Homework 2 Solutions
(c) Kately Craig, 2021

1

Step 1: Show that for all \(t \in T \), \(\inf(S+T) - t \) is a lower bound for \(S \).

By defn of \(S+T \) and the infimum, \(\inf(S+T) \) is a lower bound for \(S+T \), so \(s + t \leq \inf(S+T) \iff s \geq \inf(S+T) - t \) for all \(s \in S \), \(t \in T \). Thus, for all \(t \in T \), \(\inf(S+T) - t \) is a lower bound for \(S \).

Step 2: Show that \(\inf(S+T) - \inf(S) \) is a lower bound for \(T \).

By Step 1, for all \(t \in T \), \(\inf(S+T) - t \) is a lower bound for \(S \). By defn, \(\inf(S) \) is the greatest lower bound of \(S \). Thus, \(\inf(S) \geq \inf(S+T) - t \iff t \geq \inf(S+T) - \inf(S) \) for all \(t \in T \).
Since \(\inf(S+T) - \inf(S) \) is a lower bound for \(T \) and \(\inf(T) \) is the greatest lower bound,

\[
\inf(T) \geq \inf(S+T) - \inf(S).
\]

\[
\Rightarrow
\]

\[
\inf(S) + \inf(T) \geq \inf(S+T). \tag{\ast}
\]

It remains to prove the opposite inequality. Since \(\inf(S) \) and \(\inf(T) \) are lower bounds for \(S \) and \(T \), for all \(s \in S \) and \(t \in T \),

\[
\inf(S) \leq s \quad \text{and} \quad \inf(T) \leq t \Rightarrow \inf(S) + \inf(T) \leq s + t.
\]

Thus, \(\inf(S) + \inf(T) \) is a lower bound for \(S+T \). Since \(\inf(S+T) \) is the greatest lower bound,

\[
\inf(S) + \inf(T) \leq \inf(S+T). \tag{\ast\ast\ast}
\]

Thus, combining inequalities (\ast) and (\ast\ast\ast), we obtain

\[
\inf(S) + \inf(T) = \inf(S+T). \quad \Box
\]
slight notational change: \(A = S, B = T \)

2. a) Since \(s \leq t \) for all \(s \in S \) and \(t \in T \), any \(t \in T \) is an upper bound for \(S \) and any \(s \in S \) is a lower bound for \(T \). Hence, \(S \) is bounded above and \(T \) is bounded below.

b) As shown in part(a), any \(t \in T \) is an upper bound for \(S \). Since \(\sup(S) \) is the least upper bound, \(\sup(S) \leq t \) for all \(t \in T \). Thus, \(\sup(S) \) is a lower bound for \(T \), and since \(\inf(T) \) is the greatest lower bound, \(\sup(S) \leq \inf(T) \).

c) \(S = [0,1] \), \(T = [1,2] \)
d) \(S = [0,1) \), \(T = (1,2] \)

3. Throughout, we use \(S \) to denote the set under consideration.
 a) \(\sup(S) = \sqrt{2}, \inf(S) = -\sqrt{2} \)
 b) \(\sup(S) = \pi, \inf(S) = -1 \)
 c) \(\sup(S) = \inf(S) = 1 \)
 d) \(S \) is not bounded above, \(\inf(S) = 1 \)
 e) \(\sup(S) = 1, \inf(S) = 0 \)
 f) \(\sup(S) = 1, \inf(S) = -1 \)
 g) \(S = [-1,1], \) so \(\sup(S) = 1 \) and \(\inf(S) = -1 \)
4. \(\sup(S) = 1, \inf(S) = 0\)
 a. \(S\) is not bounded above, \(\inf(S) = 0\)
 b. \(S\) is not bounded above, \(\inf(S) = 0\)
 c. \(S\) is not bounded above, \(\inf(S) = 0\)
 d. \(S\) is neither bounded above or below
 e. \(S = \{0^3\}, \sup(S) = \inf(S) = 0\)
 f. \(S\) is not bounded above, \(\inf(S) = 2^{1/3}\)
 g. \(\sup(S) = \inf(S) = 0\)

5. Let \(S = (a, b]\).
 - \(\max(S) = b\), since by defn., \(b\) is the largest element in \(S\)
 - \(\sup(S) = b\). \(b\) is an upper bound for \(S\) and since \(b \in S\), no number smaller than \(b\) can be an upper bound. Thus \(b\) is the least upper bound.
 - The minimum of \(S\) does not exist. Suppose, for the sake of contradiction that \(\min(S) = m_0\).
 Since \(m_0 \in S\), \(m_0 > a\). However \(\frac{m_0 + a}{2} \in (a, m_0)\), so \(\frac{m_0 + a}{2} \in S\) and \(\frac{m_0 + a}{2} < m_0\). This contradicts that \(m_0\) was the smallest element in \(S\).
 - \(\inf(S) = a\). \(a\) is a lower bound for \(S\). Suppose \(m_0 > a\) was another lower bound. Since \(b \in S\), we have \(m_0 \in (a, b]\). Furthermore, since \(\frac{m_0 + a}{2} \in (a, m_0)\), we have \(\frac{m_0 + a}{2} \in S\) and \(\frac{m_0 + a}{2} < m_0\).
This contradicts that \(m_0 \) was a lower bound of \(S \).

\[\text{slight change: let } x = -a \]

6. By the Archimedean Property, if \(x > 0 \) and \(y > 0 \), then there exists \(n \in \mathbb{N} \) so that \(nx > y \).

Taking \(x = 1 \) and \(y = a \) gives that there exists \(n_1 \in \mathbb{N} \) so that \(n_1 > a \).

Taking \(x = a \) and \(y = 1 \) gives that there exists \(n_2 \in \mathbb{N} \) so that \(n_2 a > 1 \Rightarrow a > \frac{1}{n_2} \).

Let \(n = \max \{ n_1, n_2 \} \). Then \(n \in \mathbb{N} \) and \(\frac{1}{n} \leq \frac{1}{n_2} < a < n_1 < n \), which gives the result.

7. Suppose for the sake of contradiction that \(a > b \). Then if we define \(y = a - b, y > 0, \) and by Q9, there exists \(n \in \mathbb{N} \) so that \(\frac{1}{n} < y = a - b \). This implies that there exists \(n \in \mathbb{N} \) so that \(b + \frac{1}{n} < a \), which is a contradiction. Therefore, we must have \(a \leq b \).
Define \(S = \{ q \in \mathbb{Q} : a < q^2 \} \). By definition, \(a \) is a lower bound for \(S \). Assume for the sake of contradiction that there exists another lower bound \(m_0 \) of \(S \) such that \(a < m_0 \). By denseness of \(\mathbb{Q} \) in \(\mathbb{R} \), there exists \(r \in \mathbb{Q} \) s.t. \(a < r < m_0 \). Then \(r \in S \), which contradicts the fact that \(m_0 \) was a lower bound of \(S \). Therefore for all lower bounds \(m_0 \) of \(S \), we must have \(m_0 \leq a \). This shows that \(a \) is the greatest lower bound of \(S \), i.e. \(\inf(S) = a \).

First assume that \(S \) is bounded below by some \(a > 0 \). Then by Corollary 1, \(S \) has an infimum, and since \(\inf(S) \) is the greatest lower bound, we have \(0 \leq a \leq \inf(S) \).

Using that \(\inf(S) \) is a lower bound for \(S \), we have \(\inf(S) \leq s \) \(\forall s \in S \). Since \(\inf(S) > 0 \), this is equivalent to \(\frac{1}{\inf(S)} \leq \frac{1}{s} \) \(\forall s \in S \).

Thus \(\frac{1}{\inf(S)} \) is an upper bound for \(S \).
Suppose M_0 is also an upper bound for S', so $\frac{1}{s} \leq M_0 \ \forall s \in S$. This implies $\frac{1}{M_0} \leq s \ \forall s \in S$, so $\frac{1}{M_0}$ is a lower bound for S. By definition, $\inf(S)$ is the greatest lower bound for S, so $\frac{1}{M_0} \leq \inf(S) \Rightarrow \inf(S) \leq M_0$. This shows that $\inf(S)$ is smaller than any other upper bound for S'. Therefore $\inf(S) = \sup(S)$.

Finally, suppose that S is not bounded below by any $a > 0$. Suppose for the sake of contradiction that S' is bounded above by some M_0. Then $\frac{1}{s} \leq M_0 \ \forall s \in S$. Since $S = \{x \in \mathbb{R} : x > 0\}$, we must have $M_0 > 0$. Therefore $\frac{1}{M_0} \leq s \ \forall s \in S$. This contradicts that S is not bounded below by any $a > 0$. Therefore S' must not be bounded above, i.e. $\sup(S') = +\infty$.

Case 1: Suppose S is not bounded below. Then $\inf(S) = -\infty$ and $-\infty$ is less than or equal to any real number, so $\inf(S) \leq \sup(S)$.

(slight notational change: $A = S$)
Case 2: Suppose S is not bold above. Then $\sup(S) = +\infty$ and $+\infty$ is greater than or equal to any real number or $-\infty$, so $\inf(S) \leq \sup(S)$.

Case 3: Suppose S is bold. Since S is nonempty, $\inf(S)$ is a lower bound for S, and $\sup(S)$ is an upper bound for S, we have $\inf(S) \leq s \leq \sup(S)$, $\forall s \in S$.

11 (a) Define $x_n = \frac{\sqrt{2}}{n}$. As shown in class, $\sqrt{2}$ is an irrational number. Since \mathbb{Q} is a field, the product of two rational numbers is a rational number. Since $1 \in \mathbb{Q}$ and $x_n \cdot n = \sqrt{2} \in \mathbb{Q}$, we must have that $x_n \in \mathbb{Q}$, so $\{x_n\}$ is a sequence of irrational numbers.

Claim: $\lim_{n \to \infty} x_n = 0$. We must show that for all $\varepsilon > 0$, there exists N s.t. $n > N$ ensures $|x_n| < \varepsilon$. Note that $|x_n| = \left|\frac{\sqrt{2}}{n}\right| < \frac{\sqrt{2}}{n} < \varepsilon \iff \frac{\sqrt{2}}{\varepsilon} < n$.

Therefore, for all $\varepsilon > 0$, if we take $N = \frac{\sqrt{2}}{\varepsilon}$, then for all $n > N$, $|x_n| < \varepsilon$.
(b) Define \(r_n = 1.41421 \ldots \) as the first \(n \) digits of the decimal approximation of \(\sqrt{2} \).

Or more precisely, we define \(r_n \) by \(r_n = \left\lfloor \frac{\sqrt{2}}{10^n} \right\rfloor / 10^n \), where \(\left\lfloor a \right\rfloor \) represents the largest integer less than or equal to \(a \). Then \(r_n \in \mathbb{Q} \).

Claim: \(\lim_{n \to \infty} r_n = \sqrt{2} \). Note that
\[
|r_n - \sqrt{2}| = 10^{-n} |\sqrt{2} - 1| / 10^n = 10^{-n} |\sqrt{2} - 1| - 10^{-n} \leq 10^{-n}
\]
and
\[
10^{-n} < \epsilon \iff 10^{-n} \frac{1}{\epsilon} < 10^{n} \iff \log_{10} \frac{1}{\epsilon} < n.
\]

Therefore, for all \(\epsilon > 0 \), if we take \(N = \log_{10} \frac{1}{\epsilon} \), then for all \(n > N \),
\[
|r_n - \sqrt{2}| < \epsilon.
\]

(12) Note that \(|1 - \frac{1}{2}^n| = \left| \frac{1}{2} \right|^n < \frac{1}{2^n} \iff \log_{2} \frac{1}{2} < n \). Therefore, for all \(\epsilon > 0 \), if we take \(N = \log_{2} \frac{1}{\epsilon} \), then \(n > N \) ensures
\[
|1 - \frac{1}{2}^n| < \epsilon.
\]

(b) Note that \(|\frac{1}{n^{5/6}} - 0| = \frac{1}{n^{5/6}} < \epsilon \iff \frac{1}{\epsilon} < n^{5/6} \iff \left(\frac{1}{\epsilon} \right)^{6/5} < n \). Therefore, for all \(\epsilon > 0 \), if we take \(N = \left(\frac{1}{\epsilon} \right)^{6/5} \), then \(n > N \) ensures
\[
|\frac{1}{n^{5/6}} - 0| < \epsilon.
\]
(c) Note that
\[
\frac{|5n+2 - \frac{5}{2}|}{2n+2} = \frac{|10n+4 - 10n - 10|}{4n+4} = \frac{6}{4n+4} = \frac{3}{2n+2} \leq \frac{4}{2n+2} \leq \frac{2}{2n} = \frac{1}{n} \text{ and } \frac{2}{n} < 3 \Leftrightarrow \frac{2}{3} < n.
\]
Therefore, for all \(\varepsilon > 0 \), if we take \(N = \frac{2}{\varepsilon} \), then \(n > N \) ensures \(\frac{|5n+2 - \frac{5}{2}|}{2n+2} < \varepsilon \).

(d) Note that
\[
\frac{|n-1|}{n^2-1} - 0 = \frac{|n-1|}{n^2-1} = \frac{1}{n+1} \leq \frac{1}{n}
\]
and \(\frac{1}{n} < \varepsilon \Leftrightarrow \frac{1}{\varepsilon} < n \). Therefore, for all \(\varepsilon > 0 \), if we take \(N = \frac{1}{\varepsilon} \), then \(n > N \) ensures \(\frac{|n-1|}{n^2-1} < \varepsilon \).

(e) Note that
\[
\frac{1}{n \cos n} - 0 = \frac{1}{n \cos n} = \frac{1}{n} \cos n \leq \frac{1}{n}
\]
and \(\frac{1}{n} < \varepsilon \Leftrightarrow \frac{1}{\varepsilon} < n \). Therefore, for all \(\varepsilon > 0 \), if we take \(N = \frac{1}{\varepsilon} \), then \(n > N \) ensures \(\frac{1}{n \cos n} - 0 < \varepsilon \).

(13) The solution is similar to question (12).

(14) See next page:
(a) State the definition of convergence.

(b) Suppose \(\lim_{n \to \infty} a_n = a \) for \(a \in \mathbb{R} \) and define \(b_n = a_{n+1} \). Using the definition of convergence, prove that \(\lim_{n \to \infty} b_n = a \).

(c) Define a sequence \(s_n \) as follows: \(s_1 = 1 \) and, for \(n \geq 1 \), \(s_{n+1} = \frac{1}{3}(s_n + 1) \). Use induction to prove that \(s_n \geq \frac{1}{2} \) for all \(n \).

(d) Use part (c) to show that the sequence is decreasing.

(e) Prove that \(\lim_{n \to \infty} s_n = s \) for some \(s \in \mathbb{R} \).

(f) Use part (b) and the definition of \(s_n \) to find the value of \(s \).

(a) A sequence of real numbers \((s_n) \subset \mathbb{R}\) is said to converge to a limit \(s \in \mathbb{R} \) if for every \(\epsilon > 0 \), there exists some number \(N \) such that if \(n > N \), then \(|s_n - s| < \epsilon \).

(b) We wish to show that the above definition holds for the sequence \((b_n)\). As always, we begin by letting an arbitrary \(\epsilon > 0 \) be given. Since we know \(\lim_{n \to \infty} a_n = a \), we know that there exists some number \(N \) for which \(n > N \) implies \(|a_n - a| < \epsilon \). Fix any such \(N \) and observe that

\[
|b_n - a| = |a_{n+1} - a| < \epsilon.
\]

(since \(n + 1 > n > N \))

By definition, then, \(\lim_{n \to \infty} b_n = a \).

(c) We wish to show inductively that \(s_n \geq \frac{1}{2} \) for all \(n \).

Base Case: When \(n = 1 \), we have \(s_1 = 1 \geq \frac{1}{2} \).

Inductive Step: We now suppose \(s_n \geq \frac{1}{2} \) and show that \(s_{n+1} \) is as well. We know from the definition of our sequence that

\[
s_{n+1} = \frac{1}{3}(s_n + 1).
\]

Since \(s_n \geq \frac{1}{2} \), we know \(s_n + 1 \geq \frac{3}{2} \) and so,

\[
s_{n+1} = \frac{1}{3}(s_n + 1) \\
\geq \frac{1}{3} \cdot \frac{3}{2} \\
= \frac{1}{2},
\]

completing our inductive step and our proof.

(d) We wish to show \(s_{n+1} \leq s_n \) for all \(n \in \mathbb{N} \). To this end, fix any arbitrary \(n \in \mathbb{N} \). Again, we know

\[
s_{n+1} = \frac{1}{3}(s_n + 1) = \frac{s_n}{3} + \frac{1}{3}.
\]

Since we know \(s_n \geq \frac{1}{2} \), we know

\[
\frac{2}{3} s_n \geq \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}.
\]
Therefore,

\[s_n = \frac{1}{3}s_n + \frac{2}{3}s_n \]
\[\geq \frac{1}{3}s_n + \frac{1}{3} \]
\[= s_{n+1}. \]

Since \(n \) was chosen arbitrarily, we may conclude \(s_{n+1} \leq s_n \) for all \(n \).

(c) From part (d), we know that \(s_n \) is a decreasing sequence. From part (c), we know that our decreasing sequence is bounded below. We know that bounded monotone sequences converge, so there must be some \(s \in \mathbb{R} \) so that \(\lim s_n = s \).

(f) From part (b), we may say

\[s = \lim s_n = \lim s_{n+1} = \lim \frac{1}{3}(s_n + 1). \]

Since \(\lim s_n \) exists and the limits of constants exist, we may appeal to our limit theorems to say

\[\lim \frac{1}{3}(s_n + 1) = \frac{1}{3} (\lim s_n + 1) = \frac{1}{3} (s + 1). \]

Putting (1) and (2) together, we find

\[s = \frac{1}{3} (s + 1) \]

or

\[s = \frac{1}{2}. \]

\(\square \)
(a) State the triangle inequality.

(b) Use the triangle inequality to prove the reverse triangle inequality: for all $a, b \in \mathbb{R}$, $||a| - |b|| \leq |a - b|$.

(c) Prove that, for any convergent sequence t_n, we have

$$\left| \lim_{n \to +\infty} t_n \right| = \lim_{n \to +\infty} |t_n|.$$