Math 32, Spring 2010, Section 101 Worksheet 7

Work through the following problems in groups of about four. Take turns writing; everyone should get a chance to write for some of the problems. It's more important to understand the problems than to do all of them.

- 1. True or false? Correct any false statements.
 - (a) $\ln(x+y) = \ln(x) + \ln(y)$
- (c) The range of $\ln x$ is all real numbers.

(b)
$$\ln(\sqrt{e}) = \frac{1}{2}$$
 (d) If $a = b^c$, then lo

- (a) False. $\ln(x \cdot y) = \ln(x) + \ln(y)$.
- (b) True. $\ln \sqrt{e} = \ln e^{\frac{1}{2}} = \frac{1}{2}$.
- (c) True.
- (d) False. If $a = b^c$, then $\log_b(c) = a$. This is the definition of the logarithm.

2. Find the domain of each of the following functions.

- (c) $y = \ln(2 x x^2)$ (a) $y = (\ln x)^2$
- (d) $y = \log_3 (e^x 1)$ (b) $y = \ln(x^2)$
- (a) $\ln x$ is only defined when x > 0, so the domain is $(0, \infty)$.
- (b) This is defined when $x^2 > 0$. That is, when $x \neq 0$. Hence the domain is $(-\infty, 0) \cup$ $(0,\infty).$
- (c) This is only defined when $2 x x^2 > 0$. Multiplying by -1, we get $x^2 + x 2 < 0$. Factoring yields (x+2)(x-1) < 0. Using the method of key numbers, we get that this equality holds when -2 < x < 1. Thus our domain is (-2, 1).
- (d) This is defined when $e^x 1 > 0$. Equivalently, when $e^x > 1$. This is true when x > 0. Thus the domain is $(0, \infty)$.

 $\operatorname{pg}_c(b) = a.$

3. Solve the equation $\log_6 x + \log_6(x+1) = 0$.

Combining the left side, we get $\log_6 (x(x+1)) = 0$. We now raise 6 to the power of each side. The right-side becomes $6^0 = 1$. Thus the equation becomes

$$1 = 6^{0}$$

= $6^{\log_6(x(x+1))}$
= $x(x+1).$

Expanding, this is $x^2 + x = 1$, or $x^2 + x - 1 = 0$. The quadratic formula gives

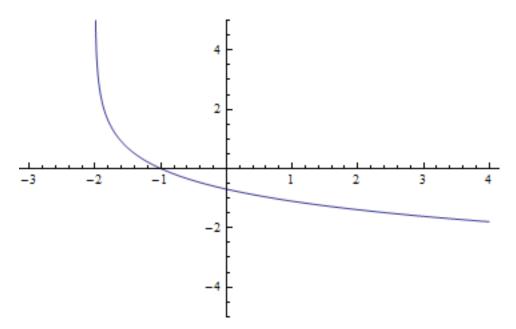
$$x = \frac{-1 \pm \sqrt{5}}{2}$$

However, looking at the original equation, we can see that we need x > 0 (and x > -1, but this is satisfied when x > 0) for the equation to make sense. Since $-1 - \sqrt{5}$ is negative, but $-1 + \sqrt{5}$ is positive, we get exactly one solution, namely $\frac{1}{2}(-1 + \sqrt{5})$.

4. Solve the inequality $\ln x + \ln(x+2) \le \ln 35$.

First, observe that the domain of the left-hand side is x > 0, so our answer must be contained within that interval. We now combine to get $\ln(x(x+2)) \le \ln 35$. We can exponentiate both sides to get $x(x+2) \le 35$, or $x^2 + 2x - 35 \le 0$. Factoring the left, we get $(x+7)(x-5) \le 0$. Using the method of key numbers, we can get that this is true when $-7 \le x \le 5$. However, we also need x > 0 from before, so the answer is (0,5].

5. Graph the function $y = -\ln(x+2)$, and specify any asymptotes and intercepts. What is the inverse of this function?



It has a vertical asymptote at x = -2. The *y*-intercept is found by plugging in x = 0, which gives $(0, -\ln 2)$. The *x*-intercept occurs when $0 = -\ln(x + 2)$. Multiplying through by -1 and then exponentiating gives 1 = x + 2, or x = -1.