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I. Coxeter and Artin groups

Let Γ be a finite graph with edges labeled by

integers greater than 1, and let 〈a, b〉n be the

length n prefix of (ab)n.

Def: The Artin group AΓ is generated by its

vertices with a relation 〈a, b〉n = 〈b, a〉n when-

ever a and b are joined by an edge labeled n.

Def: The Coxeter group WΓ is the Artin group

AΓ modulo the relations a2 = 1 ∀a ∈ Vert(Γ).

Graph

a

b

c2

3 4

Artin presentation

〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉

Coxeter presentation〈
a, b, c|

aba = bab, ac = ca, bcbc = cbcb

a2 = b2 = c2 = 1

〉
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Finite-type Artin groups

The finite Coxeter groups have been classified.

An Artin group defined by the same labeled

graph as a finite Coxeter is called a finite-type

Artin. (other convention used below)
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Irreducible Dynkin diagrams
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Eilenberg-MacLane spaces for Artin groups

Finite-type Artin groups are fundamental groups

of complexified Coxeter hyperplane arrange-

ments quotiented by the action of the Coxeter

group.

Each finite type Artin group has a

• finite dimensional CAT(0) K(G,1)

(but not complete or compact)

• finite dimensional compact K(G,1)

(with no metric)

but no known

• finite dimensional compact CAT(0) K(G,1)

Thus they do not yet qualify as CAT(0) groups,

but they are good candidates.
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Brady-Krammer Complexes

In 1998 Tom Brady and Daan Krammer inde-

pendently discovered new complexes on which

the braid groups and the other Artin groups of

finite type act.

In the case of the braid groups, there is a

close connection with a well-known combinato-

rial object known as the noncrossing partition

lattice.
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Noncrossing Partitions

A noncrossing partition is a partition of the

vertices of a regular n-gon so that the convex

hulls of the partitions are disjoint.

One noncrossing partition σ is contained in an-

other τ if each block of σ is contained in a block

of τ .
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{{1,4,5}, {2,3}, {6,8}, {7}}
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Factors of the Coxeter element

A3 1-6-6-1
B3 1-9-9-1
H3 1-15-15-1

A4 1-10-20-10-1
B4 1-12-24-12-1
D4 1-16-36-16-1
F4 1-24-55-24-1
H4 1-60-158-60-1

A5 1-15-50-50-15-1
B5 1-20-70-70-20-1
D5 1-25-100-100-25-1

General formulas exist for the An, Bn and Dn

types as well as explicit calculations for the ex-

ceptional ones, but no general formula explains

all of these numbers in a coherent framework.
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F4 Poset
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Natural metric

The metric: The metric which views the edges

in a maximal chain as mutually orthogonal steps

in a Euclidean space is natural in the sense that

it turns Boolean lattices into Euclidean cubes.

Also, the link of the long diagonal in a Boolean

lattice is a Coxeter complex for the symmetric

group.
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CAT(0) and Artin groups

Thm(T.Brady-M) The finite-type Artin groups

with at most 3 generators are CAT(0)-groups

and the Artin groups A4 and B4 are CAT(0)

groups.

Proof: The link of a vertex in the cross section

is the order complex of a fairly small poset. It

is then relatively easy to check that using the

“natural” metric, each of these links satisfy the

link condition.

Natural Conj: The Brady-Krammer complex

is CAT(0) for all Artin groups of finite type.
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CAT(0) metrics on D4 and F4

Thm(Choi): The Brady-Krammer complexes

for D4 and F4 do not support reasonable PE

CAT(0) metrics.

Reasonable means that symmetries of the group

should lead to symmetries in the metric.

Proof Idea: First determine what Euclidean

metrics on the 3-dimensional cross-section com-

plex have dihedral angles which make the edge

links (which are finite graphs) large.

Then check these metrics in the vertex links

(which are 2-dimensional PS complexes).
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The software

The program coxeter.g is a set of GAP rou-

tines used to examine Brady-Kramer complexes.

Initially developed to test the curvature of the

Brady-Krammer complexes using the “natu-

ral” metric, the routines were extensively mod-

ified by Woonjung Choi so that they

• find the 3-dimensional simplicial structure of

the cross-section

• find representive vertex and edge links (up to

automorphism)

• find the graphs for the edge links

• find the simple cycles in these graphs

• find the linear system of inequalities which

need to be satisfied by the dihedral angles of

the tetrahedra.

(do a demonstration)
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Dihedral angle rigidity

Thm: Let σ and τ be n-simplices and let f

be a bijection between their vertices. If the

dihedral angle at each codimension 2 face of σ

is at least as big as the dihedral angle at the

corresponding codimension 2 face of τ , then σ

and τ are isometric up to a scale factor.

Proof: ∃ai > 0 s.t.
∑

i

ai ~ui = ~0 (Minkowski).

0 = ||~0||2 =
∑

i

∑

j

aiaj(~ui · ~uj)

≥
∑

i

∑

j

aiaj(~vi · ~vj)

= ||
∑

i

ai~vi||
2 ≥ 0

This implies ~ui · ~uj = ~vi · ~vj for all i and j, which

shows σ and τ are similar.
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CAT(0) and Brady-Krammer complexes
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Type H4

The case of H4 is hard to resolve because

the defining diagram has no symmetries which

greatly increases the number of equations and

variables involved in the computations.

H4 has:

• 1350 simplices

• 23 columns

• 16 types of tetrahedra in the cross section

• 10 vertex types to check

• 2986 inequalities in 96 variables

• 638 simplified inequalities in 96 variables

The F4 and D4 cases produced systems small

enough to analyze by hand. This system is

not.
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II. Small cancellation groups

Def: A piece is a path in the 1-skeleton which

can be ε-pushed off the 1-skeleton in at least

two distinct ways.

Def: A 2-complex is C(p) if each 2-cell bound-

ary cannot be covered with fewer than p pieces.

Def: A 2-complex is T(q) if there does not

exist an immersed path in a vertex link with

length between 2 and q.

Recall: Higher dimensions help local curva-

ture.

abaa=bb
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Philosophy

Let X be a finite combinatorial cell complex,

let C be the collection of maximal closed cells

in X̃, and let P be the poset of intersections

of elements in C. The poset P is the nerve.

The main idea is to replace each maximal cell

in X with a high-dimensional cell so that they

glue together nicely and the nerve of the result

is identical.

X

Nerve(X)
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“Pieces”

Def: A piece is a subcomplex of X̃ which cor-

responds to an element of the nerve.

P = ∩n
i=1Ci where Ci ∈ C

Rem: Notice that this differs from the stan-

dard definition of piece in that subcomplexes

of pieces are not necessarily pieces.

We will try to find new complexes with the

same nerve so that every piece is a face of

each maximal closed cell which contains it.
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“Small cancellation”

We will be particularly interested in complexes

in which

1. each C embeds in X̃ and

2. each P ∈ Pieces(X) is contractible.

Under these types of restrictions, different com-

plexes realizing the same nerve will be homo-

topy equivalent.

Various small-cancellation-like conditions on X

will guarantee both of these properties. For ex-

ample, overlaps between closed cells are “small”

subcomplexes of its boundary and links are

“large”.
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Sample Theorem

Recall: a cube complex is NPC iff its vertex

links are flag.

Thm (Brady-M, Wise) If X is C′(1/4)−T(4)

complex then π1X is the fundamental group

of a compact high-dimensional nonpositively

curved cube complex.

Rem: Actually it is sufficient for the total

length of any two consecutive pieces in R to

be at most half of |R|.

Rem: Dani Wise can extend many of these

results to C′(1/6) groups.
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Proof

Step 1: Subdivide every edge so that every

2-cell has even length.

Step 2: Identify each 2-cell R with |∂R| = 2n

with a n-dimensional cube.

Step 3: Glue cubes along faces corresponding

to the pieces.

It is easy to check that the result is a non-

positively curved cube complex with the same

nerve as the original 2-complex.
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III. Ample twisted face pairings

Noel Brady and I have also shown that one

ample twisted face-pairing example is the fun-

damental group of a high dimensional CAT(0)

cube complex.

(3 transparencies with pictures by Cannon, Floyd

and Parry)
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