is short and whether it is a geodesic, but the latter involves checking geodesic distances in a lower dimensional PS complex, but this involves checking geodesic distances in a lower dimensional PS complex...

Unshrinkable geodesics

In practice, we will often restrict our search to unshrinkable geodesics.

Def: A geodesic is *unshrinkable* if there does not exist a non-increasing homotopy through rectifiable curves to a curve of strictly shorter length.

Thm(Bowditch) It is sufficient to search for unshrinkable geodesics.

Cor: In a PS complex it is sufficient to search to for a geodesic which can neither be shrunk nor homotoped til it meets the boundary of its gallery without increasing length.

Converting to Polynomial Equations, I

Spaces and maps:

For each 0-cell v in \mathcal{G}

• create a vector \vec{u}_v in \mathbb{R}^{n+1}

For each x_i

- create a vector $\vec{y_i}$ in \mathbb{R}^{n+1}
- a vector $\vec{z_i}$ in \mathbb{R}^2 .

Add equations which stipulate

- they are unit vectors,
- the edge lengths are right,
- $\vec{y_i}$ is a positive linear comb. of certain $\vec{u_v}$,
- the \vec{z}_i march counterclockwise around \mathbb{S}^1 starting at (1,0).

Converting to Polynomial Equations, II

A 1-complex, a gallery and its model space.

21

Real semi-algebraic sets

Def: A *real semi-algebraic set* is a boolean combination $(\cup, \cap \text{ and complement})$ of real algebraic varieties.

Inducting through dimensions, it is possible to show that there is a real semi-algebraic set in which the points are in one-to-one correspondence with the closed geodesics in the circular gallery \mathcal{G} .

Punchline: Tarski's theorem about the decidability of the reals implies that there is an algorithm which decides whether a real semialgebraic set is empty or not.

Rem: It is still not known whether there is an algorithm to decide whether a particular complex supports a CAT(0) metric.

Why is this so hard?

Problems with high codimension (≥ 2) can often be quite hard.

Q: What is the unit volume 3-polytope with the smallest 1-skeleton (measured by adding up the edge lengths)?

Why is this so hard?

Problems with high codimension (≥ 2) can often be quite hard.

Q: What is the unit volume 3-polytope with the smallest 1-skeleton (measured by adding up the edge lengths)?

A: No one knows, but the best guess is a triangular prism.

IV. Length spectra

Def: The lengths of open geodesics from x to y is the *length spectrum from* x to y.

Thm(Bridson-Haefliger) The length spectrum from x to y in a compact M_{κ} -complex is discrete.

Def: The lengths of closed geodesics in a space is simply called its *length spectrum*.

Thm(N.Brady-M) The length spectrum of a compact M_{κ} -complex is discrete.

Proof sketch:

- Suppose not and reduce to a single gallery.
- Closed geodesics are critical points of d.
- $\bullet~d$ is real analytic on a compact set containing the tail of the sequence
- $\bullet~d$ extends to real analytic function on a larger open set.
- ∴ only finitely many critical values.

Totally geodesic surfaces

Def: A surface $f : D \to X$ is *totally geodesic* if $\forall d \in D$, Lk(d) is sent to a local geodesic in Lk(f(d)).

Cor: If D is a totally geodesic surface in a NPC PE complex then the points in the interior of D with negative curvature have curvatures bounded away from 0.

Rem: In a 2-dimensional NPC PE complex, every null-homotopic curve bounds a totally geodesic surface. This fails in dimension 3 and higher, and is one of the key reasons why theorems in dimension 2 fail to generalize easily to higher dimensions.