Math 110, Fall 2012, Sections 109-110 Worksheet 2

- 1. Prove that if $\{A_1, A_2, \ldots, A_k\}$ is a linearly independent subset of $M_{n \times n}(F)$ then so is $\{A_1^t, \ldots, A_k^t\}$.
- 2. Determine if the statement is true or false, and justify your answer. Let S and T be subsets of a vector space V.
 - (a) If S is linearly independent and $S \subset T$, then T is linearly independent.
 - (b) If S is linearly dependent and $S \subset T$, then T is linearly dependent.
 - (c) If S spans V and $S \subset T$, then T spans V.
 - (d) If S does not span V and $S \subset T$, then T does not span V.
- 3. Let V be a vector space. Assume $u, v, w \in V$ and u + v + w = 0. Let $W_1 = \text{span}\{u, v\}$ and $W_2 = \text{span}\{u, w\}$. Is $W_1 = W_2$? Prove your answer.
- 4. (a) As a subset of the vector space \mathbb{R}^3 , is $\{(2,4,1), (1,2,4)\}$ linearly independent or linearly dependent?
 - (b) Compute 4(2, 4, 1) (1, 2, 4) in $(\mathbb{Z}/7)^3$ and comment.
- 5. Let V be the real vector space of functions from \mathbb{R} to \mathbb{R} with pointwise addition and scalar multiplication. Let $f, g, h \in V$ be the elements $f(x) = e^x$, $g(x) = \cos(x)$, and $h(x) = \sin(x)$. Is $f \in \operatorname{span}\{g, h\}$?

1) Suppose $c_1 A_1^t + \cdots + c_k A_k = 0$. We must show that $c_i = 0$ for all *i*. By the linearity of the transpose, we have

$$(c_1A_1 + \dots + c_nA_n)^t = 0,$$

and taking transposes of both sides yields

$$c_1A_1 + \dots + c_nA_n = 0.$$

Since we assumed that $\{A_k\}$ was linearly independent, we must have $c_i = 0$ for all *i*.

2) a) False. $\{(1,0)\}$ is a linearly independent subset of \mathbb{R}^2 but $\{(1,0), (0,0)\}$ is not.

b) True. Since S is linearly dependent, there are $v_1, \ldots, v_k \in S$ and non-zero $c_1, \cdots, c_k \in F$ with

$$c_1 v_1 + \cdots + c_k v_k = 0$$

But then every $v_k \in T$, so T is linearly dependent as well.

c) True. For every $v \in V$ there are $v_1, \ldots, c_k \in S$ and $c_1, \ldots, c_k \in F$ with

$$v = c_1 v_1 + \cdots + c_k v_k.$$

But each $v_k \in T$, so T spans V as well.

d) False. $\{(1,0)\}$ does not span \mathbb{R}^2 but $\{(1,0), (0,1)\}$ does.

3) Indeed $W_1 = W_2$. We first show $W_1 \subseteq W_2$. Let $x \in W_1$ and we will show it is in W_2 . Since $W_1 = \operatorname{span}\{u, v\}$, there are scalars $c, d \in F$ with x = cu + dv. We'd like to show that $x \in W_1$, so we must write it as a linear combination of u and w. Since w = -u - v, we also have x = (c - d)u - dw and thus $x \in \operatorname{span}\{u, w\}$.

Conversely, we must also show $W_2 \subseteq W_1$ so let $x \in W_2$. Then there are $c, d \in F$ with x = cu + dw. Substituting w = -u - v gives x = (c - d)u - dv, so $x \in \text{span}\{u, v\}$. We conclude that $W_2 \subseteq W_1$ and $W_2 = W_1$.

4) a) A set with two elements is linearly independent if and only if one element is a multiple of the other. As that is not the case here, the given set must be linearly independent.

b) However 4(2, 4, 1) - (1, 2, 4) = (0, 0, 0) in $(\mathbb{Z}/7)^3$, so $\{(2, 4, 1), (1, 2, 4)\}$ is a linearly dependent subset of $(\mathbb{Z}/7)^3$. This shows us that the even though both \mathbb{R}^3 and $(\mathbb{Z}/7)^3$ have vectors called (2, 4, 1) and (1, 2, 4), their properties are determined by which vector space we are working in.

5) It is not true that $f \in \text{span}\{g, h\}$. Suppose to a contradiction that there are real numbers α and β with $f = \alpha g + \beta h$. That is, $f(x) = \alpha g(x) + \beta h(x)$ for all $x \in \mathbb{R}$. Plugging in x = 0 yields $1 = \alpha$. On the other hand, plugging in $x = 2\pi$ yields $e^{2\pi} = \alpha$. This is a contradiction, so we must not have $f \in \text{span}\{g, h\}$.