Craig Office Hours, 5/27/22

26 ii)

\[f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \]

Since a function is continuous if it is continuous at every point in its domain, to show a function is discontinuous it suffices to show \(\exists x_0 \in \text{dom}(f) \) s.t. \(f \) is discontinuous at \(x_0 \).

We will show \(f \) is discontinuous at \(x_0 = 0 \).

Def: \(f \) is discontinuous at \(x_0 \in \text{dom}(f) \) if \(\exists \varepsilon > 0 \) s.t. \(\forall \delta > 0, \exists x \in \text{dom}(f) \) with \(|x - x_0| < \delta \) and \(|f(x) - f(x_0)| \geq \varepsilon \).
Let \(\varepsilon = 1 \). Fix \(\delta > 0 \) arbitrary. Let \(x = \min\{\frac{\varepsilon}{2}, 1\} \). Then \(|x - x_0| = x < \delta \), and \(f(x) = \max \{\varepsilon \frac{2}{8}, 1\} \delta \). Then,

\[
|f(x) - f(x_0)| = f(x) \geq 1 = \varepsilon .
\]

Since \(\delta > 0 \) was arbitrary, this shows that for all \(\delta > 0 \), \(\exists x \in \text{dom}(f) \) s.t. \(|x - x_0| < \delta \) and \(|f(x) - f(x_0)| \geq \varepsilon \).
This shows f is discontinuous at x_0.

Now, consider

$$f(x) = \begin{cases} -1 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}$$

Proof. We will show f is discontinuous at $x_0 = 0$. Fix $\varepsilon = 2$. Fix $\delta > 0$ arbitrary. Let $x = \frac{-\delta}{2}$. Then $|x - x_0| = \frac{\delta}{2} < \delta$, and $|f(x) - f(x_0)| = |(-1) - 1| = 2 = 2 \geq \varepsilon$.

Since $\delta > 0$ was arbitrary, this shows that, for all $x_0 > 0$, there exists $\delta > 0$ such that $|x - x_0| < \delta$ but $|f(x) - f(x_0)| \geq \varepsilon$. Thus f is discontinuous.
at x_0.

1. $S = \{ \sqrt{5}^r : r \in \mathbb{Q} \}$

2. WTS: \(\forall a, b \in \mathbb{R} \) with \(a < b \), \(\exists s \in S \) s.t. \(a < s < b \).

Pf: Since \(a < b \), we also have \(\frac{a}{\sqrt{5}} < \frac{b}{\sqrt{5}} \). Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), \(\exists r \in \mathbb{R} \) s.t. \(\frac{a}{\sqrt{5}} < r < \frac{b}{\sqrt{5}} \). Thus, \(a < \sqrt{5}r < b \). This shows \(\exists s \in S \) s.t. \(a < s < b \).

Scratchwork:

Want: \(a < s < b \) for \(s \in S \).

\[
\begin{align*}
& a < s < b \quad \text{for } s \in S. \\
\implies & \quad a < \sqrt{5}r < b \quad \text{for } r \in \mathbb{R}.
\end{align*}
\]

\[
\begin{align*}
& \frac{a}{\sqrt{5}} < r < \frac{b}{\sqrt{5}} \quad \text{for } r \in \mathbb{R}.
\end{align*}
\]

\(f(x) = \begin{cases}
0 & \text{if } x \in S^c \\
1 & \text{if } x \in S
\end{cases} \)
WTS: For all $x_0 \in S^c$, f is discontinuous at x_0.

Proof: Fix $x_0 \in S^c$. Fix $\varepsilon = 1$. Fix $\delta > 0$.
Note that $|x-x_0| < \delta \iff x-\delta < x < x_0 + \delta$.

By part (a), for $a = x_0 - \delta$ and $b = x_0 + \delta$,
$\exists x \in S$ s.t. $a < x < b$, so $\exists x \in S$ s.t.
$|x-x_0| < \delta$. Then $|f(x) - f(x_0)| = 1 = \varepsilon$.

Since $\delta > 0$ was arbitrary, this shows that,
for all $\delta > 0$, $\exists x \in \text{dom}(f)$ s.t. $|x-x_0| < \delta$
and $|f(x) - f(x_0)| \geq \varepsilon$. Thus f is discontinuous
at x_0.
(14)

\(\circ \) WTS \(\forall \varepsilon > 0, a \in \mathbb{R}, \{r \in \mathbb{Q} : |r - a| < \varepsilon\} \) contains infinitely many elements.

\(\text{Proof:} \) Fix \(\varepsilon > 0 \) and \(a \in \mathbb{R} \). Note that \(\frac{|r - a|}{\varepsilon} < 1 \iff a - \varepsilon < r < a + \varepsilon \).

By density of \(\mathbb{Q} \) in \(\mathbb{R} \), \(\exists r_2 \in \mathbb{Q} \) s.t. \(a < r_2 < a + \varepsilon \). In particular, \(|r_2 - a| < \varepsilon \).

Now, by density of \(\mathbb{Q} \) in \(\mathbb{R} \), \(\exists r_2 \in \mathbb{Q} \) s.t. \(a < r_2 < r_1 \). In particular, \(|r_2 - a| < \varepsilon \) and \(r_2 \neq r_1 \).