
Constructing non-positively

curved spaces and groups

Day 1: The basics
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I. CAT(0) spaces

Def: A geodesic metric space X is called

(globally) CAT(0) if

∀ points x, y, z ∈ X

∀ geodesics connecting x, y, and z

∀ points p in the geodesic connecting x to y

d(p, z) ≤ d(p′, z′)

in the corresponding configuration in E2.
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Rem: CAT(1) and CAT(−1) are defined

similarly using S2 and H2 respectively - with

restrictions on x, y, and z in the spherical case,

since not all spherical comparison triangles are

constructible.
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δ-hyperbolic spaces

Def: A geodesic metric space X is δ-hyperbolic

if

∀ points x, y, z ∈ X

∀ geodesics connecting x,y, and z

∀ points p in the geodesic connecting x to y

the distance from p to the union of the other

two geodesics is at most δ.
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Rem: Hyperbolic n-space, Hn is both δ-hyperbolic

and CAT(−1).
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Local curvature

δ-hyperbolic only implies the large scale curva-

ture is negative. We get no information about

local structure.

CAT(0) and CAT(−1) imply good local curva-

ture conditions.

Lem: X is CAT(0) [CAT(−1)] ⇔

X is locally CAT(0) [CAT(−1)] and π1X = 1

(needs completeness)

Def: A locally CAT(0) [CAT(−1)] space is

called non-positively [negatively] curved.
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CAT(−1) vs. CAT(0) vs. δ-hyperbolic

Thm: CAT(κ) ⇒ CAT(κ′) when κ ≤ κ′.

In particular, CAT(−1)⇒ CAT(0).

Def: A flat is an isometric embedding

of a Euclidean space En, n > 1.

Thm: CAT(−1) ⇒ CAT(0) + no flats

Thm: CAT(−1) ⇒ δ-hyperbolic

In fact, when X is CAT(0) and has a proper,

cocompact group action by isometries,

X is δ-hyperbolic ⇔ X has no flats.

(Flat Plane Thm)
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CAT(0) groups and hyperbolic groups

Def: A group G is hyperbolic if for some δ

it acts properly and cocompactly by isometries

on some δ-hyperbolic space.

Lem: G is is hyperbolic if for some finite gen-

erating set A and for some δ, its Cayley graph

w.r.t. A is δ-hyperbolic.

Def: A group G is CAT(0) if it acts prop-

erly and cocompactly by isometries on some

CAT(0) space.

Rem: Unlike hyperbolicity, showing a group is

CAT(0) requires the construction of a CAT(0)

space.
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CAT(−1) vs. CAT(0) vs. word-hyperbolic

CAT(−1)
⇓

CAT(0)+ no flats ⇒ word-hyperbolic
⇓

CAT(0)+ no Z× Z

Flat Torus Thm: Z×Z in G ⇒ ∃ a flat in X.

Problem: Flat in X ⇔ Z× Z in G?

Thm(Wise) ∃ aperiodic flats in CAT(0) spaces

which are not limits of periodic flats.

Rem: This is not even known for VH CAT(0)

squared complexes.
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Constant curvature complexes

Constant curvature models: Sn, En, and Hn.

Def: A piecewise spherical / euclidean /

hyperbolic complex X is a polyhedral complex

in which each polytope is given a metric with

constant curvature 1 / 0 / −1 and the in-

duced metrics agree on overlaps. In the spher-

ical case, the cells must be convex polyhedral

cells in Sn. The generic term is Mκ-complex,

where κ is the curvature.

Thm(Bridson) Compact Mκ complexes are

geodesic metric spaces.

Exercise: What restrictions on edge lengths

are necessary in order for a PS/PE/PH n-simplex

to be buildable?
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II. Curvature conjecture

PH CAT(−1) ⇒ CAT(−1)
(?) ⇓

PE CAT(0)
no flats

⇒
CAT(0)
no flats

⇒
word-

hyperbolic
⇓ ⇓

PE CAT(0)
no Z× Z

⇒
CAT(0)
no Z× Z

Conj: These seven classes of groups are equal.

Rem 1: Analogue of Thurston’s hyperboliza-

tion conjecture.

Rem 2: If Geometrization (Perleman) holds

then this is true for 3-manifold groups.
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PH CAT(−1) vs. PE CAT(0)

Thm(Charney-Davis-Moussong) If M is a

compact hyperbolic n-manifold, then M also

carries a PE CAT(0) structure.

Rem: This is open even for compact (variably)

negatively-curved n-manifolds.

Thm(N.Brady-Crisp) There is a group which

acts nicely on a 3-dim PH CAT(−1) structure,

and on a 2-dim PE CAT(0) structure, but not

on any 2-dim PH CAT(−1) structure.

Moral: Higher dimensions are sometimes nec-

essary to flatten things out.
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Rips Complex

If our goal is to create complexes with good

local curvature for an arbitrary word-hyperbolic

group, the obvious candidate is the Rips com-

plex (or some variant).

Def: Let Pd(G, A) be the flag complex on

the graph whose vertices are labeled by G and

which has an edge connecting g and h iff gh−1

is represented by a word of length at most d

over the alphabet A.

Thm: If G is word-hyperbolic and d is large rel-

ative to δ, the complex Pd(G, A) is contractible

(and finite dimensional).

12



Adding a metric to the Rips complex

Let G be a word-hyperbolic group.

Q: Suppose we carefully pick a generating set

A and pick a d very large and declare each

simplex in Pd(G, A) to be a regular Euclidean

simplex with edge length 1. Is the result a

CAT(0) space?

Exercise: Is this true when G is free and A is

a basis?

A: No one knows!

Moral: Our ability to test whether compact

constant curvature metric space is CAT(0) or

CAT(−1) is very primitive.
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III. Decidability

Thm(Elder-M) Given a compact Mκ-complex,

there is an “algorithm” which decides whether

it is locally CAT(κ).

Proof sketch:

• reduce to galleries in PS complexes

• convert to real semi-algebraic sets

• apply Tarski’s “algorithm”

f = f ’
f f ’
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b
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Galleries
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A 2-complex, a linear gallery, its interior and

its boundary.
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Reduction to geodesics in PS complexes

Rem: The link of a point in an Mκ-complex is

an PS complex.

Thm: An Mκ-complex is locally CAT(κ)

⇔ the link of each vertex is globally CAT(1)

⇔ the link of each cell is an PS complex which

contains no closed geodesic loop of length less

than 2π.

Moral: Showing that PE complexes are non-

positively curved or PH complexes are nega-

tively curved hinges on showing that PS com-

plexes have no short geodesic loops.
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Geodesics

Def: A local geodesic in a Mκ-complex is a

concatenation of paths such that

1) each path is a geodesic in a simplex, and

2) at the transitions, the “angles are large”

meaning that the distance between the “in”

direction and the “out” direction is at least π

in the link.

Rem: Notice that there is an induction in-

volved in the check for short geodesics. To test

whether a particular curve is a short geodesic,

you need to check whether it is short and whether

it is a geodesic, but the latter involves checking

geodesic distances in a lower dimensional PS

complex, but this involves checking geodesic

distances in a lower dimensional PS complex...
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Unshrinkable geodesics

In practice, we will often restrict our search to

unshrinkable geodesics.

Def: A geodesic is unshrinkable if there does

not exist a non-increasing homotopy through

rectifiable curves to a curve of strictly shorter

length.

Thm(Bowditch) It is sufficient to search for

unshrinkable geodesics.

Cor: In a PS complex it is sufficient to search

to for a geodesic which can neither be shrunk

nor homotoped til it meets the boundary of its

gallery without increasing length.
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Converting to Polynomial Equations, I

Spaces and maps:

{xi} → S1 ⊂ R2

↙ ↓

K ← G → Sn ⊂ Rn+1

For each 0-cell v in G

• create a vector ~uv in Rn+1

For each xi

• create a vector ~yi in Rn+1

• a vector ~zi in R2.

Add equations which stipulate

• they are unit vectors,

• the edge lengths are right,

• ~yi is a positive linear comb. of certain ~uv,

• the ~zi march counterclockwise around S1

starting at (1,0).

20



Converting to Polynomial Equations, II

A 1-complex, a gallery and its model space.
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Real semi-algebraic sets

Def: A real semi-algebraic set is a boolean

combination (∪, ∩ and complement) of real

algebraic varieties.

Inducting through dimensions, it is possible to

show that there is a real semi-algebraic set in

which the points are in one-to-one correspon-

dence with the closed geodesics in the circular

gallery G.

Punchline: Tarski’s theorem about the de-

cidability of the reals implies that there is an

algorithm which decides whether a real semi-

algebraic set is empty or not.

Rem: It is still not known whether there is an

algorithm to decide whether a particular com-

plex supports a CAT(0) metric.
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Why is this so hard?

Problems with high codimension (≥ 2) can of-

ten be quite hard.

Q: What is the unit volume 3-polytope with

the smallest 1-skeleton (measured by adding

up the edge lengths)?

A: No one knows, but the best guess is a

triangular prism.

Q: (R. Graham) Which n-gon with fixed perime-

ter encloses the largest area?

A: The answer has equal edge lengths, but for

n ≥ 6 the best is not equi-angular.

(Look up the details!)
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IV. Length spectra

Def: The lengths of open geodesics from x to

y is the length spectrum from x to y.

Thm(Bridson-Haefliger) The length spectrum

from x to y in a compact Mκ-complex is

discrete.

Def: The lengths of closed geodesics in a

space is simply called its length spectrum.

Thm(N.Brady-M) The length spectrum of a

compact Mκ-complex is discrete.

Proof sketch:

• Suppose not and reduce to a single gallery.

• Closed geodesics are critical points of d.

• d is real analytic on a compact set containing

the tail of the sequence

• d extends to real analytic function on a larger

open set.

• ∴ only finitely many critical values.
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Totally geodesic surfaces

Def: A surface f : D → X is totally geodesic

if ∀d ∈ D, Lk(d) is sent to a local geodesic in

Lk(f(d)).

Cor: If D is a totally geodesic surface in a

NPC PE complex then the points in the interior

of D with negative curvature have curvatures

bounded away from 0.

Rem: In a 2-dimensional NPC PE complex,

every null-homotopic curve bounds a totally

geodesic surface. This fails in dimension 3 and

higher, and is one of the key reasons why the-

orems in dimension 2 fail to generalize easily

to higher dimensions.
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