Homework 4

(a) see section notes from 5/13/21

(b) see section notes from 5/13/21

(c) want to show there exists a subsequence \(r_{n_k} \) s.t. \(\lim_{k \to \infty} r_{n_k} = +\infty \)

Fact: \(\mathbb{N} \subseteq \mathbb{Q} \)

Thus, for each \(m \in \mathbb{N} \), there exists \(n \in \mathbb{N} \) s.t. \(r_n = m \).

Since there exist \(q \in \mathbb{Q} \) s.t. \(q \geq 1 \), we may choose \(r_{n_1} = 1 \).

Since there exist \(q \in \mathbb{Q} \) s.t. \(q \geq 2 \), (justify…)
we may choose \(n_2 \geq n_1 \) with \(r_{n_2} \geq 2 \)

Recall from class, the "Main Subsequences Thm":
\(s_n \) is unbounded above \(\iff +\infty \) is a subseq. limit.

Thus, it suffices to show \(r_n \) is unbounded above.
Recall that \(r_n \) is unbounded above if there does not exist \(M > 0 \) s.t. \(r_n \leq M \) for all \(n \in \mathbb{N} \); that is, for all \(M > 0 \), there exists \(n \in \mathbb{N} \) s.t. \(r_n \geq M \).

Fix \(M > 0 \). By the Archimedean Property, there exists \(m \in \mathbb{N} \) s.t. \(m > M \). By definition of \(r_n \), there exists \(n \in \mathbb{N} \) s.t. \(r_n = M \geq m \). Since \(M > 0 \) was arbitrary, \(r_n \) is unbounded above.

\[
\mathbf{S} = (0, +\infty)
\]
HW 4, 5 (c)

(a) prove that $g(x) = kx$ is continuous

(b) prove that $f(x) = |x|$ is continuous

(c) prove that if g is continuous at $x_0 \in \text{dom}(g)$, then $|g|$ is continuous at x_0

Since g is continuous at x_0 and $f(x) = |x|$ is continuous (on $\text{dom}(f) = \mathbb{R}$) $f \circ g = |g|$ is continuous at x_0.
(5) \(f(x) = |x|, \quad ||a - b|| \leq |a - b| \)

Proof: Fix \(x_0 \in \text{dom}(f) = \mathbb{R} \). Fix \(\varepsilon > 0 \).

Scratchwork:
\[|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < 3 \varepsilon \Leftrightarrow |x| - |x_0| < 3 \varepsilon \leq |x - x_0| \]

Practice Quiz 4

\(f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \)

(2) Fix \(a, b \in \mathbb{R}, \ a < b \). WTS \(\exists y \in \mathbb{R} \setminus \mathbb{Q} \) with \(a < y < b \).

\(\sqrt{2}, \pi, \ldots \in \mathbb{R} \setminus \mathbb{Q} \)

\(\sqrt{2} + 2 = r \), we think \(r \in \mathbb{R} \setminus \mathbb{Q} \)

Suppose \(\sqrt{2} + 2 \in \mathbb{Q} \), so \(\sqrt{2} + 2 = \frac{n}{m} \) for \(n, m \in \mathbb{Z}, \ m \neq 0 \). Then \(\sqrt{2} = \frac{n}{m} - 2 \).

Since \(\mathbb{Q} \) is a field and \(\frac{n}{m}, -2 \in \mathbb{Q}, \ \frac{n}{m} - 2 \in \mathbb{Q} \). This contradicts that \(\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q} \).
We know there exists \(q \in \mathbb{Q} \) s.t. \(a < q < b \).

\[
q^+ \frac{1}{e^{\pi}}
\]

\[
\frac{\pi}{M} < b - q \iff \frac{\pi}{b - q} < M
\]