Math 117: Practice Quiz 5

Question 1
Suppose \(f(x) \) is a continuous function on \([0, +\infty)\) satisfying \(0 \leq f(x) \leq x \) for all \(x \in [0, +\infty) \).
Fix \(x_0 \in [0, +\infty) \) and define a sequence \(x_n \) recursively as follows: \(x_1 = f(x_0) \) and \(x_n = f(x_{n-1}) \).

(a) Prove that \(x_n \) converges to some \(y_0 \in [0, +\infty) \).

(b) Prove that \(y_0 \) is a fixed point of \(f \), i.e. \(f(y_0) = y_0 \).

Question 2
(a) Suppose \(f \) is uniformly continuous on a bounded set \(S \). Prove that \(f \) is bounded on \(S \).

(Hint: Assume for the sake of contradiction that \(f \) is not bounded on \(S \). Prove that there exists a convergent sequence \(s_k \in S \) so that \(\lim_{k \to +\infty} f(s_k) = +\infty \). Then use Bolzano-Weierstrass and the fact that uniformly continuous functions map convergent sequences to convergent sequences.)

(b) Prove that \(f(x) = \log(x) \) is not uniformly continuous on \((0, 1)\).

Question 3
Suppose \(f \) is continuous on \([0, 2] \) and \(f(0) = f(2) \). Use the intermediate value theorem to prove that there exist \(x, y \in [0, 2] \) such that \(|y - x| = 1 \) and \(f(x) = f(y) \).

Question 4 (similar to 19.12)
Let \(f \) be a continuous function on \([a, b] \). Show that the function \(f_* \) defined by
\[
f_*(x) = \inf \{ f(y) : a \leq y \leq x \}, \quad \text{for } x \in [a, b]
\]
is a decreasing continuous function on \([a, b] \). (Recall that a function \(f \) is \emph{decreasing} if \(x \leq y \) implies \(f(x) \geq f(y) \).)

Question 5 (similar to 20.11)
Find the following limits. Justify your answers using the definition of a two sided limit.

(a) \(\lim_{x \to a} \frac{x^2 - a^2}{x - a} \)

(b) \(\lim_{x \to b} \frac{\sqrt{x} - \sqrt{b}}{x - b}, \quad b > 0 \)

(c) \(\lim_{x \to a} \frac{x^3 - a^3}{x - a} \) (Hint: \(x^3 - a^3 = (x - a)(x^2 + ax + a^2) \).)
Question 6 (similar to 20.16)

Suppose the limits $L_1 = \lim_{x \to a^{-}} f_1(x)$ and $L_2 = \lim_{x \to a^{-}} f_2(x)$ exist.

1. Show if $f_1(x) \geq f_2(x)$ for all x in some interval (b, a), then $L_1 \geq L_2$.

2. Suppose that, in fact, $f_1(x) > f_2(x)$ for all x in some interval (b, a). Can you conclude $L_1 > L_2$? Justify your answer with a proof or a counterexample.

Question 7 (similar to 20.17)

Consider functions f_1, f_2, and f_3 on (b, a) satisfying

$$f_1(x) \leq f_2(x) \leq f_3(x).$$

Suppose that $\lim_{x \to a^{-}} f_1(x) = \lim_{x \to a^{-}} f_3(x) = L$. Prove that $\lim_{x \to a^{-}} f_2(x) = L$.

(Note that this is not an immediate consequence of Q6, since you must first prove that $\lim_{x \to a^{-}} f_2(x)$ exists.)

Question 8

Let $f_n(x) = (x - \frac{1}{n})^2$ for $x \in [0, 1]$.

(a) Does the sequence f_n converge pointwise on $[0, 1]$? Justify your answer with a proof, using the definition of pointwise convergence.

(b) Does the sequence f_n converge uniformly on $[0, 1]$? Justify your answer with a proof, using the definition of uniform convergence.

Question 9

Prove that a sequence of functions f_n on a set $S \subseteq \mathbb{R}$ converges to a function f uniformly on S if and only if

$$\lim_{n \to +\infty} \sup \{|f(x) - f_n(x)| : x \in S\} = 0.$$