Recall:

Def: (Cauchy sequence) A sequence s_n is a *Cauchy sequence* if, for all $\varepsilon > 0$, there exists $N \in \mathbb{R}$ s.t. $m, n > N$ ensures $|s_n - s_m| < \varepsilon$.

"Beyond this threshold, elements of the sequence get close to each other."

Major Theorem #4

Thm: A sequence is convergent iff it is Cauchy.

Types of Sequences
Goal: we know a lot about monotone sequences... what can we say about bounded sequences.

First, recall...

Def (sequence): A sequence is a function whose domain is a set of the form \(\{m, m+1, m+2, \ldots\} \) for some \(m \in \mathbb{Z} \). We study sequences whose range is \(\mathbb{R} \).

Remark: While we could write \(s(n) \), we use \(S_n \) to emphasize that sequences are a special type of functions.

Now, we will define the notion of subsequence.

Def (subsequence): Consider a sequence \(s_n \). For any sequence \(n_k \) of natural numbers satisfying \(n_1 < n_2 < n_3 < \ldots \), a sequence of the form \(S_{n_k} \) is a subsequence of \(s_n \).

Remark: We could write \(s_n \) as \(s(n) \), \(n_k \) as \(n(k) \), and \(S_{n_k} \) as \(s(n(k)) \).
Informally, a subsequence is any infinite collection of elements from the original sequence, listed in order.

Ex 1: $s_n = (-1, 2, -3, 4, \ldots, (-1)^n n, \ldots)$

$k=1$ $k=2$

$s_{n_k} = (-1, -3, -5, \ldots, (-1)^{2k-1} (2k-1), \ldots)$

$k=1$ $k=2$ $k=3$

$n_k = (1, 3, 5, \ldots, 2k-1, \ldots)$

Note that

$a_n = \sup \{ s_n : n > N \} = (+\infty, +\infty, \ldots, +\infty, \ldots)$

$b_n = \inf \{ s_n : n > N \} = (-\infty, -\infty, \ldots, -\infty, \ldots)$

Ex 2: $s_n = (1, \frac{1}{2}, 3, \frac{1}{4}, \ldots, n, (-1)^{n+1} n, \ldots)$

$k=1$ $k=2$ $k=3$

$s_{n_k} = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, (2k)^{-1}, \ldots)$

$k=1$ $k=2$ $k=3$

$n_k = (2, 4, 6, \ldots, 2k, \ldots)$

$a_n = \sup \{ s_n : n > N \} = (+\infty, +\infty, \ldots)$

$b_n = \inf \{ s_n : n > N \} = (0, 0, \ldots)$
Limits of Subsequences

Lemma: Given a sequence \(s_n, n \in \mathbb{N} \), if \(s_{n_k} \) is a subsequence, then \(n_k \geq k \) for all \(k \in \mathbb{N} \).

Pf: Base case: When \(k = 1 \), \(n_1 \geq 1 \) since \(n_k \in \mathbb{N} \) for all \(k \).

Inductive step: Assume \(n_{k-1} \geq k-1 \). Since \(n_k > n_{k-1} \), we have \(n_k > n_{k-1} + 1 \geq k \). \(\square \)

Def: (Subsequential limit) A sub sequential limit of a sequence \(s_n \) is any real number or symbol \(+\infty \) or \(-\infty \) that is the limit of some subsequence of \(s_n \).

Ex: \(s_n = (1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \ldots) \)

0 and \(+\infty \) are subsequential limits

Thm: If a sequence \(s_n \) converges to a limit \(s \), then every subsequence also converges to \(s \).
Let s_{n_k} be an arbitrary subsequence of s_n. Fix $\varepsilon > 0$. Since $\lim_{n \to \infty} s_n = s$, $\exists \, N \text{ s.t. } n > N$ ensures $|s_n - s| < \varepsilon$. If $k > N$, then $n_k = k > N$, so $|s_{n_k} - s| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary, we have $\lim_{k \to \infty} s_{n_k} = s$.

Ex: $s_n = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$

$\{0^2\}$ is the set of all subsequential limits.

Theorem (main subsequences theorem): Let s_n be a sequence of real numbers.

(a) Let $t \in \mathbb{R}$

[The set $\{n : |s_n - t| < \varepsilon\}$ is infinite for all $\varepsilon > 0$]

if and only if

[t is a subsequential limit of s_n.]

(b) s_n is unbounded above $\iff +\infty$ is a subseq. limit.

(c) s_n is unbounded below $\iff -\infty$ is a subseq. limit.

Mental image (a):

\[s_n \]
\[\vdots \]
\[t \]
\[\varepsilon \]
\[n \]
Mental image (b) + (c)

Lemma: If s_n is unbounded above, the set $\{n: s_n > M^3\}$ is infinite for all $M > 0$.

Pf: Assume, for the sake of contradiction, that there exists $M > 0$ for which $\{n: s_n > M^3\}$ is finite. Define

$$s_{\text{max}} = \max \{n: s_n > M^3\}.$$

Then define $\tilde{M} = \max \{s_{\text{max}}, M^3\}$

- if $s_n > \tilde{M}$, $s_n = s_{\text{max}} \leq \tilde{M}$
- if $s_n \leq \tilde{M}$, $s_n \leq \tilde{M}$

Thus, for all $n \in \mathbb{N}$, $s_n \leq \tilde{M}$, so s_n is bounded above, which is a contradiction. \square
Proof of Main Subsequences Theorem

(a) Suppose \[\text{The set } \{n \mid |s_n-t| < \varepsilon \} \text{ is infinite for all } \varepsilon > 0 \].

We can construct a subsequence of \(s_n \) in the following way:

Choose \(s_{n_1} \) so that \(|s_{n_1}-t| < 1\).
Choose \(s_{n_2} \) so that \(|s_{n_2}-t| < \frac{1}{2} \) and \(n_2 > n_1 \).
Choose \(s_{n_k} \) so that \(|s_{n_k}-t| < \frac{1}{k} \) and \(n_k > n_{k-1} \).

Note that \(|s_{n_k}-t| < \frac{1}{k} \iff t - \frac{1}{k} < s_{n_k} < t + \frac{1}{k} \)
for all \(k \in \mathbb{N} \). So by the squeeze lemma,
\(t = \lim_{k \to \infty} s_{n_k} \leq t \), so \(\lim_{k \to \infty} s_{n_k} = t \) and \(t \) is a subsequential limit.

Now, suppose \(t \) is a subsequential limit of \(s_n \).

Fix \(\varepsilon > 0 \). Since there exists a subsequence \(s_{n_k} \) that converges to \(t \), there exists \(N \) s.t. \(k > N \) ensures \(|s_{n_k}-t| < \varepsilon \).
Therefore, \(\{n_k \mid k > N \} \subseteq \{n \mid |s_n-t| < \varepsilon \} \).
Since \(\{n_k \mid k > N \} \) is infinite, so is \(\{n \mid |s_n-t| < \varepsilon \} \).
Suppose \([s_n \text{ is unbounded above}] \).
By the lemma, for all \(M > 0 \), \(\exists n : s_n > M^2 \) is infinite. Hence, we may construct a subsequence as follows.
Choose \(n_1 \) so that \(s_{n_1} > 1 \).
Choose \(n_2 \) so that \(s_{n_2} > 2 \) and \(n_2 > n_1 \).
Choose \(n_k \) so that \(s_{n_k} > k \) and \(n_k > n_{k-1} \).

Fix \(\tilde{M} > 0 \). For \(k > \tilde{M} \), \(s_{n_k} > k > \tilde{M} \).
Since \(\tilde{M} \) was arbitrary, \(\lim_{k \to \infty} s_{n_k} = +\infty \).
Thue, \(+\infty \) is a subsequential limit.

Suppose \([+\infty \text{ is a subsequential limit}] \).
Assume, for the sake of contradiction, that \(s_n \) is bounded above, that is, there exists \(M > 0 \) s.t. \(s_n \leq M \) for all \(n \in \mathbb{N} \). Take \(s_{n_k} \) s.t. \(\lim_{k \to \infty} s_{n_k} = +\infty \).
Then \(s_{n_k} \leq M \) for all \(k \in \mathbb{N} \). This is a contradiction.

(c) Note that
\([s_n \text{ is unbounded below}] \)
\(\Box \)
[-\infty is unbounded above]
\[\exists (b) \]
[+\infty is a subsequential limit of -\infty]
\[\exists \]
[-\infty is a subsequential limit of \infty]