Math 54, Summer 2009, Lecture 4 Worksheet 1: Lay 1.7

(1) Classify the following sets as linearly independent or linearly dependent. (Hint: many don't require calculation).

(a) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}.$ (b) $\left\{ \begin{bmatrix} 2\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\5 \end{bmatrix}, \begin{bmatrix} 1\\-3\\2 \end{bmatrix} \right\}.$ (c) $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix} \right\}.$ (d) $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix} \right\}.$ (e) $\left\{ \begin{bmatrix} 1\\-2\\3\\-4 \end{bmatrix}, \begin{bmatrix} -3\\-6\\9\\-12 \end{bmatrix} \right\}.$ (2) True or False: The columns of a matrix A are linearly dependent if and only if the equation $A\vec{x} = \vec{0}$ is consistent. Justify your answer.

(3) Suppose $\vec{v}_1, \ldots, \vec{v}_4$ are vectors in \mathbb{R}^3 . Let $S_2 = \{\vec{v}_1, \vec{v}_2\}, S_3 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, and $S_4 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$. For each of the following, mark the statement true or false. As always, justify your answer.

- (a) If Span $S_4 = \mathbb{R}^3$, then Span $S_3 = \mathbb{R}^3$.
- (b) If Span $S_3 = \mathbb{R}^3$, then Span $S_4 = \mathbb{R}^3$.
- (c) If S_2 is linearly dependent, then so is S_3 .
- (d) If S_3 is linearly dependent, then so is S_2 .