Recall:

MAJOR RESULT #1

Thm (Archimedean Property): If \(a, b \in \mathbb{R} \) satisfy \(a > 0 \) and \(b > 0 \), then there exists \(n \in \mathbb{N} \) so that \(na > b \).

MAJOR RESULT #2

Thm (Q is dense in \(\mathbb{R} \)): If \(a, b \in \mathbb{R} \) with \(a < b \), there exists \(r \in \mathbb{Q} \) s.t. \(a < r < b \).

We also defined sup(\(S \)) and inf(\(S \)) even when \(S \) is unbounded above or below.

Given \(S \subseteq \mathbb{R} \) nonempty,

\[
\sup(S) = \begin{cases}
\text{least upper bound of } S \\
+\infty
\end{cases} \quad \text{if } S \text{ is bounded above}
\]

\[
\inf(S) = \begin{cases}
\text{greatest lower bound of } S \\
-\infty
\end{cases} \quad \text{if } S \text{ is bounded below}
\]
Ch 2: Sequences

Recall: functions

Def (sequence): A **sequence** is a function whose domain is a set of the form \(\mathbb{Z}, m, m+1, m+2, \ldots, 3\) for some \(m \in \mathbb{Z}\). We will study sequences whose range is \(\mathbb{R}\).

Typically, the domain of a sequence will be either \(\{0, 1, 2, 3, \ldots, 3\}\) or \(\{1, 2, 3, \ldots, 3\}\).

Remark:
To emphasize that a sequence is a special type of function...

Instead of writing \(f(n)\), we write \(S_n\).

We'll often specify a sequence by listing its values in order, \((s_1, s_2, s_3, \ldots)\).
Ex: If \(s_n = \frac{1}{n} \) for \(n \geq 1 \), the sequence is
\[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots) \]
* If \(s_n = (-1)^n \) for \(n \geq 0 \), the sequence is
\[(1, -1, 1, -1, \ldots) \]

Heuristically, a sequence "converges" to some limit \(s \in \mathbb{R} \) if the values of \(s_n \) stay close to \(s \) for large \(n \).

Ex: We expect \(s_n = \frac{1}{n} \) converges to 0.

We expect \(s_n = (-1)^n \) doesn't converge.
Def (convergence):
• A sequence \(S_n \) of real numbers converges to some \(s \in \mathbb{R} \) provided that
 \[\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } n > N \Rightarrow |S_n - s| < \varepsilon. \]

• The number \(s \) is the limit of \(S_n \), and we write \(\lim_{n \to \infty} S_n = s \) or \(S_n \to s \).

• A sequence that does not converge to any \(s \in \mathbb{R} \) it is said to diverge.

Remark:
• Recall: \(|b| < a \iff -a < b < a \)
• Thus \(|s_n - s| < \varepsilon \iff -\varepsilon < s_n - s < \varepsilon \iff s - \varepsilon < s_n < s + \varepsilon \)
• \(N \) can depend on \(\varepsilon \).
Assume domain of sequence is $\mathbb{N} = \{1, 2, 3, \ldots \}$ unless otherwise specified.

Ex: Consider the sequence $s_n = \frac{1}{n^2}$. We expect that $\lim_{n \to \infty} \frac{1}{n^2} = 0$. Let's prove this!

Scratchwork:

\[|\frac{1}{n^2} - 0| < \varepsilon \iff \frac{1}{n^2} < \varepsilon \iff \frac{1}{\sqrt{\varepsilon}} < n \]

Proof: Fix arbitrary $\varepsilon > 0$. Let $N = \frac{1}{\sqrt{\varepsilon}}$. Then for $n > N$, we have

\[n > \frac{1}{\sqrt{\varepsilon}} \iff \frac{1}{n^2} < \varepsilon \iff |\frac{1}{n^2} - 0| < \varepsilon \].

Thus $\lim_{n \to \infty} \frac{1}{n^2} = 0$. \(\Box\)

Remark: We could have picked N to be any number $\geq \frac{1}{\varepsilon}$, e.g. $N = \frac{2}{\varepsilon^2}, N = \frac{1}{\varepsilon} + 1$, etc.

Ex: Consider the sequence $s_n = (-1)^n$. We expect that this sequence does not converge. Let's prove it.

Proof:

Assume, for the sake of contradiction, that $(-1)^n$ converges to $s \in \mathbb{R}$. By defn of convergence, for all $\varepsilon > 0$, there exists N so that $n > N$, $|(-1)^n - s| < \varepsilon$.

Let $\epsilon = 1$ and choose N so that $n > N$ ensures $|(-1)^n - s| < 1 \iff s - 1 < (-1)^n < s + 1$.

For n even, this implies $1 < s + 1 \Rightarrow 0 < s$. For n odd, this implies $s - 1 < -1 \Rightarrow s < 0$. This is a contradiction. Thus, $(-1)^n$ diverges.

Ex: Consider the sequence $s_n = \frac{2n-1}{3n+2}$. What is the limit?

Scratchwork:

$$s_n = \frac{2n-1}{3n+2} = \frac{2 - \frac{1}{n}}{3 + \frac{2}{n}}$$

"these get very small as $n \to \infty$"

$$|s_n - \frac{2}{3}| < \frac{3}{2} \iff \left| \frac{2n-1}{3n+2} - \frac{2}{3} \right| < \frac{3}{2} \iff \left| \frac{6n-3-6n-4}{3(3n+2)} \right| < 3$$

$$\iff \left| \frac{-7}{3(3n+2)} \right| < 3 \iff \frac{7}{3(3n+2)} < 3$$

$$\iff \frac{7}{9n} < 3 \iff \frac{1}{n} < 3 \iff \frac{1}{3} < n$$
\textbf{Proof:}

Fix $\varepsilon > 0$ arbitrary and let $N = \frac{1}{\varepsilon}$. Then, if $n > N$, we have

$$\frac{1}{\varepsilon} < n \implies \frac{7}{3(3n+2)} < \varepsilon \implies |\frac{6n-3-6n-4}{3(3n+2)}| < \varepsilon \implies |S_n - \frac{2}{3}| < \varepsilon.$$

Therefore, $\lim_{n \to \infty} S_n = \frac{2}{3}$. \qed
A special type of sequence is a...

Def (bounded sequence): A sequence \(s_n \) is **bounded** if there exists \(M \in \mathbb{R} \) s.t. \(|s_n| \leq M \) for all \(n \).

Remark: A sequence is bounded iff the set \(S = \{ s_n : n \in \mathbb{N} \} \) is bounded.

Thm: Convergent sequences are bounded.

Idea of proof:

\[s_n \]

\[s \]

\[n \in \mathbb{N} \]

\[S \]

\[E \]

\[\exists \]

\[(-1)^n \]

\[S = \{-1, 1\} \]

\[\frac{1}{n} \]

\[S = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \]
Pf:
Suppose s_n is a convergent sequence with limits. By the defn of convergence, for all $\varepsilon > 0$, there exists N so that $n > N$ ensures $|s_n - s| < \varepsilon$.

Let $\varepsilon = \sqrt{2}$. Then there exists N so that $n > N$, $|s_n - s| < \sqrt{2}$.

Since $|s_n| - |s| \leq |s_n - s| \leq |s_n - s| < \sqrt{2}$, so $|s_n| < |s| + \sqrt{2}$ for all $n > N$. $\lfloor N \rfloor = \max \{ n : n \in \mathbb{N} \land n > N \}$.

Define $M = \max \{|s_1|, |s_2|, \ldots, |s_{\lfloor N \rfloor}|, |s| + \sqrt{2}\}$. Then $|s_n| \leq M$ for all n, so s_n is a bounded sequence.