Math 110, Fall 2012, Sections 109-110 Worksheet 6

1. Let
$$A = \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}$$
.

- (a) Write A^{-1} as a product of elementary matrices.
- (b) Write A as a product of elementary matrices
- 2. True or false? If true, provide proof. If false, provide a counterexample.
 - (a) If A is an $m \times n$ matrix with a set of three linearly independent columns, then it also has a set of three linearly independent rows.
 - (b) Elementary row operations preserve the rank of A.
 - (c) Elementary column operations preserve the rank of A.
 - (d) Elementary row operations preserve the range of A.
 - (e) Elementary column operations preserve the range of A.
 - (f) Every $n \times n$ matrix can be written as a product of elementary matrices.
- 3. For each of the following linear transformations, determine if T is invertible and compute T^{-1} if applicable.
 - (a) $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ defined by T(p) = p'.
 - (b) $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ defined by T(p) = (p(-1), p(0), p(1)).
- 4. Suppose that D can be transformed into B using row and column operations. Prove that D' can be transformed into B' using row and column operations, where

$$D' = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & D \end{array}\right), \quad B' = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & B \end{array}\right).$$

5. Suppose that $A \in M_{m \times n}(F)$ and $b \in F^m$. Prove that if $\operatorname{rank}(A \mid b) = \operatorname{rank} A$, then there exists $x \in F^n$ such that Ax = b.