Recall:

Def (sequence): A sequence is a function whose domain is a set of the form \(\{m, m+1, m+2, \ldots \} \) for some \(m \in \mathbb{Z} \).

Def (subsequence): Consider a sequence \(s_n \).
A subsequence of \(s_n \) is a sequence of the form \(s_{n_k} \), where \(n_k \) is a sequence of integers satisfying \(n_1 < n_2 < n_3 < \ldots \).

Note: \(k \in \mathbb{N} = \{1, 2, 3, 4, \ldots \} \)

Informally, a subsequence is any infinite collection of elements from the original sequence, listed in order.

Lemma: Given a sequence \(s_n \), \(n \in \mathbb{N} \), if \(s_{n_k} \) is a subsequence, then \(n_k \geq k \) for all \(k \in \mathbb{N} \).

Def (subsequential limit): A subsequential limit of a sequence \(s_n \) is a real number or symbol \(+\infty \) or \(-\infty \) that is the limit of some subsequence of \(s_n \).
Thm: If a sequence s_n converges to a limit s, then every subsequence also converges to s.

Thm (main subsequences theorem)

Let s_n be a sequence of real numbers.

(a) Let $t \in \mathbb{R}$.

- t is a subsequential limit of s_n if and only if
 - the set $\mathcal{E}: |s_n - t| < \varepsilon$ is infinite for all $\varepsilon > 0$.

(b) If s_n is unbounded above, $+\infty$ is a subsequential limit.

(c) If s_n is unbounded below, $-\infty$ is a subsequential limit.

Mental image (a):

- Graph showing s_n's behavior with subsequences indicated.
- Points t indicating potential subsequential limits.
Why are subsequences important? We know a lot about monotone sequences, but "most" sequences aren't monotone.

Thm: Every sequence s_n has a monotone subsequence.

Consequently, for any sequence s_n, we can always find a subsequence s_{n_k} st. $\lim_{k \to \infty} s_{n_k}$ exists.
A simple corollary of this theorem...

Theorem (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Proof: If \(s_n \) is a bounded sequence, then all subsequences are also bounded. Since every sequence has a monotone subsequence, there exists a subsequence \(s_{n_k} \) that is bounded and monotone. Thus, \(s_{n_k} \) is convergent.

Katy really likes \(\limsup \)'s and \(\liminf \)'s. Unfortunately, in general \(a_n \), \(b_n \) are not subsequences.

Example: Let \(s_n = n^2 \). Then \(a_N = \sup_{n > N^2} s_n = \infty \) for all \(N \).

Good news:

Theorem: For any sequence \(s_n \), \(\limsup s_n \) and \(\liminf s_n \) are subsequential limits.
Notation: $\bar{\mathbb{R}} = \{ -\infty \} \cup \mathbb{R} \cup \{ +\infty \}$

"extended real numbers"

Thm: Let $S \subseteq \bar{\mathbb{R}}$ denote the set of subsequential limits. Then $\limsup_{n \to \infty} s_n = \max(S)$ and $\liminf_{n \to \infty} s_n = \min(S)$.

Informally, $\limsup_{n \to \infty} s_n$ is the largest subsequential limit and $\liminf_{n \to \infty} s_n$ is the smallest subsequential limit.

Ex: $s_n = \{ -1, 0, 1, 0, -1, 0, 1, 0, \ldots, -\cos\left(\frac{n\pi}{2}\right), \ldots \}$

$S = \{ \text{subsequential limits} \} = \{ -1, 0, 1 \}$

$\liminf_{n \to \infty} s_n = -1$, $\limsup_{n \to \infty} s_n = 1$