Math 110, Fall 2012, Sections 109-110 Worksheet 3

- 1. Let V be a vector space over \mathbb{R} and $\{v_1, v_2, \ldots, v_m\} \subset V$. List two or three differences between $\{v_1, v_2, \ldots, v_m\}$ and span $\{v_1, v_2, \ldots, v_m\}$.
- 2. Let V be a vector space, and suppose $v_1, \ldots, v_k \in V$. What is dim span $\{v_1, \ldots, v_k\}$?
- 3. (a) I'm thinking of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$. All I'll tell you is that T(1,1,1) = (4,7) and T(1,0,-1) = (-2,3). Compute T(4,2,0).
 - (b) More generally, suppose if I have a linear transformation $T: V \to W$, and I tell you $T(v_1), T(v_2), \ldots$, and $T(v_k)$. For which $v \in V$ can you calculate T(v)?
- 4. Give an example of two vectors spaces V and W, and sets of vectors $\{v_1, v_2, v_3\} \subset V$, and $\{w_1, w_2, w_3\} \subset W$ such that there is no linear transformation with $T(v_i) = w_i$ for all *i*.
- 5. Suppose that T is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ with $R(T) \subseteq N(T)$.
 - (a) What are the possible values of r(T)?
 - (b) What is T(T(x)) for $x \in \mathbb{R}^n$?
- 6. Suppose $T: V \to W$ is a linear transformation and that $\{v_1, \ldots, v_k\}$ spans V.
 - (a) Give an example where $\{T(v_1), \ldots, T(v_k)\}$ does not span W.
 - (b) Prove that if R(T) = W, then $\{T(v_1), \ldots, T(v_k)\}$ spans W.