Math 32, Spring 2010, Section 101 Worksheet 3 Solutions

Work through the following problems in groups of about four. Take turns writing; everyone should get a chance to write for some of the problems. It's more important to understand the problems than to do all of them.

- 1. Find the center and radius of the circles determined by the following equations.
 - (a) $(x-1)^2 + (y+2)^2 = 9$. The quation is in standard form, so we can just read off the center and radius. The center is (1, -2) and the radius is $\sqrt{9} = 3$. For more, see p.63.
 - (b) $x^2 + y^2 10x + 2y + 17 = 0$. We need to complete the square for both the x terms and the y terms. Let's rewrite this as $(x^2 - 10x) + (y^2 + 2y) = -17$. To make the x terms into something of the form $(x - h)^2$, we need to add 25 to both sides. We then have $(x^2 - 10x + 25) + (y^2 + 2y) = -17$. That is, $(x - 5)^2 + (y^2 + 2y) = -17$. Next, we add 1 to both sides to complete the square for the y terms, and we get $(x - 5)^2 + (y + 1)^2 = -17 + 25 + 1 = 9$. So the center is (5, -1) and the radius is 3. For more, start reading at the bottom of p.64, or come to office hours.
- 2. If there are any, find the y-intercept(s) of the circles from question 1. Also, determine if the point (4, -2) is on each circle.

(a) We find the y-intercepts by looking for solutions to the equation (i.e. points on the circle) where x = 0. That is, we want to know which y values give us $(0-1)^2 + (y+2)^2 = 9$. Rearranging the equation, this is equivalent to $1 + y^2 + 4y + 4 = 9$, or $y^2 + 4y - 4 = 0$. The quadratic formula says that the solutions are $\frac{-4\pm\sqrt{16+16}}{2} = -2 \pm 2\sqrt{2}$. These are the y-intercepts. To test if (4, -2) is on the circle, we can simply plug it into the equation and see if it is true. In this case $(4-1)^2 + (-2+2)^2 = 9$, so the point is on the circle.

(b) Plugging x = 0 into the original equation (the standard equation we derived would work, but this is simpler) gives $y^2 + 2y + 17 = 0$. The discriminant 4 - 4 * 17 is negative, so this equation has no real solutions. That means this circle has no y-intercepts (try graphing it to see if this make sense!). To see if (4, -2) is on the circle, we can plug in and check $(4 - 5)^2 + (-2 + 1)^2 \neq 9$, so the point is not on the circle.

- 3. How many (real) solutions do the following quadratic equations have? (Hint: you don't have to do all of the work to find them.)
 - (a) $2x^2 10x + 5 = 0$. We just need to check the discriminant (see p.87). In this case, $(-10)^2 2 * 4 * 5 = 60$ is positive, so the equation has two real solutions.
 - (b) $\sqrt{2y^2} + \sqrt{3y} + 1 = 0$. The discriminant is $3 4\sqrt{2}$. Since $\sqrt{2}$ is bigger than 1, $4 * \sqrt{2}$ is bigger than 4. Thus $3 4\sqrt{2}$ is negative, and there are no real solutions.
 - (c) $t^2 2t = -1$. In standard form $t^2 2t + 1 = 0$. The discriminant is 0, so it has one real solution.
- 4. Solve the following equations. When appropriate, check for extraneous solutions.
 - (a) |x-4| 5 = 2. Rearranging gives |x-4| = 7. That means that x 4 = 7 or x 4 = -7. In the first case, x = 11, and in the second x = -3.
 - (b) $x^4 5x^2 = -6$. Substituting $t = x^2$ gives the equivalent equation $t^2 5t + 6 = 0$. Factoring, we get (t - 2)(t - 3) = 0, so t = 2 or t = 3. Since $t = x^2$, this tells us that $x^2 = 2$ or $x^2 = 3$. These are equivalent to $x^2 - 2 = 0$ and $x^2 - 3 = 0$. These quadratics have solutions $x = \pm\sqrt{2}$ and $x = \pm\sqrt{3}$, which are the solutions to the original equation.
 - (c) $8t^{-2} 17t^{-1} + 2 = 0$. We could substitute $y = t^{-1}$ and proceed as in the previous problem, but instead let's multiply both sides by t^2 . This gives us $8 17t + 2t^2 = 0$. Applying the quadratic formula, we get solutions $t = \frac{1}{4}(17 \pm \sqrt{17^2 4 * 2 * 8})$, or $t = \frac{1}{2}$ and t = 8. Since we multiplied both sides by an equation involving t, we need to check for extraneous solutions. Go ahead and check!
 - (d) $\sqrt{2-x} 10 = x$. Since there is only one square root, we can isolate it. That is, let's add 10 to both sides to get $\sqrt{2-x} = x + 10$. We can now square both sides to get $2-x = (x+10)^2 = x^2 + 20x + 100$. Adding x-2 to both sides gives $x^2 + 21x + 98 = 0$. Doing the quadratic formula (probably with a calculator; on quizzes and tests, the numbers will usually be smaller), we get solutions x = -14and x = -7. Since we squared both sides, we need to check for extraneous solutions. x = -7 works, but plugging in x = -14 involves taking the square root of a negative number, so this is not a valid solution.

5. Find the value(s) of k such that $kx^2 + kx + 1 = 0$ has exactly one real solution.

This will have exactly one real solution when the discriminant is 0, assuming the coefficient of x^2 is not 0 (if the coefficient of x^2 is 0, it's no longer quadratic, and all bets are off!). The disciminant is $k^2 - 4k$, so we're looking for solutions to $k^2 - 4k = 0$. Factoring, we get k(k-4) = 0 which has solutions k = 0 and k = 4. However, as we noted k = 0 makes the equation no longer quadratic, and testing we can indeed see that $0x^2+0x+1=0$ actually has no real solutions (it's just 1 = 0, which is impossible). So in this case, k = 4 is the only value that will give you exactly one real solution.