Recall:

Def: Two linear systems \(X' = AX \) and \(Y' = BY \), \(A, B \in \text{Mn}(\mathbf{R}) \), are equivalent up to coordinate change if \(\exists \ T \in \text{Mn}(\mathbf{R}) \) invertible so that \(B = T^{-1}AT \).

In this case, \(Y(t) \) solves \(Y' = BY \Rightarrow X(t) = TY(t) \) solves \(X' = AX \)
\(X(t) \) solves \(X' = AX \Rightarrow Y(t) = T^{-1}X(t) \) solves \(Y' = BY \)

These solutions are equivalent, up to rotations/ reflections/scalings.

Thm: Given \(A \in \text{Mn}_2(\mathbf{R}) \), \(X' = AX \) is equivalent up to coordinate change to one of the following systems:

1. real, distinct eigenvalues \(\lambda_1, \lambda_2 \): \(Y' = (\lambda_1, 0)Y \\
 (0, \lambda_2) \)
2. complex eigenvalues \(\alpha \pm i\beta \): \(Y' = (\alpha, \beta)Y \\
 (-\beta, \alpha) \)
repeated real eigenvalues

(i) 2 linearly independent eigenvectors
\[Y' = (\lambda A) Y \]
\[Y' = (\lambda^2 A) Y \]

(ii) 1 eigenvector

These are known as the canonical forms of planar linear systems.

Higher dimensional systems, \(X' = AX, A \in \mathbb{M}_n(\mathbb{R}) \)

Definition (Matrix Exponential): Given \(A \in \mathbb{M}_n(\mathbb{R}) \),
\[e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \quad e \in \mathbb{M}_n(\mathbb{R}) \]

Lemma:

(a) If \(AB = BA \), then \(e^{A+B} = e^A e^B \)

(b) For all \(A \in \mathbb{M}_n(\mathbb{R}) \), \(e^A \) is invertible and \((e^A)^{-1} = e^{-A} \).

Proposition: \(\frac{d}{dt} e^{tA} = Ae^{tA} = e^{tA} A \)

Major Result #5

Theorem (Fundamental Theorem for Linear Systems):
Given \(A \in \mathbb{M}_n(\mathbb{R}) \), the general solution of \(X' = AX \) is
\[X(t) = e^{tA} X_0 \quad \text{for} \quad X_0 \in \mathbb{R}^n \]
Suppose \(X(t) \) is a solution of \(X' = AX \).

Define \(Z(t) := e^{-tA}X(t) \).

\[
Z'(t) = e^{-tA}(-A)X(t) + e^{-tA}X'(t) \\
= e^{-tA}(-A)X(t) + e^{-tA}AX(t) \\
= 0
\]

Therefore \(Z(t) = Z(0) = X(0) \) for all \(t \).

Hence \(e^{-tA}X(t) = X(0) \implies X(t) = e^{tA}X(0) \),

Lemma

for \(X(0) \in \mathbb{R}^n \).

Wait... it was that easy to find the general solution in the \(n \)-dimensional case...

The catch: what is \(e^{tA} \)?

is there any hope of reducing this infinite series to a finite sum?

To write \(e^{tA} \) more simply, we will use the structure of \(A \).

Jordan Canonical Form
Thm: For any $A \in \text{Mn}(\mathbb{R})$, there exists $T \in \text{Mn}(\mathbb{R})$ invertible so that

$$T^{-1}AT = \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_e \end{pmatrix}$$

where each B_i is a square matrix of one of the following forms

(i) $\begin{pmatrix} \lambda & 1 \\ & \ddots & 1 \\ & & \lambda \end{pmatrix}$
(ii) $\begin{pmatrix} \alpha & \beta & 1 & 0 \\ -\beta & \alpha & 0 & 1 \\ & & \ddots & \ddots \\ 10 & 01 & \ddots & \alpha \beta \\ 01 & \ddots & \ddots & -\beta \alpha \end{pmatrix}$

For $\lambda, \alpha, \beta \in \mathbb{R}$, $\beta \neq 0$.

• For each real eigenvalue λ of A with multiplicity m,
 - For each (linearly independent) eigenvector V_i of λ,
 we get a $k_i \times k_i$ block of the form (i),
 where $k_i \in [1, m]$ is the largest integer
 such that $(A - \lambda I)^{k_i-1} \mathbf{w} = V_i$ for some general eigenvector \mathbf{w}.

\[\sum_{i} k_i = m \]
\[\text{if } V_i \text{ is an eigenvector of } \lambda \]

- For each pair of complex eigenvalues \(\alpha + i\beta \) of multiplicity \(m \),
- For each (linearly independent, complex) eigenvector \(V_i \) of \(\alpha + i\beta \), we get a \(2k \times 2k \) block of the form (ii), where \(k_i \in [1, m] \) is the largest integer s.t. \((A - \lambda \mathbb{I})^{k_i-1} W = V_i \) for some general eigenvector \(W \).

\[\sum_{j} k_j = m \]
\[\text{if } V_j \text{ is an eigenvector of } \alpha + i\beta \]

Proof: Graduate level algebra (or 108?)

Remark:
- The ordering of the blocks is not unique.
- \(1 \times 1 \) block of the form (i) is \(\begin{bmatrix} \alpha \end{bmatrix} \)
- \(2 \times 2 \) block of the form (ii) is \(\begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \)
- We consider each complex eigenvalue together with its conjugate \(\overline{\lambda} \).
Rmk: Note that the sizes of all the blocks add up to \(n \)

\[
\sum \sum k_i + \sum 2k_i = n
\]

Cor: Given \(A \in \text{Mn}(\mathbb{R}) \) and \(\lambda \) is an eigenvalue w/ multiplicity \(m \) and \(m \) linearly independent eigenvectors, then the JCF of \(A \) has \(m \)
(i) 1\times 1 \text{ blocks of the form } [\lambda], \text{ if } \lambda \in \mathbb{R}
(ii) 2\times 2 \text{ blocks of the form } \begin{bmatrix} \lambda & 1 \\ -1 & \lambda \end{bmatrix}, \text{ if } \lambda \in \mathbb{C}, \lambda \neq \bar{\lambda}

\(\bar{\lambda} \) By Thm, for each eigenvector \(\mathbf{v}_i \) of \(\lambda \),

\[
\sum k_i = 1 \quad \text{and} \quad \sum \sum k_i = m
\]

By hypothesis \(\forall i : \mathbf{v}_i \) is an eigenvector \(\exists | = m \)

Thus, \(k_i = 1 \) for all \(i \).