This is a closed-book and closed-note examination. Calculators are not allowed. Please show your work in the space provided. Scratch paper is not permitted. If you continue a problem on the back of a page, please write “continued on back”. Partial credit will be given for partial answers. You have 1 hour and 15 minutes.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Consider a sequence s_n.

(a) State the definition of $\lim \sup s_n$. (6 points)

(b) If $\lim \sup |s_n| < +\infty$, prove that s_n is a bounded sequence. (7 points)

(c) If s_n is a bounded sequence, prove that $\lim \sup |s_n| < +\infty$. (7 points)
Question 4 (20 points)

(a) State the definition of what it means for a series to converge. (6 points)

(b) Consider a sequence of real numbers \(b_n \). Prove that \(\sum_{n=1}^{\infty} |b_n| \) either diverges to \(+\infty\) or converges. (7 points)

(c) Use the Cauchy Criterion to prove that, if \(\sum_{n=1}^{\infty} |b_n| \) is convergent, then \(\sum_{n=1}^{\infty} b_n \) is also convergent. (7 points)

(Do not use the Comparison Test theorem for convergent series from the textbook, since we did not discuss that theorem in class.)
Question 5 (20 points)

Lightning Round!
You do not need to show your work or justify your answers.

(a) Consider the sequence \(s_n = (-1)^n + \frac{1}{n} \).

(i) Give an example of a monotone subsequence. (3 points)

(ii) What is the set of subsequential limits of \(s_n \)? (3 points)

(iii) What is \(\limsup_{n \to \infty} s_n \)? (2 points)

(iv) What is \(\liminf_{n \to \infty} s_n \)? (2 points)

(b) Determine if the following statements are true or false. If they are false, provide a counterexample.

(i) Suppose \(s_n \) has a subsequence \(s_{n_k} \) so that \(\lim_{k \to +\infty} s_{n_k} = +\infty \). Then \(\limsup_{n \to +\infty} s_n = +\infty \). (5 points)

(ii) Suppose \(s_n \) has a subsequence \(s_{n_k} \) so that \(\lim_{k \to +\infty} s_{n_k} = 0 \). Then \(\limsup_{n \to +\infty} s_n = 0 \). (5 points)