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Abstract

Guided by Wassermann’s Operator Algebras and Conformal Field Theory III, we will

define the basic projective representation of the loop group LSU(n) on Fermionic Fock

space. We’ll briefly discuss subfactors arising from local loop groups, providing a direct

proof (using Sobolev space techniques) that positive energy representations of local loop

groups “cannot see points.”

1 Introduction

1.1 Positive energy representations

Our main object of study will be positive energy representations of loop groups LG = C∞(S1, G)

where G = SUn or G = S1.

Definition 1.1. A positive energy representation of LG is a projective unitary representation of

LGo T on a Hilbert space H which restricts to an ordinary representation of T, also satisfying

H =
∞⊕
k=0

H(n)

where dimH(n) <∞ and T acts on H(n) by multiplication by ω · ξ = ωnξ.

Since the irreducible representatinos of T are one-dimensional, they’re simply the characters

of T - known to be given by ω 7→ ωn for n ∈ Z. The positive energy condition requires that the

irreducible summands of the representation only correspond to non-negative n.

Example 1.1. The natural representation of LG o T on L2(S1,Cn) is not a positive energy

representation. Fix a non-zero vector v ∈ Cn, and let en(t) = eint ∈ L2(S1,Cn). We then have

ω · ·e−1 ⊗ v = ω−1e−1 ⊗ v = ωe−1 ⊗ v.

One potential way to fix this would be to take the natural “representation” of LG o T on

pH ⊕ (1− p)H, where p is the projection onto the Hardy space H2(S1, V ). The action of T
now has positive energy, but since the action of LG doesn’t commute with p, we don’t have a

C-linear representation.

However, we will build an irreducible positive energy representation π (called the fundamen-

tal representation) out of this natural representation, and it will turn out that the irreducible

positive energy representations are precisely the irreducible summands of π⊗`. Subfactors will

arise by considering restrictions of positive energy representations to subgropus of LG.

The outline of the talk is as follows.
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1. Construct the fundamental representation of LG, and show that it has positive energy

according to the actual definition. We will then redefine positive energy representation to

mean direct sums of irreducible summands of π⊗`.

2. State nice results relating to positive energy representations, including relationship with

subfactors.

3. Prove that these representations “can’t see points.”

2 The CAR algebra

Before we can construct the fundamental representation, we need to discuss the Canonical An-

ticommutation Relations (CAR) algebra of a Hilbert space H. We’ll simultaneously follow what

the results say for the example H = L2(S1,Cn).

Let ΛnH be the subspace of
⊗nH consisting of antisymmetric elements. We can think of

ΛnH being spanned by symbols f1 ∧ · · · ∧ fn which satisfy the relations fσ(1) ∧ · · · ∧ fσ(n) =

(−1)σf1 ∧ · · · ∧ fn. Let ΛH =
⊕∞

n=0 ΛnH be the exterior algebra of H, where Λ0(H) = CΩ. For

f ∈ H, let a(f) be the operator defined by linearly extending a(f)(f1∧· · ·∧fn) = f∧f1∧· · ·∧fn.

One can calculate that

a(f)∗(f1 ∧ · · · ∧ fn+1) =
n+1∑
k=1

〈fk, f〉f1 ∧ · · · f̂k ∧ · · · ∧ fn+1.

A direct calculation shows that if ‖f‖ = 1, then a(f)a(f)∗ is a projection on ΛnH, whence

‖a(f)‖ = ‖f‖ on the algebraic direct sum
∑

ΛnH. Hence we can extend a(f) to ΛH as a bounded

operator. The map f 7→ a(f) is complex linear, and satisfies the canonical anticommutation

relations

a(f)a(g) + a(g)a(f) = 0,

a(f)∗a(g) + a(g)a(f)∗ = 〈g, f〉.

We’ll let CAR(H) denote the norm closure of {a(f)} as operators on ΛH.

Theorem 2.1. CAR(H) acts irreducibly on ΛH.

Proof. Observe that CΩ =
⋂
f ker(a(f)∗), and hence if x ∈ (CAR(H))′ then xΩ = λΩ. Since Ω

is cyclic for CAR(H), we have x = λ.

3 Construction of the fundamental representation

Let p be a projection in B(H), and defineHp to be the real Hilbert spaceHR, with multiplication

by i given by i(2p− 1). That is, Hp = pH⊕ (1− p)H. In our example, p will be the projection

onto the Hardy space H2(S1, V ). We have a natural isomorphism ΛHp ∼= ΛpH⊗̂Λ(1− p)H.

Using this, we define a map πp : a(H)→ B(ΛHp) via πp(a(f)) = a(pf)⊗ 1 + 1⊗ a((1− p)f)∗.
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Here, we are using a graded tensor product (a ⊗ b)(c ⊗ d) = (−1)|b||c|(ac ⊗ bd). Alternatively,

we can map a(f) to a(pf)⊗ 1 +D⊗ a((1− p)f)∗, where D is the parity function on Λ(1− p)H.

One can verify that πp(a(f)) satisfy the CAR, allowing us to extend πp to all of CAR(H).

We’ve used the fact that the algebraic representation on ΛH is actually a faithful representation

of the universal CAR algebra. This can be proved easily for finite dimensional Hilbert spaces,

and extended to separable Hilbert spaces by a hyperfiniteness argument.

Observe that T acts naturally on Hp with positive energy, and this extends to ΛHp. To

construct a positive energy representation, we need to extend this action to one of LGo T. We

can do this as follows.

Theorem 3.1. If u ∈ U(H) satisfies ‖[u, p]‖2 < ∞, then there exists a unique element of

PU(ΛHp), which we call π(u), such that πp(a(uf)) = π(u)πp(a(f))π(u)∗.

Proof. The steps go something like this

1. Show that 〈πp(a(f1)∗ · · · a(fn)∗a(g1) · · · a(gm))Ωp,Ωp〉 gives the quasi-free state of covari-

ance p.

2. Show that φq is pure for any projection q.

3. Let α(a(f)) = a(uf). Show that if φp ◦ α is equivalent to φp, then α is implemented on

the GNS space of φp. Recall that to prove equivalent of states, we just need to prove the

norm of the difference is less than 2.

4. Show that φp ◦ α = φq, where q = u∗pu, and that ‖φp − φq‖ ≤ C‖p− q‖2.

5. Split H into a finite-dimensional subspace, and one on which ‖p− q‖2 is small to get the

equivalence.

If Ures = {u ∈ U(H) : ‖[u, p]‖2 < ∞}, then π : Ures → PU(ΛHp) is a projective repre-

sentation. In fact, if Ures is given the strong operator topology, combined with the premetric

d(u, v) = ‖[u − v, p]‖2, then π is continuous. That is, if un → u in Ures, then there exists

V, Vn ∈ U(ΛHp) such that π(un) = [Vn], π(u) = [V ], and Vn → V strongly.

We would like to use this theorem to obtain a positive energy representation of LG. We

begin by carefully calculating ‖[Mf , p]‖2 for f ∈ LG and pH = H2(S1,Cn). From now on, we

will use G = S1 for simplicity.

Proposition 3.1. If f =
∑∞
n=−∞ cnen, then ‖[Mf , p]‖22 =

∑∞
n=−∞ n|cn|2.

Proof. If n ≥ 0, we have

‖(pMf −Mfp)en‖2 = ‖(1− p)Mfen‖2 =
∞∑

k=n+1

|c−k|2.
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Similarly, if n < 0,

‖(pMf −Mfp)en‖2 = ‖pMfen‖2 =
∞∑

k=−n

|ck|2

Observe that |cn| shows up in exactly |n| times, which gives the desired result.

The preceding proposition shows that ‖[Mf , p]‖2 ≤ ‖f ′‖2, so in particular LG ⊆ Ures.

4 Local loop groups (Jones-Wassermann inclusions)

We’ll now look at how this gives us subfactors. Let I be the open, upper half of the semi-

circle, and let LIG be the subgroup of LG consisting of loops such that L |Ic≡ 1. If πi is

a positive energy representation of LSUn, one can show that πi(LG)′′ is a III1 factor, and

that πi(LIG)′′ ⊆ πi(LIcG)′. Observe that all of the difficulties arise from the fact that πi is a

projective representation.

5 The irreducibility result

Let A be a finite subset of S1, and let LAG be the subset of LG consisting of loops such that

f(a) = 1 and f (n)(a) = 0 for all a ∈ A and n ≥ 1. Wassermann states and proves that for

any positive energy representation πi of LG, we have πi(LAG)′′ = πi(LG)′′. As a corollary,

Schur’s Lemma tells us that irreducible positive energy representations of LG stay irreducible

when restricted to LAG. Wassermann proves this result using some heavy machinery. Our goal

is to obtain it by some direct analysis, using some basic theory of Sobolev spaces.

We begin with two key reductions. The frist lemma reduces our question to the analysis of

the topology of LG inherited as a subgroup of Ures(L2(S1))p.

Recall that the topology of Ures is strong operator convergence along with convergence in

d(u, v) = ‖[u − v, p]‖2. We first observe that L2 convergence for elements of Ures implies SOT

convergence. Since Ures is bounded in norm, it is sufficient to show that L2 convergence implies

pointwise convergence on a dense subset of L2(S1). If g ∈ L∞(S1), then we have∫
S1
|fn − f |2|g|2 → 0

if fn → f in L2.

Thus the topology on Ures is controlled by

‖f‖2H1/2 :=
∞∑

n=−∞
(1 + |n|)|cn(f)|2.

We define H1/2(S1) := {f ∈ L2(S1) : ‖f‖H1/2 < ∞}, the Sobolev space of half-differentiable

functions on the circle.

Lemma 5.1. If πi is an irreducible positive energy representation of LG, and X ⊆ LG is a

subset of LG closed under multiplication by unimodular constants, then πi(X)′′ = πi(X)′′, where

the closure of X is in the topology of Ures.
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Proof. We saw that π : Ures → PU(ΛHp) was continuous. Observe that if un are unitary

operators on a Hilbert space, and un → u strongly, then un⊗· · ·⊗un → u⊗· · ·⊗u strongly (we

clear have strong convergence on linear combinations of simple tensors, and since our operators

are uniformly bounded in norm this extends to the closure). Hence π⊗` is also a continuous

representation, as is π⊗`p for any projection p. In particular, this means that if πi is a positive

energy representation on H and gn → g in Ures, then we have a sequence of unitaries vn → v in

U(H) such that πi(un) = [vn] and πi(u) = [v]. The result follows.

It remains to prove that LAG is dense in LG in the topology of H
1
2 . Clearly it is sufficient

to do this for A = {0}. The next reduction allows us to consider the Lie algebra C∞(S1,R)

instead of C∞(S1, S1).

Lemma 5.2. Suppose that loops in C∞(S1,R) such that f (n)(0) = 0 for n ≥ 0 are H
1
2 dense

in C∞(S1,R). Then loops in C∞(S1, S1) such that g(n)(0) = δn0 for n ≥ 0 are H
1
2 dense in

C∞(S1, S1).

Proof. Before beginning the proof, we wish to establish that Ures is a topological group in its

natural topology. Since Ures is norm bounded and consists of normal operators, both adjoint

and multiplication are strongly continuous. Clearly the adjoint is continuous with respect to

‖[u, p]‖2, and the simple estimate

‖[uv, p]‖2 ≤ ‖u(vp− pv)‖2 + ‖(up− pu)v‖2 = ‖[v, p]‖2 + ‖[u, p]‖2

gives that multiplication is jointly continuous.

Now fix F ∈ C∞(S1, S1). Let ` be the winding number of F , and let G be an element of

C∞(S1, S1) whose winding number is −` and whose support is bounded away from 0 (say, con-

tained in ( 1
2 , 1)). Now FG has winding number 0. If we can show that FG can be approximated

by elements Hk ∈ C∞(S1, S1) such that H(n)
k (0) = δn0, then F can be approximated by HkG

by the continuity of multiplication. Thus we will assume without loss of generality that the

winding number of F is 0.

Using analytic continuation of −i log(z), we may construct a map f : S1 → R such that

eif(t) = F (t) that is smooth in (−1, 1). Since F has winding number 0, we in fact have f ∈
C∞(S1,R). By our hypothesis, we can choose a sequence fn ∈ C∞(S1,R) such that fn → f in

H
1
2 and fn has a zero of infinite order at t = 0. Then the sequence eifn is in C∞(S1, S1), and

takes on the value 1 with all derivatives vanishing at t = 0. We now show eifn → eif = F in

H
1
2 .

Let hn = fn − f , so that hn → 0 in H
1
2 . We now invoke an alternate characterization of the

H
1
2 norm (for more, see Loop Groups by Pressley and Segal). We have

‖γ(t)‖2
H

1
2

= ‖γ(t)‖2L2 +
∫ 1

−1

∫ 1

−1

|γ(t)− γ(s)|2 cot2
(

1
2 (t− s)

)
.
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Applying the mean value theorem, we get

‖exp(ihn)‖2
H

1
2

=
∫ 1

−1

∫ 1

−1

|exp(ihn(t))− exp(ihn(s))|2 cot2
(

1
2 (t− s)

)
≤

∫ 1

−1

∫ 1

−1

|hn(t))− hn(s)|2 cot2
(

1
2 (t− s)

)
= ‖hn‖

H
1
2
.

A similar (but simpler) argument shows that eihn → 1 in L2. Thus since hn → 0 in H
1
2 , we

have eihn → 1 in H
1
2 . Thus eifn = eihneif → eif = F by the continuity of multiplication.

We now employ Sobolev space techniques to verify the hypothesis of Lemma 5.2.

5.1 Intro to Sobolev spaces

Our proof that LAG is H1/2-dense in LG will rely on intermediate steps that involve elements

of H1/2 that are neither smooth nor take values in the circle. We will also be using the Sobolev

space H1(S1), whose norm is given by

‖f‖2H1 :=
∞∑

n=−∞
(1 + n2)|cn(f)|2.

In practice, it is easier to work with H1, as it can be characterized as the space of weakly

differentiable functions whose (weak) derivatives are L2 functions. However, LAG is not H1-

dense in LG. First, some basic results.

Proposition 5.1. C∞(S1) is H1/2-dense in H1/2(S1).

Proof. If f ∈ Hs, then its Fourier series converges to it in Hs.

Proposition 5.2. If f : S1 → C is piecewise C1 and continuous, then it is an element of H1.

Proof. Let f ′(t) be the a.e. defined derivative of f , which we will show is its derivative in the

sense of H1. For simplicity, we will assume that f ’s only point of discontinuity is at 0. If

g ∈ C∞(S1), then∫ 1

−1

f(t)g′(t)dt =
∫ 0

−1

f(t)g′(t)dt+
∫ 1

0

f(t)g′(t)dt

= −
∫ 0

−1

f ′(t)g(t)dt+ f(0−)g(0−)− f(−1+)g(−1+)−

−
∫ 1

0

f ′(t)g(t)dt+ f(1−)g(1−)− f(0+)g(0+)

= −
∫ 1

−1

f ′(t)g(t)dt.

6



5.2 Proof of the main result

Proposition 5.3. The set {f ∈ C∞(S1,R) : f(0) = 0} is H1/2-dense in LG.

Proof. We first show that the linear functional δ0 on C∞(S1) is unbounded with respect to the

H1/2 norm. Suppose to a contradiction that there is a constant C such that∣∣∣∣∣
∞∑

n=−∞
cn

∣∣∣∣∣ ≤ C
( ∞∑
n=−∞

(1 + |n|)|cn|2
) 1

2

for every cn ∈ F(H1/2(S1)). This is equivalent to saying that for every (dn) ∈ `2(Z) we have∣∣∣∣∣∣d0 +
∑
n 6=0

dn√
|n|

∣∣∣∣∣∣ ≤ C

|d0|2 +
∑
n 6=0

(
1
|n|

+ 1)|dn|2
 1

2

≤ 2C‖dn‖`2

This would say that the vector v = (vn) ∈ `2(Z), where v0 = 1 and vn = |n|− 1
2 , which is a

contradiction.

Hence ker δ0 (thinking of δ0 defined on smooth functions) must be dense in H1/2, as otherwise

we could choose by Hahn-Banach a continuous linear functional on H1/2 that vanished on ker δ0,

which would then restrict to a bounded linear functional on C∞.

We will now approximate loops that vanish at 0 with piecewise smooth loops that vanish in

a neighborhood of 0.

Proposition 5.4. If f ∈ C∞(S1,R) with f(0) = 0 is as above, then there is a sequence of

piecewise smooth functions fn ∈ H1(S1,R) such that fn ≡ 0 in some neighborhood of 0, fn → f

in H1.

Proof. Define

fδ(t) =


f(t) |t| > 2δ

0 |t| < δ

f(2(t+ δ)) −2δ < t < δ

f(2(t− δ)) δ < t < 2δ

This function is piecewise-smooth and continuous, and is thus an element of H1, with weak

derivative given by the piecewise derivatives. Clearly

‖fδ − f‖L2 + ‖f ′δ − f ′‖L2 ≤ 4δ (2‖f‖∞ + 3‖f ′‖∞) .

This shows that fδ → f in the H1 topology as δ → 0. Also,

‖fδ − f‖∞ ≤ sup
t,s∈[−2δ,2δ]

|f(t)− f(s)|

which goes to zero by the uniform continuity of f .

We now wish to replace the piecewise smooth functions from the previous proposition with

smooth functions that still vanish in some neighborhood of 0. Simply truncating the Fourier

series will not preserve this property, so we will use mollifiers.
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5.3 Properties of mollifiers

Let η(x) = Ce−1/(1−x2) if |x| < 1 and η(x) = 0 otherwise. Choose the constant C so that

‖η‖L1 = 1. Let ηε(x) = ε−1η(xε ). We will use the following basic facts from PDE.

Proposition 5.5. If f ∈ L2(S1), then ηε ∗ f ∈ C∞(S1) and ηε ∗ f → f in L2. If f ∈ H1(S1),

then (ηε ∗ f)′ = ηε ∗ f ′.

Proof.

h−1 ((ηε ∗ f)(x+ h)− (ηε ∗ f)(x)) =
∫ 1

−1

1
h

[
η

(
x+ h− y

ε

)
− η

(
x− y
ε

)]
f(y)dy

which converges to (ηε)′ ∗ f by the dominated convergence theorem. Hence ηε ∗ f is smooth. If

f ∈ H1, integration by parts shows that (ηε ∗ f)′ = ηε ∗ f ′.

Proposition 5.6. If f ∈ C(S1) ∩H1(S1), then ηε ∗ f → f uniformly and in H1.

Proof. Let f ε = ηε ∗ f . First we prove the uniform convergence. We have

|f ε(x)− f(x)| ≤ 1
ε

∫ ε

−ε
η

(
x− y
ε

)
|f(y)− f(x)|dy

≤ 2
1
2ε

∫ ε

−ε
|f(y)− f(x)|dy

which goes to zero uniformly in x by the uniform continuity of f .

By the preceding proposition, (ηε ∗ f)′ = ηε ∗ f ′. We will show that this converges to f ′ in

L2. First we show that if g ∈ L2(S1), then ‖gε‖2 ≤ ‖g‖2. Observe

|gε(x)| =
∣∣∣∣∫ 1

−1

ηε(x− y)g(y)dy
∣∣∣∣

≤
(∫ 1

−1

ηε(x− y)dy
) 1

2
(∫ 1

−1

ηε(x− y)|g(y)|2dy
) 1

2

=
(∫ 1

−1

ηε(x− y)|g(y)|2dys
) 1

2

.

Taking two norm and interchanging the integrals gives

‖gε‖22 ≤
∫ 1

−1

|g(y)|2
(∫ 1

−1

ηε(x− y)dx
)
dy = ‖g‖22

Now let h be a continuous function such that ‖h− f ′‖2 is very small. We then have

‖f ′ − ηε ∗ f ′‖2 ≤ ‖f ′ − h‖2 + ‖h− h ∗ ηε‖2 + ‖(h ∗ ηε − f ′ ∗ ηε‖2

≤ 2‖f ′ − h‖2 + ‖h− h ∗ ηε‖2.

By the first half of the proposition, hε → h uniformly, which completes the proof.

Combining the results of Section 5, we get the desired theorem.

Theorem 5.1. If πi is an irreducible positive energy representation of LS1, then (πi(LAS1))′′ =

(πi(LS1))′′.
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