Math 110, Fall 2012, Sections 109-110 Worksheet 8

- 1. True or false? If true, justify. If false, provide a counterexample.
 - (a) The determinant of an elementary matrix can be any element of the field.
 - (b) A matrix $A \in M_{n \times n}(F)$ has rank n if and only if det $A \neq 0$.
 - (c) The determinant det : $M_{n \times n}(F) \to F$ is a linear functional.
 - (d) If $c \in F$, then det(cA) = c det(A).
 - (e) If you interchange two columns of a matrix, then the resulting matrix has determinant that is the opposite of the determinant of the original matrix.
- 2. A matrix $M \in M_{n \times n}(F)$ is called *nilpotent* if there exists a k > 0 for which $M^k = 0$. What can you say about the determinant of a nilpotent matrix?
- 3. Suppose $A, B \in M_{2013 \times 2013}(\mathbb{R})$. Prove that we cannot have AB = -BA. Bonus: construct two by two matrices A and B with AB = -BA.
- 4. Suppose that $D \in M_{n \times n}(F)$ is upper-triangular. In terms of the entries of D, what is the determinant of D?
- 5. Suppose C is an $m \times m$ matrix. Calculate the determinant of the (n+m) by (n+m) matrix

$$C' = \begin{pmatrix} C & B \\ 0 & I_n \end{pmatrix}.$$