
Math 54, Spring 2009, Sections 109 and 112
Midterm 2 Review Exercises

Solutions

These exercises don’t cover some of the very important computational-type problems,
including many of the things listed under the “be able to” section of the review sheet. You
can find examples of those types of problems on the sample exam and in the sections of the
book (including the supplemental exercises at the end of each chapter). These problem are
a little more theoretical, and are aimed at making sure you have a good grasp of the ideas
underlying the algorithms.

1) [p.299 #12-13] (a) Assume that A is an m × n matrix and that B is an n × p matrix.
Show that RankAB ≤ RankA. (Hint: Explain why every vector in ColAB is also in ColA.)

(b) Use part(a) to show that RankAB ≤ RankB (Hint: look at (AB)T ).

(c) Show that if P is an invertible m ×m matrix, then RankPA = RankA (Hint: Use (b)
and the fact that A = P−1(PA).)

(a) Recall that for a n × m matrix C, ColC = {C~x : x ∈ Rn}. Thus a generic element
of ColAB is of the form AB~x. But we can think of this as A(B~x), which is an element of
ColA. Thus everything in ColAB is also in ColA, so ColAB ⊆ ColA. By Theorem 11,
p.259, this means that dim ColAB ≤ dim ColA, which was to be shown.

(b) Recall that RankC = RankCT for any matrix C. With that in mind, we apply part (a)
to the matrices BTAT and BT . It says that RankBTAT ≤ RankBT . But BTAT = (AB)T ,
so we have Rank(AB)T ≤ RankBT . Since transpose doesn’t change rank, this means that
RankAB ≤ RankB.

(c) By part (b), RankPA ≤ RankA. On the other hand, if we apply part (b) to A =
P−1(PA), we get that RankPA ≤ RankP−1PA = RankA. The only way that both of
these inequalities can be true is if RankA = RankPA.
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2) [p.371, #3] Suppose ~x is an eigenvector of A corresponding to an eigenvalue λ. Show that
~x is an eigenvector of 5I − 3A+ A2. What is its eigenvalue?

Since ~x is an eigenvector of A, ~x 6= 0. We can compute

(5I − 3A+ A2)~x = 5I~x− 3A~x+ A2~x

= 5~x− 3λ~x+ Aλ~x

= 5~x− 3λ~x+ λ2~x

= (5− 3λ+ λ2)~x.

So ~x is an eigenvector of (5I − 3A+ A2) with eigenvalue (5− 3λ+ λ2).

3) Find a 2×2 matrix A such that A2+6I = 5A. What if we require that A not be diagonal?

We can rearrange the given equation to read A2−5A+6I = 0, or alternatively (A−2I)(A−
3I) = 0. One can now check that the following matrices satisfy the equation:[

2 0
0 2

]
,

[
2 0
0 3

]
,

[
3 0
0 2

]
,

[
3 0
0 3

]
.

This works because diagonal matrices multiply entry-by-entry, which is not true in general.
So what can we do to make this work with a non-diagonal matrix? Assume that P is some
invertible matrix. If A2 − 5A+ 6I = 0, then

0 = P−10P

= P−1(A2 − 5A+ 6I)P

= P−1A2P − 5P−1AP + 6P−1P

= (P−1AP )2 − 5(P−1AP ) + 6I.

That is, P−1AP satisfies the same equation. So we can take one of our diagonal examples
that worked, and find an invertible matrix P such that P−1AP is not diagonal. For instance,

A =

[
1 4
1 5

]−1 [
2 0
0 3

] [
1 4
1 5

]
=

[
−2 −20
1 7

]
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has the desired property. Note: in finding a matrix that satisfies A2 − 5A + 6I = 0, we
found one whose eigenvalues satisfy λ2 − 5λ+ 6 = 0. This is not a coincidence; it is part of
a theorem called the Cayley-Hamilton Theorem.

4) [p.371, #1] True or false? If true, explain why, and if false provide a counterexample.

(a) If A contains a row of zeros, then 0 is an eigenvalue of A.

(b) Every eigenvector of A is also an eigenvector of A2.

(c) If A is diagonalizable, then the columns of A are linearly independent.

(d) If A and B are invertible n× n matrices, then AB is similar to BA.

(e) If A is an n × n diagonalizable matrix, then every vector in Rn can be written as a
linear combination of eigenvectors of A.

(a) True. If A contains a row of all 0, then cofactor expansion across this row says that
detA = 0 thus A is not invertible. This means that 0 is an eigenvalue of A. Alternatively,
AT has a column of all zeros. If that is the k-th column of A, then ~ek is an eigenvector of
AT with eigenvalue 0. A and AT have the same eigenvalues, so 0 is an eigenvalue of A.

(b) True. If x 6= 0 and A~x = λ~x, then A2~x = λ2~x.

(c) False. A =

[
1 0
0 0

]
is diagonal(izable), but has a column that is the zero vector. Any set

that contains ~0 is linearly dependent.

(d) True. AB = B−1(BA)B says that AB is similar to BA.

(e) True. A matrix is diagonalizable if and only if Rn has a basis of eigenvectors of A, in
which case every vector in Rn can be written as a linear combination of the elements of this
basis.
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5) (a) Suppose that A is an n×m matrix. Show that ATA~x · ~x ≥ 0 for every ~x ∈ Rm.

(b) Show that if ‖~x‖ ≤ 1, then ‖A~x‖2 ≤
∥∥ATA~x

∥∥.

(a) Recall that if C is n × n and ~x ∈ Rn, we have C~x · y = ~x · CT~y. Thinking of ATA~x as
AT (A~x), this means that

ATA~x · ~x = A~x · A~x = ‖A~x‖2 ≥ 0.

(b) Picking up where we left off, we get

‖A~x‖2 = ATA~x · ~x
≤

∥∥ATA~x
∥∥ ‖~x‖

≤
∥∥ATA~x

∥∥ .
(The equality step follows from part (a), the first inequality is the Cauchy-Schwarz inequality
(p.432), and the second inequality comes from the fact that ‖~x‖ ≤ 1.)

6) Suppose that ~y ∈ Rn, that ‖y‖ = 1, and that W is a subspace of Rn. Show that
~y = ProjW ~y + ProjW⊥ ~y and that ‖~y‖2 = ‖ProjW ~y‖2 + ‖ProjW⊥ ~y‖2.

The Orthogonal Decomposition Theorem (p.395) says that ~y can be written uniquely in the
form ~y = ProjW ~y+~z, ~z ∈ W⊥. On the other hand, it also says that ~y can be written uniquely
in the form ~y = ProjW⊥ ~y + ~w where w ∈ (W⊥)⊥ = W . Since these decompositions are
supposed to be unique, they must be the same, so ~z = ProjW⊥ ~y and ~w = ProjW ~y. Hence ~y =
ProjW ~y+ProjW⊥ ~y. Since ProjW ~y ∈ W and ProjW⊥ ~y ∈ W⊥, we have ProjW ~y ⊥ ProjW⊥ ~y.
The statement about norms now follows immediately from the Pythagoren Theorem.
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