Recall:

Def (bounded function): \(f \) is bounded on \(S \subseteq \text{dom}(f) \) if there exists \(M > 0 \) s.t. \(|f(x)| \leq M \) for all \(x \in S \).

We say \(f \) is bounded if \(f \) is bounded on \(\text{dom}(f) \).

Major Theorem 6:

Thm (cts fns attain max and min): A continuous function \(f \) on a closed interval \([a, b] \subseteq \text{dom}(f) \) attains its maximum and minimum.

In particular...

(i) its max and min exist (so \(f \) is bounded)

(ii) \(\exists x_{\text{max}}, x_{\text{min}} \in [a, b] \) so that \(f(x_{\text{min}}) \leq f(x) \leq f(x_{\text{max}}) \) for all \(x \in [a, b] \)

\[f(x_{\text{min}}) \leq f(x) \leq f(x_{\text{max}}) \] for all \(x \in [a, b] \)

\(f(x_{\text{min}}) \) is minimum of \(f \) on \([a, b] \)

\(f(x_{\text{max}}) \) is maximum of \(f \) on \([a, b] \)

\[f(a), f(b) \]
Theorem (Intermediate Value Theorem): If f is continuous on an interval $I \subseteq \text{dom}(f)$, then for all $a, b \in I$, if y lies between $f(a)$ and $f(b)$, then there exists x between a and b s.t. $f(x) = y$.

Uniform continuity

Recall:

Theorem (ε-δ characterization of continuity): Given f and $x_0 \in \text{dom}(f)$, f is cts at x_0 if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $x \in \text{dom}(f)$ and $|x - x_0| < \delta$ imply $|f(x) - f(x_0)| < \varepsilon$.

In general, the choice of δ depends on both ε and x_0.

Example:

$f(x) = \frac{1}{x}$

Diagram showing how ε-δ values are chosen for different points on the graph of $f(x)$.
However, there are some functions for which S only depends on ε and not x_0.

Definition (uniformly cts): Given a function f and $S \subseteq \text{dom}\, f$, f is uniformly cts on S if

for all $\varepsilon > 0$, there exists $\delta > 0$ such that $x, y \in S$ and $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$.

Remark:
- f is uniformly continuous on $S \implies f$ is cts on S.
- f is cts on $S \implies f$ is uniformly continuous on S.

Example: Consider $f(x) = \frac{1}{x}$ on $\mathbb{R} \setminus \{0\}$.

- f is continuous on $\mathbb{R} \setminus \{0\}$.

- f is not uniformly continuous on $\mathbb{R} \setminus \{0\}$.

Proof: Assume, for the sake of contradiction, that f is uniformly continuous on $\mathbb{R} \setminus \{0\}$. Let $\varepsilon = 1$. Then there exists $\delta > 0$ so that $x, y \in S$ and $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon = 1$.

Choose $n > \frac{1}{\delta}$ and let $x = \frac{1}{n}$, $y = \frac{1}{n+1}$. Then,
\[|x-y| = \left| \frac{1}{n} - \frac{1}{n+1} \right| = \frac{1}{n(n+1)} < \delta \quad \text{and} \quad |f(x) - f(y)| = |n-(n+1)| = 1 \geq 3. \]

This is a contradiction. \(\square \)

Scratchwork: \(x = \frac{1}{n}, \ y = \frac{1}{n+1}, \ |f(x) - f(y)| = |n-(n+1)| = 1 \)

\[|x-y| < \delta \iff \left| \frac{1}{n} - \frac{1}{n+1} \right| < \delta \iff \left| \frac{1}{n(n+1)} - \frac{n}{n(n+1)} \right| < \delta \iff \frac{1}{n} < \delta \iff \frac{1}{\delta} < n \]

\(f \) is uniformly continuous on \([a,b] \subseteq \mathbb{R} \setminus \{0\} \), for any \(a \leq b \).

Proof: Fix \(\varepsilon > 0 \). Let \(\delta = 3 \cdot \min \{a^2, b^2\} \). If \(\frac{x}{y} \in [a,b] \), then \(|x-y| = |x| |y| = \min \{a^2, b^2\} \).

\[|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right| = \frac{|x-y|}{xy} < \frac{\delta}{\min \{a^2, b^2\}} = 3. \] \(\square \)

Scratchwork:

\[|f(x) - f(y)| < 3 \iff \left| \frac{1}{x} - \frac{1}{y} \right| < 3 \iff \frac{|x-y|}{xy} < 3 \iff \frac{|x-y|}{\min \{a^2, b^2\}} < 3 \iff 3 \cdot \min \{a^2, b^2\} < 3 \iff 3 \cdot \min \{a^2, b^2\} < 3 \]
In the previous example we showed that \(f(x) = \frac{1}{x} \)

- is continuous
- is not uniformly continuous on \(\text{dom}(f) \)
- is uniformly continuous on \([a, b] \subset \text{dom}(f)\)

In fact, this type of result is true for any cts \(fn \) on any closed interval.

Thm (on closed interval, cts \(\Rightarrow\) unif cts): If \(f \) is cts on a closed interval \([a, b] \subset \text{dom}(f)\), then \(f \) is uniformly cts on \([a, b]\).

Recall:

- If \(s_n \in [a, b] \) \(\forall n \) and \(s_n \) converged, then \(\lim s_n \in [a, b] \)
- If \(s_n \in (a, b) \) \(\forall n \) and \(s_n \) converged, we don't know that \(\lim s_n \in (a, b) \). (For example, \(s_n = b - \frac{1}{n} \).)

Pf: Assume, for the sake of contradiction, that \(f \) is not uniformly continuous on \([a, b]\), that is there exists \(\varepsilon > 0 \) so that for all \(\delta > 0 \), there exist \(x, y \in [a, b] \) with \(|x - y| < \delta \) and \(|f(x) - f(y)| \geq \varepsilon \).
In particular, for any \(n \in \mathbb{N} \), there exist \(x_n, y_n \in [a, b] \) with \(|x_n - y_n| < \frac{1}{n} \) and
\[|f(x_n) - f(y_n)| \leq \varepsilon. \]

Since \(x_n, y_n \in [a, b] \), for \(M = \max\{|a|, |b|, |x_n|, |y_n|\} \) \(|x_n| < M \) and \(|y_n| < M \) for all \(n \in \mathbb{N} \), so they are bounded sequences. Thus, by Bolzano–Weierstrass, there exist convergent subsequences \(x_{n_k} \) and \(y_{n_k} \) with limits \(x_0 = \lim_{n \to \infty} x_{n_k} \) and \(y_0 = \lim_{n \to \infty} y_{n_k} \) satisfying \(x_0, y_0 \in [a, b] \).

Fix \(\varepsilon > 0 \) and choose \(K \) s.t. \(k \geq K \),
\[|x_0 - x_{n_k}| < \frac{\varepsilon}{3} \text{ and } |y_0 - y_{n_k}| < \frac{\varepsilon}{3}. \]
Then by the triangle inequality, for \(k \geq K \)
\[|x_0 - y_0| = |x_0 - x_{n_k} + x_{n_k} - y_{n_k} + y_{n_k} - y_0| \]
\[\leq \frac{\varepsilon}{3} + \frac{1}{n_k} + \frac{\varepsilon}{3} \]
\[\leq 2\varepsilon + \frac{1}{k} \]
Since \(\varepsilon > 0 \) and \(k \geq K \) were arbitrary, \(x_0 = y_0 \).

Since \(f \) is continuous, \(\lim_{k \to \infty} f(x_{n_k}) = f(x_0) \)
and \(\lim_{k \to \infty} f(y_{n_k}) = f(y_0) = f(x_0) \). Thus
\[\lim_{k \to \infty} f(x_{n_k}) - f(y_{n_k}) = f(x_0) - f(x_0) = 0. \]This
contradicts that \(|f(x_n) - f(y_n)| \leq \varepsilon \) for all \(n \in \mathbb{N} \).
Thus f is uniformly continuous on $[a, b]$. \(D \)

Remark: It is not true that if f is a continuous function then it is uniformly continuous on any open interval $(a, b) \subseteq \text{dom}(f)$.

To see this, consider $f(x) = \frac{1}{x}$ and $(0, 1) \subseteq \text{dom}(f)$.
Now: key property of uniformly cts fn's...

Think back to continuous functions...

"Continuous functions send convergent sequences to convergent sequences."

That is, if \(\lim_{n \to \infty} x_n = x_0 \), then \(\lim_{n \to \infty} f(x_n) = f(x_0) \),

\[\text{dom}(f) \]

Wait a second... if we consider the continuous function \(f(x) = \frac{1}{x} \) and the convergent sequence \(x_n = \frac{1}{n} \), \(f \) doesn't "send convergent sequence to convergent sequence" since \(f(x_n) = n \) doesn't converge.

\[\lim_{n \to \infty} x_n = 0 \notin \text{dom}(f). \]

Remarkably, uniformly continuous functions satisfy (1) without the additional assumptions in red.
Theorem (uniform continuity and convergence): If f is uniformly continuous function on a set S and $\{s_n\}$ is a convergent sequence, then $f(\{s_n\})$ is a convergent sequence.

Proof: Fix $\varepsilon > 0$. Since f is uniformly continuous on S, there exists $\delta > 0$ so that if $x, y \in S$ and $|x - y| < \delta$, imply $|f(x) - f(y)| < \varepsilon$.

We will show $f(\{s_n\})$ is a Cauchy sequence. Since $\{s_n\}$ is a convergent sequence, it is Cauchy, so there exists N s.t. $n, m \geq N$, $|s_n - s_m| < \delta$. By choice of δ, $|f(s_n) - f(s_m)| < \varepsilon$.

Since $\varepsilon > 0$ was arbitrary, $f(\{s_n\})$ is Cauchy, hence convergent. \(\square\)