Recall:

Motivation: We know a lot about monotone sequences. What about bounded sequences?

Def (subsequence): Consider a sequence \(s_n \). For any sequence \(n_k \) of natural numbers satisfying \(n_1 < n_2 < n_3 < \ldots \), a sequence of the form \(s_{n_k} \) is a subsequence of \(s_n \).

Def: (subsequential limit) A subsequential limit of a sequence \(s_n \) is any real number or symbol \(+\infty \) or \(-\infty \) that is the limit of some subsequence of \(s_n \).

Thm: If a sequence \(s_n \) converges to a limit, then every subsequence also converges to \(s \).
Thm (main subsequences theorem)
Let s_n be a sequence of real numbers.
(a) Let $t \in \mathbb{R}$
 \[\text{The set } \{ n : |s_n - t| < \varepsilon \} \text{ is infinite for all } \varepsilon > 0 \]
 if and only if
 \[t \text{ is a subsequential limit of } s_n. \]
(b) s_n is unbounded above $\iff +\infty$ is a subseq. limit.
(c) s_n is unbounded below $\iff -\infty$ is a subseq. limit.

Why are subsequences important?

Even though not all sequences are monotone

Thm: Every sequence s_n has a monotonic subsequence.

Pf: We will say that the n^{th} element of a sequence is dominant if it is greater than every element that follows, that is s_n is dominant if $s_n > s_m$ for all $m > n$.

Case 1: Suppose s_n has infinitely many dominant elements.
Define s_{nk} to be the subsequence of dominant terms. Then $s_{nk} > s_{nk+1}$ for all $k \in \mathbb{N}$, so s_{nk} is decreasing, hence monotone.

Case 2: Suppose s_n has finitely many dominant elements.

- Choose n_1 so that s_{n_1} is beyond all of the dominant elements in the sequence.
- Since s_{n_1} is not dominant, there exists $n_2 > n_1$ so that $s_{n_2} \geq s_{n_1}$.
- Since s_{nk} is not dominant, there exists $n_{k+1} > n_k$ so that $s_{nk+1} > s_{nk}$.

Thus we have found a subsequence that is increasing, hence monotone.

MAJOR THEOREM 5

Thm (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Pf: If s_n is a bounded sequence, the previous theorem ensures there exists a subsequence s_{nk} that is monotonic (and also bounded). Since all bounded, monotone sequences converge, s_{nk} is convergent.
How do subsequences relate to liminf and limsup?

\[\liminf_{n \to \infty} S_n \]

Downside: in general \(a_n, b_n \) are not subsequences of \(S_n \).

Upside:

Thm: For any sequence \(S_n \), \(\limsup S_n \) and \(\liminf S_n \) are subsequential limits.

Pf: First, we will show \(\limsup_{n \to \infty} S_n \) is a subsequential limit.

CASE 1: Suppose \(\limsup_{n \to \infty} S_n = -\infty \). Since
\[
\lim_{n \to \infty} S_n \leq \limsup_{n \to \infty} S_n,
\]
then \(\lim_{n \to \infty} S_n = -\infty \), so
\[
\lim_{n \to \infty} S_n = -\infty.
\]

CASE 2: Suppose \(\lim_{n \to \infty} S_n = +\infty \), that is \(\lim_{n \to \infty} a_n = +\infty \). Fix arbitrary \(M > 0 \). Then there exists \(N_0 \) s.t. \(N > N_0 \) ensures \(a_n > M \).

Thus \(M \) is not an upper bound of \(\{ S_n : n > N_3 \} \) when \(N > N_0 \), so there exists \(s_{N_1} > M \). Thus \(s_n \) is not bounded above. Hence \(+\infty \) is a subsequential limit.
CASE 3: Suppose \(\limsup_{n \to \infty} s_n = t \) for \(t \in \mathbb{R} \), that is \(\lim_{n \to \infty} a_n = t \). Fix arbitrary \(\varepsilon > 0 \). We will show \(\{ n : t - \varepsilon < s_n < t + \varepsilon \} = \{ n : |s_n - t| < \varepsilon \} \) is infinite.

By defn of convergence of \(a_n \) to \(t \), \(\exists N_0 \) s.t. \(n > N_0 \) ensures \(|a_n - t| < \varepsilon \) \(\Rightarrow \sup \{ s_{n} : n > N_0 \} = a_n < t + \varepsilon \). In particular, for \(N = \lceil N_0 \rceil + 1 \), \(\sup \{ s_{n} : n > \lceil N_0 \rceil \} < t + \varepsilon \). Thus for all \(n > \lceil N_0 \rceil + 1 \), \(s_n < t + \varepsilon \).

Suppose, for the sake of contradiction, that \(\{ n : t - \varepsilon < s_n < t + \varepsilon \} \) is finite. Since we know \(n > \lceil N_0 \rceil \) ensures \(s_n < t + \varepsilon \), there must be \(N_1 > \lceil N_0 \rceil + 1 \) for which \(s_n \geq t - \varepsilon \) for all \(n > N_1 \).

Then \(a_n = \sup \{ s_{n} : n > N_1 \} \leq t - \varepsilon \) for \(n > N_1 \). This implies \(\lim_{n \to \infty} a_n \leq t - \varepsilon \). This contradicts that \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n = t \). Therefore, \(\{ n : t - \varepsilon < s_n < t + \varepsilon \} \) is infinite. Since \(\varepsilon > 0 \) was arbitrary, by main subseq. theorem, \(t \) is a subsequential limit.
Next, we show \(\lim_{n \to \infty} s_n \) is a subsequential limit.

Fact: \(\lim_{n \to \infty} s_n = -\limsup_{n \to \infty} -s_n \)

Thus, by what we've already shown,
\(\lim_{n \to \infty} s_n \) is a subsequential limit of \(-s_n\)

Fact: \(t \) is a subsequential limit of \(s_n \)
\(\iff \) \(-t \) is a subsequential limit of \(-s_n\)

Thus \(\lim_{n \to \infty} s_n \) is a subsequential limit of \(s_n \) \(\square \)

In fact, \(\limsup_{n \to \infty} s_n \) and \(\liminf_{n \to \infty} s_n \) aren't just any subsequential limit: they are the largest and smallest subsequential limit.

Recall: squeeze lemma
Given \(a_n \leq b_n \leq c_n \) for all \(n \in \mathbb{N} \), if
\(\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n \), then
\(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n \).

Thm: Let \(S \) denote the set of subsequential limits of \(s_n \), then \(\limsup s_n = \max(S) \) and \(\liminf s_n = \min(S) \).
\textbf{Proof:} By the previous theorem, we have
\[\limsup_{n \to \infty} s_n \leq S \quad \text{and} \quad \liminf_{n \to \infty} s_n \geq S, \]
so it suffices to show that, for all \(t \in S \), we have
\[\lim_{n \to \infty} s_n \leq t \leq \limsup_{n \to \infty} s_n. \]
Suppose \(\lim_{k \to \infty} s_{n_k} = t \).
Since \(n_k = k \), \(\{s_{n_k} : k > N\} \subseteq \{s_n : n > N\} \)
for any \(N \in \mathbb{R} \). Thus
\[
\begin{align*}
 b_n &= \inf \{s_n : n > N\} \leq \inf \{s_{n_k} : k > N\} \\
&= \sup \{s_{n_k} : k > N\} \leq \sup \{s_n : n > N\} = a_N.
\end{align*}
\]
Sending \(N \to \infty \),
\[
\lim_{n \to \infty} s_n = \lim_{N \to \infty} b_n \leq \lim_{k \to \infty} s_{n_k} = t = \lim_{k \to \infty} s_{n_k} \leq \lim_{N \to \infty} a_N = \limsup_{n \to \infty} s_n. \quad \square
\]