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I. Angles in Polytopes

Let F be a face of a polytope P .

• The normalized internal angle α(F, P) is the

proportion of unit vectors perpendicular to F

which point into P (i.e. the measure of this

set of vectors divided by the measure of the

sphere of the appropriate dimension).

• The normalized external angle β(F, P) is the

proportion of unit vectors perpendicular to F

so that there is a hyperplanes with this unit

normal which contains F and the rest of P is

on the other side.

Thm:
∑

v∈P

β(P, v) = 1.
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Angle Sums

The sum of the internal angles in a triangle

is π, but the sum of the dihedral angles in a

tetrahedron can vary.

There are relations between the various inter-

nal and external angles in a Euclidean polytope

but we will need a digression into combina-

torics in order to state the relationship prop-

erly.
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Posets and Incidence algebras

Let P be a finite poset with elements labeled

by [n]. The set of n × n matrices with aij 6= 0

only when i ≤P j is called the incidence algebra

of P , I(P).

For any finite poset P there is a numbering of

its elements which is consistent with its order.

In this ordering, the incidence algebra is a set

of upper triangular matrices.
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Delta, Zeta and Möbius functions

Rem: The elements of I(P) can also be thought

of as functions from P × P → R.

The identity matrix is the delta function where

δ(x, y) = 1 iff x = y.

The zeta function is the function ζ(x, y) = 1

if x ≤P y and 0 otherwise (i.e. 1’s wherever

possible).

The möbius function is the matrix inverse of

ζ. Note that µζ = ζµ = δ.
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Möbius functions and Euler characteristics

Let P be a finite poset and let P̂ be the same

poset with the addition of a new minimum el-

ement 0̂ and a new maximum element 1̂. The

value of the möbius function on the interval

(0̂, 1̂) is the reduced Euler characteristic of the

geometric realization of the poset P .

P̂ =

1

5

432 χ̃(P) = 2

In this example the realization of P is 3 discrete

points.
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Digression on `(2) Betti numbers

Following the type of philosophy espoused in

Wolfgang Lück’s talks, John Meier and I re-

cently calculated the `(2) Betti numbers of the

pure symmetric automorphism groups with very

few calculations.

We used

• a spectral sequence to show that all but the

top Betti number was 0,

• the final Betti number must be the Euler

characteristic of the fundamental domain,

• which comes from the möbius function,

• which we computed using techniques from

enumerative combinatorics.
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Incidence algebras for Polytopes

The faces of a Euclidean polytope under in-

clusion is its face lattice. Traditionally 0̂ = ∅

is added so that the result is a lattice in the

combinatorial sense.

The set of all internal (external) angles forms

an element of the incidence algebra of the face

lattice, α (β).

Rem: The notion of internal and external an-

gle needs to be extended so that α(0̂, F) and

β(0̂, F) have values, and there are many natu-

ral ways to do this.
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Möbius functions for Polytopes

Lem: The möbius function of the face lattice

of a polytope is µ(F, G) = (−1)dimG−dimF .

Proof: The geometric realization of the por-

tion of the face lattice between F and G is a

sphere.

Def: Let ᾱ(F, G) = µ(F, G)α(F, G), [Hadamard

product] (i.e. ᾱ is a signed normalized internal

angle.

Thm(Sommerville) µα = ᾱ i.e.

∑

F≤G≤H

µ(F, G)α(G, H) = µ(F, H)α(F, H)
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Equations for angles

The most interesting of angle identity is the

one discovered by Peter McMullen.

Thm(McMullen) αβ = ζ, i.e.

∑

F≤G≤H

α(F, G)β(G, H) = ζ(F, H)

Proof Idea:

• Look at (a polytopal cone) × (its dual cone)

• Integrate f(~x) = exp(−||~x||2) over this R
2n in

two different ways.

Cor: µαβ = ᾱβ = δ.
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Curvature in PE complexes

Following Cheeger-Müller-Schrader (and Charney-

Davis), if X is a PE complex

χ(X) =
∑

P

(−1)dimP

=
∑

P

∑

v∈P

(−1)dimPβ(v, P)

=
∑

v

∑

P3v

(−1)dimPβ(v, P)

=
∑

v
κ(v)

where κ(v) :=
∑

P3v

(−1)dim Pβ(v, P).

Rem 1: κ(v) is similar to (but not) a signed

version of β.

Rem 2: The first step is really just replacing

δ with ᾱβ in a very precise sense.
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II. Combinatorial Gauss-Bonnet

An angled 2-complex is one where we assign

normalized external angles β(v, f) for each ver-

tex v in a face f .

Define κ(v) as above. Define κ(f) as a correc-

tion term which measures how far the external

vertex angles are from 1.

κ(f) = 1 −
∑

v∈f

β(v, f)

Thm(Gersten,Ballmann-Buyalo,M-Wise)

If X is an angled 2-complex, then

∑

v
κ(v) +

∑

f

κ(f) = χ(X)

Rem: In all these papers the sum was 2πχ(X)

since the angles were not normalized. As we

have seen normalization is crucial for the equa-

tions in higher dimensions.
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Combinatorial Gauss-Bonnet in

higher dimensions

The formula
∑

v∈P β(v, P) = 1 is a consequence

of McMullen’s theorem under one extension of

α and β to the intervals (0̂, F).

Similarly, the combinatorial Gauss-Bonnet The-

orem on the previous slide comes from revers-

ing the order of summation for another factor-

ization of the zeta function.

General CGB “Thm” Given any factorization

αβ = ζ, reversing the order of summation gives

a combinatorial Gauss-Bonnet type formula.

Rem 1: Only factorizations which produce

lots of 0s will be of much use, but there is

room to explore.

Rem 2: The Regge calculus should also fit

into this framework.
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III. Conformal CAT(0) structures

A 2-complex X with an angle assigned to each

corner is an angled 2-complex .

If the vertex links are CAT(1), then X is called

conformally CAT(0).

Thm(Corson): Conformally CAT(0) 2-complexes

are aspherical.

Example: The Baumslag-Solitar groups are

conformally CAT(0) - even though they are

not CAT(0), except in the obvious cases.
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Sectional curvature

Def: Let X be an angled 2-complex. If ev-

ery connected, 2-connected subgraph of each

vertex link is CAT(1), then X has non-positive

sectional curvature.

Thm(Wise) If X is an angled 2-complex with

non-positive sectional curvature, then π1X is

coherent.

Rem: Using Howie towers, these are the key

types of sublinks that need to be considered.
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Special polyhedra

Def: A 2-complex is called a special polyhe-

dron if the link of every point is either a circle,

a theta graph, or the complete graph on 4 ver-

tices. These points define the intrinsic 2-, 1-

and 0-skeleta of X.
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Conformal CAT(0) structures and

Special polyhedra

Lem: If X is an angled 2-dimensional special

polyhedron, then X is conformally CAT(0) if

and only if X has non-positive sectional curva-

ture.

Pf: The only subgraphs to check are triangles,

and whole graph.

Cor: If X is a 2-dimensional special polyhedron

with a conformal CAT(0) structure, then π1X

is coherent.
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IV. One-relator groups

Conj A: Every one-relator group is coherent.

Conj B: Every one-relator group is the funda-

mental group of a 2-dimensional special poly-

hedron with a conformal CAT(0) structure.

Rem 1: Conjecture B implies Conjecture A,

and it would help explain why one-relator groups

tend to “act like” non-positively curved groups.

Rem 2: For Conjecture A it is sufficient to

prove Conjecture B for 2-generator one-relator

groups since every one-relator group is a sub-

group of a 2-generator one-relator group. More-

over, the inequalities are tight (and become

equations) in this case.
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Special polyhedra for one-relator groups

Def: If x is a point in X(2) such that X − x

deformation retracts onto a graph, then x is a

puncture point.

Rem: If X has a puncture point then π1X is

a one-relator group.

Thm(N.Brady-M) If X is the presentation 2-

complex for a one-relator group, then X is

simply-homotopy equivalent to a 2-dimensional

special polyhedron Y with a puncture point. In

addition, Y can be chosen so that it has no

monogons, bigons, or untwisted triangles.
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Additional remarks

The puncture point and χ(X) = 0 allow you to

remove most portions of the 2-skeleton which

are not discs.

The game is to use the flexibility in the spe-

cial polyhedron construction to manipulate the

linear system so that it has a solution. Since

this system has 3n variables and 2n equations,

our odds are good in general – we only need

to avoid contradictions.

The first several examples we tried by hand

produced conformal CAT(0) structures, even

when we proceeded “randomly”.

A computer program to check all the one-

relator groups out to a modest size is high on

my to-do-list.
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