Math 1B, Fall 2008
Section 107

Quiz 7 Solutions

(1) Determine whether the following series is absolutely convergent, condition-
ally convergent, or divergent,
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We test first for absolute convergence with the Integral Test. In this case,
lan| = ——. Because z and Inz are increasing, f(r) = —— is decreasing.
The function f is also continuous and positive when = > 2, so the Integral Test

applies. Integrating with u = Ilnx gives
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which diverges. So >.°°, —— diverges as well. However, because —— is
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decreasing (from before) and converges to 0, .~ , (7:111)7: converges by the Al-

ternating Series Test. We conclude that the series is conditionally convergent.

(2) Find the radius and interval of convergence for
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By the Ratio Test, the series converges when |z| < 1 and diverges when |z| >
%, and the radius of convergence must be R = L. To find the interval of
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convergence, we test the endpoints:
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z=g: Z ( \%% converges by Alternating Series Test.
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z=—g: 7;2 n diverges by p-test (p =1 < 1).
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(3) Find a power series expansion and its interval of convergence for
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So the interval of convergence is (—3,

Trying to get something of the form 11—, we calculate
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When we substituted ﬁ = ZZOZO (%)n, the sum in question converges when
% < 1 and diverges when % > 1 by the rules for geometric series. Multiplying
the series by § won’t change the interval of convergence, so the interval of

convergence is —9 < x < 9, or (—9,9).



