Name:

Math 32, Spring 2010, Section 101 Quiz 3

(1) Solve the inequality, and specify your answer in interval notation (1pt a, 2pts b/c)

(a) $3(t-2) \le 4t+11$

This is equivalent to $3t - 6 \le 4t + 11$, or $-17 \le t$. In interval notation, $[-17, \infty)$.

(b)
$$\left|\frac{x+1}{2}\right| > 1$$

We have two possibilities. One is $\frac{x+1}{2} > 1$, in which case the solutions are x > 1. On the other hand, we could have $\frac{x+1}{2} < -1$ in which case x < -3. Thus the answer is $(-\infty, -3) \cup (1, \infty)$.

(c)
$$\frac{x^2 + 2x - 3}{x - 2} \le 0$$

Factoring the top, we get $\frac{(x+3)(x-1)}{x-2} \leq 0$, so the key numbers are -3, 1, and 2. This inspires us to make the chart:

	$(-\infty, -3)$	(-3, 1)	(1, 2)	$(2,\infty)$
x+3	—	+	+	+
x - 1	—	—	+	+
x-2	—	—	—	+
overall	_	+	—	+

So our answer is going to include the intervals $(-\infty, -3)$ and (1, 2). Since the sign is " \leq " not "<", we include the endpoints *where they make sense*. In this case, -3 and -1 are valid solutions (try plugging them into the original inequality), but 2 is not because it would involve dividing by zero. Thus our solution is $(-\infty, -3] \cup [1, 2)$.

(2) (2 pts) Find the domain of the following function.

$$g(x) = \frac{\sqrt{x+6}}{x-2}$$

For this function to make sense, we need $x \neq 2$ and $x + 6 \geq 0$. That is, we need $x \geq -6$, but $x \neq 2$. In interval notation, that's $[-6, 2) \cup (2, \infty)$.

(3) (3 pts) Find the domain and range of the following function.

$$g(x) = \frac{4x - 20}{3x - 18}$$

The denominator cannot be 0, so we need $3x - 18 \neq 0$. That is, we need $x \neq 6$. So the domain is $(-\infty, 6) \cup (6, \infty)$.

To find the range, we set $y = \frac{4x-20}{3x-18}$ and solve for x. Multiplying through by 3x - 18 we get 3xy-18y = 4x-20, or 3xy-4x = 18y-20. Factoring out an x, that's x(3y-4) = 18y-20, or $x = \frac{18y-20}{3y-4}$. The range of g(x) is the domain of this new function, which is all numbers except when 3y-4=0. That is, all numbers besides $\frac{4}{3}$. In interval notation, $(-\infty, 4/3) \cup (4/3, \infty)$.