Name: _____

Math 54, Summer 2009, Lecture 4 Quiz 9 Solution

- (1) Let $V = \mathbb{P}_2$ with inner product $\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$.
- (a) If $p_1(t) = t^2$ and $p_2(t) = t$, show that $\{p_1, p_2\}$ is an orthogonal set. (4 points)

We just need to check that $\langle p_1, p_2 \rangle = 0$. And indeed:

$$\langle p_1, p_2 \rangle = p_1(-1)p_2(-1) + p_1(0)p_2(0) + p_1(1)p_2(1) = 1 * -1 + 0 * 0 + 1 * 1 = 0.$$

(b) Let $W = \text{Span} \{p_1, p_2\}$, and compute $\text{Proj}_W q$, where q(t) = t + 1.

Since we have an orthogonal basis for W, we have

$$\operatorname{Proj}_{W} q = \frac{\langle q, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1 + \frac{\langle q, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2.$$

We can now compute $\langle q, p_1 \rangle = 0 * 1 + 1 * 0 + 2 * 1 = 2$, $\langle p_1, p_1 \rangle = 1 * 1 + 0 * 0 + 1 * 1 = 2$, $\langle q, p_2 \rangle = 0 * -1 + 1 * 0 + 2 * 1 = 2$ and $\langle p_2, p_2 \rangle = -1 * -1 + 0 * 0 + 1 * 1 = 2$. Thus $\operatorname{Proj}_W q = \frac{2}{2}t^2 + \frac{2}{2}t = t^2 + t$.

(2) True or false? If it is true, say why. If it is false, provide a counterexample (3 points)

(a) If $V = \mathbb{R}^4$, an $\{\vec{u}_1, \vec{u}_2\}$ and $\{\vec{u}_3, \vec{u}_4\}$ are orthogonal subsets of V, then so is $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$.

False. Consider
$$\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\vec{u}_4 = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.

(b) If U is an orthogonal matrix and you rearrange the columns of U, then the resulting matrix is still orthogonal.

True. A matrix is orthogonal if and only if the columns are an orthonormal basis for \mathbb{R}^n . If we reorder an orthonormal basis for \mathbb{R}^n , then it will still be an orthonormal basis.

(3) Suppose that A is a square matrix, and that \vec{x}_0 is an eigenvector of A with eigenvalue λ . Suppose also that $A\vec{x}_0$ is orthogonal to \vec{x}_0 . What does this tell you about λ ? What does this tell you about λ ? What does this tell you about λ ?

We have $A\vec{x}_0 \cdot \vec{x}_0 = 0$ and $A\vec{x}_0 = \lambda \vec{x}_0$. Combining yields $(\lambda \vec{x}_0) \cdot \vec{x}_0 = 0$. Pulling the scalar out of the inner product, we get $\lambda(\vec{x}_0 \cdot \vec{x}_0) = 0$. Now, $\vec{x} \cdot \vec{x} = 0$ only when $\vec{x} = \vec{0}$, but by definition eigenvectors cannot be $\vec{0}$. Thus $\vec{x}_0 \cdot \vec{x}_0 \neq 0$, so we must conclude that $\lambda = 0$. This means that A is not invertible.