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Main theorem

Rough version

Thm(M-Rhodes) If S is a finite A-semigroup

then there exists a finite expansion of S such

that the right Cayley graph of the expansion

has many of the nice geometric properties of

the right Cayley graph of the Burnside semi-

group B(m, n), n ≥ 6.
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Burnside semigroups

Def: B(m, n) = 〈A | am = am+n ∀a ∈ A+〉

Why Burnside semigroups?

• Krohn-Rhodes complexity involves aperiodics

and groups.

• Free groups are well understood; free aperi-

odics less so.

• The structure of the free aperiodic is closely

tied to the Burnside semigroups.

Sample “Thm”: The term problem for the free

aperiodic can be solved by mimicking the so-

lution to the word problem for the Burnside

semigroups.
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Finite directed graphs

Def: If the strong components of a finite di-

rected graph are totally ordered, we say it is

quasi-linear.

Def: If a quasi-linear connected graph has a

minimal number of edges outside strong com-

ponents, then it has a quasibase.
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Lem: If Γ is a finite directed graph with a

quasibase and p is a topmost vertex then there

exists a directed spanning tree rooted at p.

[transition edges, entry/exit points]
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Finitely-generated semigroups

Def: An A-semigroup is a semigroup S to-

gether with a function A → S whose image

generators.

Def: A morphism φ : S → T between A-semigroups

such that A → T factors as A → S → T is called

an A-morphism.

Def: Let Cayley(S, A) denote the right Cayley

graph of S1.

Rem: The strong components of Cayley(S, A)

are the Schützenberger graphs of the R-classes

of S1.

Def: Let schS(w) be the Schützenberger graph

containing the vertex [w].

5



Finite J -above

Lem: A semigroup S is finite J -above ⇔ ∃

family of co-finite ideals with empty intersec-

tion.

Categories

FS ⊂ FJS ⊂ S

FSA ⊂ FJSA ⊂ SA

Rem: SA is a poset; i.e.

• Given S and T there is at most one map

S → T .

• Given A-morphisms f : S → T and g : T → S,

f = g−1 (canonical).

(actualy a lattice)
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Straightline automata

Def: If S is finite J -above A-semigroup and

w ∈ A+ then the straightline automaton, strS(w),

is the path w together with the strong compo-

nents of its prefixes.

Lem: strS(w) is a trim, deterministic FSA

which has a quasibase and its strong compo-

nents are Schützenberger graphs.

...

u0 = v0
u1 u2 u3 = v3

ukv1 v2 vk

schS(u1)

schS(u2)

schS(u3)
schS(uk)

7



Cayley automata

Def: CayS(w) is the full subgraph of Cayley(S, A)

on vertices R-above [w].

Lem: CayS(w) is a trim, deterministic FSA

which accepts the language of words equiva-

lent to w in S.

...

Rem: Want

• strS(w) = CayS(w)

• to “build” strs(w) “geometrically”
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Expansions

Def: Let C be a subcategory of S. An expan-

sion on C is a functor F : C → C with a natural

transformation to the identity. Explicitly,

∀S ∈ C ∃Sexp and η : Sexp → S.

∀S, T ∈ C ∃fexp : Sexp → Texp

plus consistency conditions.

Rem: For A-semigroups consistency is auto-

matic, and expansions on SA are lattice homo-

morphisms.

Def: exp preserves finiteness if S is finite im-

plies Sexp finite.

Lem: If exp is an expansion on SA which pre-

serves finiteness, then S is finite J -above, im-

plies Sexp will be finite J -above.
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Digression 1: lattices

Lattices in the combinatorial sense have been

around for a long time. Their importance in

combinatorics, in semigroup theory, and in group

theory is well-established.

One aspect of lattices which has been too lit-

tle appreciated in geometric group theory is

that the lattice property is the key underly-

ing element which drives most combinatorial

constructions of Eilenberg-MacLane spaces in

the literature (Culler-Vogtmann’s outer/auter

space, Charney-Davis poset of cosets for Cox-

eter groups, Charney-Meier-Whittlesey construc-

tions for Garside groups, McCullough-Miller space

for free-product decompositions, etc)

One analogy is between a poset construction

with a lattice fundamental domain and a spec-

tral sequence which collapses. Few people would

be interested (or able) to calculate the result-

ing topology in the absence of these condi-

tions.
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Digression 2: tropical algebra

An idempotent semiring is a set with two com-

mutative monoid operations where “multipli-

cation” distributes over “addition” and “ad-

dition” is idempotent (∀a, a + a = a). The

naturals (with +∞) under max and plus are

an idempotent semiring. Idempotent semir-

ings are equivalent to certain types of lattices

via a + b = a ∨ b.

If the semiring (N,max,+) is used instead of

the semiring (N,+,×) in classical algebraic ge-

ometry the result is “tropical” algebraic geom-

etry.

Most semigroup theorists know tropical alge-

bra as a topic closely related to formal lan-

guage theory and Kleene stars [Simon, Pin].

For geometric group theorists, the most inter-

esting aspect of tropical algebra is the fact that

the tropical Grassmannian G(2, n) is precisely

the space of metric trees defined by Billera,

Holmes and Vogtmann.
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Digression 3: quantales

Classically a quantale is a lattice with a supre-

mum over every subset, much like the open

sets of a topological space. In fact, one the-

orist has described their study as “pointless

topology”. (think sheaves)

They have the same advantages as commu-

tative diagrams have over explicit calculations

using elements: they force one to think cate-

gorically rather than element by element.

Finally, the passage from studying elements

to studying operators corresponds to the con-

struction of non-commutative geometry [Connes]
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Mal’cev Expansions

Def: Mal’cev kernel of φ : S → T is

{φ−1(e) | e2 = e ∈ T}.

Thm(Brown) Let φ : S → T be a homomor-

phism. If the Mal’cev kernel of φ lies in a locally

finite variety V, and T is finite, then S is finite.

Def: The Mal’cev expansion of S by V is the

largest A-semigroup which maps to S with Mal’cev

kernel in V. [intersect congruences] Denote

this SV.

Thm: For each V, S 7→ SV is an expanion on

SA. If V is locally finite, it is also an expansion

on finite A-semigroups and finite J -above A-

semigroups.

Rem: Even S{1} is non-trivial! (Ash)
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Examples

Name Notation Equations

Trivial {1} x = 1

Semilattices SL x2 = x, xy = yx

Right zero RZ xy = y

Bands B x2 = x

Rectangular bands RB x2 = x, xay = xby

(and many more)

All of these are locally finite
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Rectangular bands

Lem: SRB is defined by

SRB = 〈A | αβ = α, α, β ∈ A∗, [α] = [β] = e2 = e

in SRB〉

Notice the circularity!

This is only used to present SRB once it has

been found.

Rem: SRB → S is a J ′-map and one-to-one

on subgroups.

Lem: If T = SRB, then strT (w) is a loop au-

tomaton defined by a finite number of loop

equations (similar to the Burnside semigroups).

Thm: SRB is stable under the Rhodes, reverse

Rhodes, Birget-Rhodes, Rhodes-Karnofsky, and

reverse Rhodes-Karnofsky expansions (similar

to the Burnside semigroups).

Cor: strT (w) = CayT (w) and it only depends

on [w] (similar to the Burnside semigroups).
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Burnside semigroups

Def: B(m, n) = 〈A | am = am+n ∀a ∈ A+〉

[de Luca-Varricchio, do Lago, M, Guba]

Fact: for m large enough strB(m,n)(w) is a

loop automaton which accepts a language de-

scribed by a unionless Kleene expression.

V = strB(6,1)(z6)

U = strB(6,1)((xy)6x)

and strB(6,1)(((xy)6xz)6)

z z z z z z

z

x y x y x y x y x y x y x

xy
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Why aren’t Burnside semigroups

completely trivial to work with?

Consider the following sequence of equalities

in B(6,2)

(xy7)7xy6 ≡

(xy7)7xy8 =

(xy7)8y ≡

(xy7)6y =

(xy7)5xy8 ≡

(xy7)5xy6

So we can replace a not-quite 8-th power with

a not-quite 6-th power. If this behavior could

propogate, this would be bad.

Knuth-Bendix to the rescue! (along with the

|X| + |Y | lemma)
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Philosophy

Consider the regular language {a + b + c}∗.

This has several union-less Kleene expressions.

For example, a∗(ba∗)∗(c(ba∗)∗)∗

minimum
automaton accepting

the language
⇔

topology
of the

language

Kleene expressions
for the language

⇔
geometries
imposed on
its topology

We think of loops which occur earlier in the

Kleene expression as being “shorter” in this

“geometry”
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Pumping

Once it is noticed that every straightline au-

tomaton in B(m, n) accepts a language de-

scribed by a union-free Kleene expression, there

is a natural way to “pump” this language to a

new Burnside semigroup which has more rep-

etition: simply replace each ∗ with a specific

number, say k, and then recalcuate the lan-

guage in a the new group.

Notice that this is dependent on the form of

the Kleene expression chosen. For example,

a∗(ba∗)∗(c(ba∗)∗)∗ becomes a17(ba17)17(c(ba17)17)17

when k = 17. The behavior of this word is an

exaggerated version of the previous behavior.

In particular, the “shorter” loops repeat quite

often before the next largest loop appears.
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Improving stabilizers

Thm(Le Saec-Pin-Weil) Let S be a finite A-

semigroup and p prime. If p is sufficiently large

then ∀t ∈ T = SLZ.〈Zp〉 the right stabilizer Tt

will be an R-trivial band. In other words, Tt

will satisfy x2 = x and xyx = xy.

Cor: The right stabilizer of SRB.〈Zp〉.RB con-

sists of a finite L-chain of idempotents (within

itself) and is R-trivial.

Cor: If T = SRB.〈Zp〉.RB then the set of loops at

state q in strT (w) form an R-trivial idempotent

subsemigroup which is an L-chain in itself.
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Falling back on trees

Def: Γ has the unique simple path property

from q if there does not exist a state p and

two distinct simple paths from q to p.

r s

Rem/Def: If Γ is a Cayley graph for a pointed

faithful partial transformation semigroup, ∃ an

“expanded” graph with u.s.p.p. from 1.

Lem: Mc is an expansion on the category of

pointed faithful partial A-semigroups. [similar

to the Rhodes expansion]
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Example 1
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Example 2

Multiplication by an edge:

p qr

e

e′

Nonassociativity:

a
b c

d

e f

g

aefg = ((abc)d)(efg) 6= (abc)(d(efg)) = abcg
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Properties

Rem: If T = SRB.Mc then the labeled graph

defining T has the u.s.p.p. from 1 (and schT (w)

has u.s.p.p. from its entry point). In addition,

strT (w) has a well-defined base, Cayley(T, A)

has a well-defined tree and all other edges con-

nect a vertex to a point earlier in the tree.

Finally, strT (w) is an elementary loop automa-

ton.
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Adding in delays

Finally, we add in delays so that the loops

which occur on any path from 1 occur in a

“natural” order.

As an expansion, SDk is often denoted S〈k〉.

Recall that Dk is defined by x1 · · ·xkx = x1 · · ·xk.

This ensures that “loops” which occur have

paths which have already occurred repeatedly.

This provides the ordering of the loops.
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Main result: slightly less rough

Let S be a finite (or finite J -above) A-semigroup,

and let

T = SRB.〈Zp〉.RB.Mc.〈k〉

Then strT (w) is very close to the Burnside

automata (and still finite!)

(the Cayley graph is tree-like and smaller rank

things have to repeat many many times before

they are able to generate a new loop, the au-

tomaton is defined by loop equations, and the

end result is very fractal-like along each path,

etc, etc, etc)

The result is an object which is/should be use-

ful in the study of Krohn-Rhodes complexity.

26


