Math 110, Fall 2012, Sections 109-110 Worksheet 3

- 1. Let V be a vector space over \mathbb{R} and $\{v_1, v_2, \ldots, v_m\} \subset V$. List two or three differences between $\{v_1, v_2, \ldots, v_m\}$ and span $\{v_1, v_2, \ldots, v_m\}$.
- 2. Let V be a vector space, and suppose $v_1, \ldots, v_k \in V$. What is dim span $\{v_1, \ldots, v_k\}$?
- 3. (a) I'm thinking of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$. All I'll tell you is that T(1,1,1) = (4,7) and T(1,0,-1) = (-2,3). Compute T(4,2,0).
 - (b) More generally, suppose if I have a linear transformation $T: V \to W$, and I tell you $T(v_1), T(v_2), \ldots$, and $T(v_k)$. For which $v \in V$ can you calculate T(v)?
- 4. Give an example of two vectors spaces V and W, and sets of vectors $\{v_1, v_2, v_3\} \subset V$, and $\{w_1, w_2, w_3\} \subset W$ such that there is no linear transformation with $T(v_i) = w_i$ for all *i*.
- 5. Suppose that T is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ with $R(T) \subseteq N(T)$.
 - (a) What are the possible values of r(T)?
 - (b) What is T(T(x)) for $x \in \mathbb{R}^n$?
- 6. Suppose $T: V \to W$ is a linear transformation and that $\{v_1, \ldots, v_k\}$ spans V.
 - (a) Give an example where $\{T(v_1), \ldots, T(v_k)\}$ does not span W.
 - (b) Prove that if R(T) = W, then $\{T(v_1), \ldots, T(v_k)\}$ spans W.

1. Let $S = \{v_1, \ldots, v_m\}$. Then S is finite, while span S is infinite. Also, span S is a subspace of V while S is not.

2. We know that dim span $\{v_1, \ldots, v_k\} \leq k$, since some subset of $\{v_1, \ldots, v_k\}$ is a basis for its span. Any number between 0 and k is possible.

3. (a) Since (4, 2, 0) = 2(1, 1, 1) + 2(1, 0 - 1), we have

$$T(4,2,0) = 2T(1,1,1) + 2T(1,0,-1) = (4,20).$$

(b) T(v) can be calculated for any $v \in \text{span}\{v_1, \ldots, v_k\}$.

4. Take $V = W = \mathbb{R}^2$, $v_1 = (0,0)$, $w_1 = (1,0)$, and the other vectors to be anything you want. Linear transformations must take the zero vector to the zero vector, so no such linear transformation exists.

5. (a) Since $R(T) \subseteq N(T)$, we have $r(T) \leq n(T)$. The dimension theorem says that $n - n(T) = r(T) \leq n(T)$, so $r(T) \leq n/2$. We still must show that all values $0 \leq r(T) \leq n/2$ occur. Clearly 0 is a possible value, as the zero linear transformation satisfies $\{0\} \subseteq R(T) \subseteq N(T) = \mathbb{R}^n$. If $0 < k \leq n/2$, then the linear transformation

$$T(x_1,\ldots,x_n) = (0,\ldots,0,x_1,\ldots,x_k)$$

has $R(T) \subseteq N(T)$ and r(T) = k. If S is the right-shift operator, then this $T = S^{n-k}$.

(b) For any $x \in \mathbb{R}^n$, we have $T(x) \in R(T)$ and thus $T(x) \in N(T)$. This means that T(T(x)) = 0.

6. (a) Take $V = W = R^2$, $\{v_1, v_2\}$ to be the standard basis, and T(x) = 0 for all $x \in \mathbb{R}^2$.

(b) We must show that given $y \in W$, it is in span $\{T(v_1), \ldots, T(v_k)\}$. Since T is surjective, there is some $x \in V$ with T(x) = y. Since $\{v_1, \ldots, v_k\}$ spans V, there are coefficients $c_j \in F$ with $x = c_1v_1 + \cdots + c_kv_k$. Then we have

$$y = T(c_1v_1 + \dots + c_kv_k) = c_1T(v_1) + \dots + c_kT(v_k) \in \operatorname{span}\{T(v_1), \dots, T(v_k)\},\$$

as desired.