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Abstract. Vacuum sectors of algebraic conformal field theories on the
circle satisfy Haag duality: A(I) = A(I ′)′. However if E is a union of
disconnected intervals, we instead get an inclusion A(E) ⊆ A(E′)′ that
measures the failure of Haag duality in this case. We will show that this
inclusion is isomorphic to the Longo-Rehren extension of a local algebra
A(I) by the category of representations of the net (assuming that the
net is rational).

1. Conformal nets

The main object of study in this talk will be nets of von Neumann algebras
on the circle. That is, an assignment I 7→ A(I) from (open, non-dense)
intervals of the circle S1 to von Neumann algebras acting on a fixed Hilbert
space H0. We assume that the net satisfies

• isotony (preserves inclusions),
• locality ([A(I),A(J)] = 0 when I ∩ J = ∅),
• vacuum condition (there exists a unit norm vector Ω that is cyclic

and separating for each A(I))
• irreducibility (A(I) are factors iff vacuum vector is unique iff

∨
A(I) =

B(H0))
• (conformal?) symmetry

The factors A(I) will be of type III1, and after we add more hypotheses
they will be hyperfinite.

To simplify a few technicalities, we will assume diffeomorphism (or con-
formal) covariance. That is, there is a strongly continuous projective unitary
representation U of Diff(S1) such that

• UgA(I)U∗g = A(g · I)
• If the support of g is contained in an interval I, then UgxU

∗
g = x for

all x in A(J) with I ∩ J = ∅.
• The vacuum vector Ω is invariant under the Mobius subgroup of

Diff(S1).
• The generator of the rotation subgroup Rθ ⊂ Diff(S1) is positive.

Example: A(I) is given by the vacuum positive energy representations of
LSU(n) at levels k = 1, 2, . . ..

Since we’re in subfactor seminar, we’re looking to get subfactors out of
nets. Locality says that if I take I, J with I ∩ J = ∅, then A(I) ⊂ A(J)′ is
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a subfactor. However, the relatively commutant A(I)′ ∩ A(J)′ will include
A(K) for any interval K such that I ⊂ K ⊂ J ′ (with J ′ the complementary
open interval S1 \ J). That is, we can only hope for finite index subfactors
when looking that A(I) ⊂ A(I ′)′. However, this does not work either.

• Haag duality: A(I ′)′ = A(I)
• Geometric modular group: the modular conjugation of A(I) acts by

reflection, and the modular group acts by dilation.

However, if we cut the circle into four pieces, we will often get a non-trivial
inclusion A(I1) ∨ A(I3) ⊂ (A(I2) ∨ A(I4))

′ (henceforth A(E) ⊆ A(E′)′).

We will sometimes also cut the circle at e3πi/4 to get the real line picture:
figure. The main implication of the “geometric modular group” is that if
J is the modular conjugation for A(0,∞), then JA(I)J = A(−I). In fact,
this “modular PCT symmetry” is sufficient - diffeomorphism covariance is
asking a whole lot more. Possible hypotheses

• rational (finitely many irreps, finite index)
• split
• strong additivity
• finite index A(E) ⊆ A(E′)′

• modular PCT symmetry

or

• rational
• split
• diffeomorphism covariant

Our goal today is to show that A(E) ⊆ A(E′)′ is isomorphic to the
Longo-Rehren extension of A(I1) by the category of representations of A.

2. Representation theory and superselection sectors

A (DHR) representation π : A → B(Hπ) is a collection of (automati-
cally normal) maps πI : A(I) → B(Hπ) that satisfy isotony and diffeomor-
phism covariance. That is, there is a projective unitary representation V of
Diff∞(S1) on Hπ such that πgI ◦ AdUg = AdVg ◦ πI . If π is irreducible,
then V factors through a projective representation of Diff(S1).

Examples are (non-vacuum) positive energy representations of LSU(n).
These representations give us Jones-Wassermann subfactors πI(A(I)) ⊆

πI′(A(I ′))′. These subfactors give us a lot of information about the repre-
sentation, and are never trivial except in the vacuum representation. The
standard approach in ACFT is to think of representations as localized en-
domorphisms.

We now fix an interval I0.

Proposition. If π is a DHR representation of a net A, then π is unitarily
equivalent to a representation ρ on H0 such that ρI′0 = id and ρJ(A(J)) ⊆
A(J) whenever I0 ⊆ J .
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Proof. Since all representations of a type III factor are equivalent, we may
pick a unitary w : Hπ → H0 such that x = wπI′0(x)w∗ for all x ∈ A(I ′0).

Now define a representation ρ of A on the vacuum Hilbert space by ρK(x) =
wπK(x)w∗. By construction, we have ρI′0 = id so it just remains to show

that ρJ acts as an endomorphism of A(J) when I0 ⊆ J .
First we show that

A(J ′) =
∨
J̃bJ ′

A(J̃),

where J̃ b J ′ means that J̃ ⊂ J ′. Take a sequence gn ∈ Diff(S1) (in the
Mobius subgroup, if desired) such that gn → 1 and gn · J b J . If x ∈ A(J),

then Ad gnx is a sequence in
∨
A(J̃) that converges strongly to x.

Thus it suffices to show that ρJ(A(J)) commutes with A(J̃) for J̃ b J ′.

Choose an interval K such that J ∪ J̃ ⊂ K. For x ∈ A(J) and ỹ ∈ A(J̃) we
have

ρJ(x)ỹ = ρK(xỹ)

= ρK(ỹx)

= ỹρJ(x)

Since the A(J̃) generate A(J ′), we have that x ∈ A(J ′)′ = A(J), as desired.
�

One then defines the dimension of a representation by dim ρ = [A(I0) :

ρ(A(I0))]
1
2 .

Fixing M = A(I0), we now have a functor of C∗ tensor categories: unitary
equivalence classes of representations−→ Sect(M). The objects in the image
of this functor are called “superselection sectors” (or just “sectors” when the
meaning is clear from context).

A net is called “rational” if the category of superselection sectors has
finitely many irreducible objects, all with finite dimension. Such nets were
first studied in this setting by Kawahigashi, Longo and Mueger under the
name “completely rational,” with the additional hypotheses of strong ad-
ditivity (irrelevance of points) and finite µ-index (index of the two-interval
inclusion in the vacuum sector). They showed that the natural braiding on
superselection sectors is non-degenerate, and Kawahigashi and Longo later
classified completely rational nets with central charge less than 1. Longo
and Xu showed that diffeomorphism covariant rational nets are completely
rational using an orbifold trick.

3. The two-interval and Longo-Rehren inclusions

We begin by describing the Longo-Rehren inclusion. If M is a type III
factor and {ρi} is a finite system of irreducible endomorphisms, then one
can show that ⊕

i

ρi ⊗ ρopi
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is the canonical endomorphism of some subfactor N ⊂ M ⊗Mop. Equiv-
alently, this is the dual canonical endomorphism of some extension of M ,
which will be the basic construction of N ⊂M . This is the infinite equiva-
lent of the asymptotic inclusion for finite-depth subfactors.

To get a conformal net version of this construction, cut the circle into
four intervals I1, . . . , I4, and put E = I1 ∪ I3 (so that E′ = I2 ∪ I4). The
two-interval inclusion is A(E) ⊆ A(E′)′. We will identify A(E) ⊂ A(E′)′

with the Longo-Rehren construction applied to A(I1) and the collection of
all irreducible sectors of A (localized in I1).

We proceed assuming the split property: that is, if I1 and I3 are dis-
joint intervals then A(I1) ∨ A(I3) ∼= A(I1) ⊗ A(I3). Let J be the modular

conjugation of the interval from 1 to e3πi/4. With j = Ad J , we have an
identification of A(I3) with A(I1)

op and jρj = ρop. If γE is the canonical
endomorphism of this inclusion (w/r/t to the vacuum state), and θE is its
restriction to A(E), then our main result is that

θE =
⊕

ρi ⊗ jρij,

as a sector of A(E).
The outline of the proof is as follows.

• We will show that 〈ρi ⊗ jρkj, θE〉 = δi,k.
• We will show that θE extends to a representation of the net A⊗Aop.
• We will “show” that the only irreducible representations of A⊗Aop

are of the form ρi ⊗ ρopk .

4. The proof

4.1. Step 1.

Proposition. Let N ⊂ M be a finite-index inclusion of type III factors.
Let γ be a canonical endomorphism, and θ its restriction to N . For ρ ∈
End(N), there is an anti-isomorphism between the linear space of intertwin-
ers HomN (ρ, θ) and HomM (1, ρ) (that is, elements of M that intertwine the
actions of id and ρ on N).

Proof. Let ε be the minimal conditional expectation from M to N and let
v ∈ HomM (1, γ) be the “Pimsner-Popa isometry”. That is,

[M : N ]ε(xv∗)v = x

for all x ∈ M (so that M = Nv). It is straightforward to check that the
desired anti-isomorphism is given by

w ∈ HomN (ρ, θ) 7→ w∗v ∈ HomM (1, ρ),

ψ ∈ HomM (1, ρ) 7→ [M : N ]ε(vψ∗) ∈ HomN (ρ, θ).

�

Theorem. Let ρ be an endomorphism of A localized in I1, and σ be an
endomorphism of A localized in I2. Then ρσ |A(E)≺ θE as a sector of A(E)
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if and only if [σ] = [ρ] as sectors of A(I1 ∪ I2 ∪ I3). If such a subsector
occurs, it occurs with multiplicity one.

Proof. Suppose ρσ |A(E)≺ θE . Then there is a ψ ∈ A(E′)′ such that ψx =
xρσ(x) for all x ∈ A(E). We also have ψx = xψ = ρσ(x)ψ for x ∈ A(I2).
By strong additivity, 1 ≺ ρσ as sectors of A(I1 ∪ I2 ∪ I3). Since ρ and σ
commute we also have 1 ≺ σρ, and σ = ρ.

The converse is similar. �

Theorem. If ρ is a superselection sector of A localized in I1, then [jρj] = [ρ]
as sectors of A(I1 ∪ I2 ∪ I3)

Proof. Let P = A(0,∞) in the line picture (A(1, e3πi/4)), and let w be the
isometry standard implementation of ρ as an endomorphism of P (so that
j(w) = w). For x ∈ P , we have wx = ρ(x)w = ρ(jρj(x))w. We also have

wj(x) = j(wx) = j(ρ(x)w) = (jρj)(j(x))w = ρ(jρj(j(x)))w.

Since j(x) is an arbitrary element of P ′, we have ρ(jρj(x))w = wx for all x
in P or P ′, and hence in any local algebra by strong additivity.

Thus for x ∈ A(I4) we have [w, x] = 0 so that w ∈ A(I1 ∪ I2 ∪ I3). Since
w intertwines 1 and ρ ◦ jρj on this algebra, we have that ρ = jρj. �

Corollary. Using the tensor product language, we have shown that⊕
ρ⊗ jρj ≺ θE

and no other ρi ⊗ jρkj occurs as a subsector.

4.2. Step 2.

Theorem. There is a superselection sector η of A⊗Aop such that ηI1 = θE.

Proof. We will use two standard facts from nets of subfactors. The first is
that assuming strong additivity, localized endomorphisms of the restriction
of a net to the line extend back to the circle.

Now define ηI1 := θE , as a sector of Ã(I1) := A(I1) ⊗ A(I1)
op. There

is a basic result in nets of subfactors that says that if I1 ⊆ I, there is an
extension of ηI1 to I so that if K ⊆ I \ I1 then ηK = id. This can be defined
by the formula v1x = ηI(x)v1, where v1 is the Pimsner-Popa isometry for
A(E′)′ inside its basic construction with respect to A(E).

Fix an interval I ⊃ I1 such that I\I1 is to the right of I1. Choose a unitary
u that transports ηI to an interval to the right of I. Then ηI = Adu∗, and
this gives an extension on A(−∞, c) where c is the right endpoint of I. The
inductive limit of this extension gives the desired superselection sector. �

4.3. Step 3. We now discuss why irreps π of A1⊗A2 decompose as π1⊗π2,
provided the Ai are completely rational. We will look at the “quasi-local”
C∗-algebra (denoted by C∗(A) or just A), which is defined as the universal
C∗-algebra generated by subalgebras A(I). A (covariant) representation
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of the net A is the same thing as a (covariant) representation of the C∗-
algebra A. A fundamental fact is that if ρ is an irreducible representation of
a completely rational net, then ρ(A)′′ is a factor of type I. We will sketchy
why this is true.

For any pair of intervals I b Ĩ, the split property says there is a factor of
type I∞ in A(Ĩ)∩A(I). In particular, we have a lot of copies of the compact
operators sitting in A. Restricting the representation to the subalgebra they
generate, we get a direct integral decomposition over a set X. If X is not
a singleton, this gives uncountably many mutually inequivalent representa-
tions of the compact subalgebra, which in turn (non-trivially) extends to
uncountably many inequivalent representations of A. This contradictions
rationality.

Thus if π is an irrep of A1 ⊗A2, its restrictions to the tensor summands
generate commuting type I factors, which give us a splitting of the repre-
sentation.


